基于FPGA的乘法器设计和实现
- 格式:pdf
- 大小:291.48 KB
- 文档页数:4
FPGA中的乘法引言FPGA(现场可编程门阵列)是一种可重构的硬件设备,可以通过编程来实现各种功能。
其中,乘法是FPGA中的常见操作之一。
本文将详细介绍FPGA中的乘法实现方法、应用场景以及优势。
FPGA中的乘法实现方法在FPGA中,乘法可以通过多种方式实现。
下面将介绍两种常见的乘法实现方法。
1. 串行乘法器串行乘法器是一种简单的乘法器实现方法。
它将两个乘数的每一位逐位相乘,并将乘积相加得到最终结果。
具体实现步骤如下:1.将两个乘数进行拆分,得到每一位的值。
2.逐位相乘,得到每一位的乘积。
3.将乘积相加,得到最终结果。
串行乘法器的优点是实现简单,适用于乘数位数较少的情况。
然而,由于每一位的乘积需要逐位相加,因此计算速度较慢。
2. 并行乘法器并行乘法器是一种高效的乘法器实现方法。
它将两个乘数同时拆分成多个部分,并行计算每一部分的乘积,最后将所有部分的乘积相加得到最终结果。
具体实现步骤如下:1.将两个乘数进行拆分,得到多个部分。
2.并行计算每一部分的乘积。
3.将所有部分的乘积相加,得到最终结果。
并行乘法器的优点是计算速度快,适用于乘数位数较多的情况。
然而,实现相对复杂,需要更多的硬件资源。
FPGA中乘法的应用场景乘法在FPGA中有广泛的应用场景,下面将介绍几个常见的应用场景。
1. 信号处理在信号处理中,乘法常用于滤波器和变换器等算法中。
FPGA中的乘法器可以高效地执行这些算法,提供快速且准确的信号处理能力。
2. 数字信号处理在数字信号处理中,乘法器广泛应用于调制解调、编码解码和信号分析等领域。
FPGA中的乘法器可以实现高速且低功耗的数字信号处理算法。
3. 图像处理在图像处理中,乘法器用于实现像素级运算,如图像增强、边缘检测和图像变换等。
FPGA中的乘法器可以并行计算多个像素的乘积,提高图像处理的效率。
4. 科学计算在科学计算中,乘法器用于矩阵运算、向量运算和复数运算等。
FPGA中的乘法器可以并行计算多个元素的乘积,提供高性能的科学计算能力。
本科毕业设计基于FPGA的8位硬件乘法器设计摘要VHDL(VHSIC Hardware Description Language)是当今最流行的硬件描述语言之一,能够对最复杂的芯片和最完整的电子系统进行描述。
以硬件描述语言作为设计输入,经过简单的综合与布局,快速烧录至FPGA(Field Programmable Gate Array)上进行测试,是现代IC设计验证的技术主流。
乘法器是处理器进行科学计算和数字信号处理的基本硬件结构,是现代微处理器中的重要部件。
乘法器完成一次乘法操作的周期基本上决定了微处理器的主频。
本文基于FPGA,采用VHDL语言,结合MAX+plusⅡ这个强大的软件平台设计了8位二进制乘法器,并对其进行符号扩展,使其可以统一处理8位带符号数和无符号数。
高速乘法器设计通常分为三个关键步骤:部分积产生、部分积累加和最终结果获得。
本文对部分积产生过程采用改进Booth算法,有效减少部分积加法项;为了统一带符号和无符号数,对部分积进行符号扩展;而对部分积的累加则采取3-2压缩器和4-2压缩器进行压缩;最终结果的获得则以一个根据部分积累加结果到达时间的不同进行延迟优化的选择进位加法器将累加结果和累加进位相加而得。
关键词:乘法器改进Booth算法压缩器选择进位加法器The Circuit Design of 8-bit Hardware Multiplier Based on FPGAKe Xiuyan(College of Engineering, South China Agricultural University, Guangzhou 510642, China) Abstract: VHSIC Hardware Description Language, one of today's most popular hardware description languages, is used to describe the most complex chip and most complete electronic systems.The multiplier is not only the basic hardware structure of the processor for scientific computing and digital signal processing but also an important component of modern microprocessors. This design for 8-bit binary multiplier is based on FPGA, using VHDL language, and proved by the MAX+plusⅡsoftware platform. The multiplicand has an extended sign bit so that the multiplier can unify 8-bit signed and unsigned.High-speed multiplier design is usually divided into three key steps: partial product generation circuit, accumulator and adder. In this paper, the partial product generation process uses the modified Booth algorithm, so that the partial product addition terms can be effectively reduced. The accumulation of partial products takes 3-2 compressor and 4-2 compressor to compress. The final result is obtained with select carry adder.Key words: multiplier the modified Booth algorithm compressor select carry adder目录1 前言 (1)1.1 乘法器的研究背景和意义 (1)1.2 乘法器的研究发展状况 (1)2 总体方案确定 (2)2.1 乘法器设计方案 (2)2.2 硬件描述语言VHDL (3)2.2.1 硬件描述语言 (3)2.2.2 VHDL语言简介 (3)2.2.3 VHDL的基本结构 (4)2.2.4 VHDL的优点 (4)2.3 实验工具MAX+plusⅡ (5)2.3.1 MAX+plusⅡ简介 (5)2.3.2 MAX+plusⅡ的设计流程 (6)2.3.3 MAX+plusⅡ的特点 (6)2.4 现场可编辑门阵列(FPGA) (7)2.4.1 FPGA简介 (7)2.4.2 FPGA的基本结构 (7)2.4.3 FPGA的特点 (8)3 理论分析及设计 (9)3.1 乘法器的数据格式 (9)3.1.1 二进制的表示 (9)3.1.2 无符号数的运算 (9)3.1.3 带符号数的运算 (9)3.1.4 带符号数的符号扩展表示 (9)3.2 乘法器算法 (10)3.2.1 移位相加算法 (10)3.2.2 Booth算法 (11)3.2.3 改进型Booth算法 (12)3.3 加法器 (15)3.3.1 半加器 (15)3.3.2 全加器 (16)3.3.3 串行进位加法器 (16)3.3.4 超前进位加法器 (17)3.3.5 选择进位加法器 (18)3.4 压缩器 (19)4 测试与试验分析 (22)4.1 乘法器的总体结构 (22)4.2 乘法器各个模块的仿真 (23)4.2.1 Booth编码器 (23)4.2.2 Booth译码器 (23)4.2.3 部分积产生电路 (24)4.2.4 压缩器 (25)4.2.5 加法器 (26)4.2.6 顶层文件 (27)5 结论 (28)参考文献 (29)附录 (30)致谢 (33)毕业设计成绩评定表1 前言1.1 乘法器的研究背景和意义微电子技术的迅猛发展,计算机技术的不断进步,带动了集成电路工艺的不断增进,数字芯片的集成度不断提高。
任务书:1、十六位硬件乘法器电路2、八位硬件除法器电路摘要:设计一个16位硬件乘法器电路。
要求2位十进制乘法,能用LED数码管同时显示乘数,被乘数和积的值.本设计利用Quartus II软件为设计平台,通过移位相加的乘法原理:即从被乘数的最低位开始,若为1,则乘数左移后与上一次的和相加;若为0,左移后以全零相加,直至被乘数的最高位。
经软件仿真和硬件测试验证后,以达到实验要求。
设计一个8位硬件除法器电路。
要求2位十进制除法,能用LED数码管显示结果、除数和被除数的值。
根据被除数(余数)和除数的大小来上商,被除数低位补零,再减去右移后的除数也可以改为左移余数,减去除数,这样可以确保参与运算的寄存器具有相同位数。
商写到寄存器的低位,然后再左移一位。
经软件仿真和硬件验证后,以达到实验要求。
目录2.任务书 (2)3.摘要 (2)4.目录 (3)5.正文 (4)5.1.1 乘法器系统设计 (4)5.1.1.1 设计要求 (4)5.1.2.2系统设计方案 (4)5.1.2 单元电路设计 (4)十进制计算模块 (5)BCD码转二进制模块 (5)8位右移寄存器模块 (6)8位加法器模块 (7)1位乘法器multi_1模块 (7)16位移位寄存器reg_16模块 (8)16位二进制转BCD码B_BCD模块 (9)8位乘法器multi_8x8顶层设计 (10)5.1.3 乘法器的系统测试 (14)仿真分析 (14)硬件验证 (15)5.2.1 除法器系统设计………………………………………………5.2.2单元电路设计………………………………………………5.2.3 除法器的系统设计………………………………………………仿真分析………………………………………………硬件验证………………………………………………6. 结论 (15)7. 参考文献 (15)8. 分工 (15)5.正文题目要求设计基于fpga的乘法器和除法器。
本小组想出的方案是利用位移相加和相减来制作乘法器和除法器。
基于FPGA的计算器设计基于FPGA(可编程逻辑门阵列)的计算器设计是一种使用FPGA开发板和硬件描述语言来实现的计算器。
它可以进行基本的数学运算,如加法、减法、乘法和除法等。
FPGA计算器不仅具有快速的运算速度和高度的可靠性,还具有较小的体积和低功耗。
FPGA计算器通常由输入、控制单元、运算单元和输出组成。
输入可以通过按钮、键盘或其他输入设备来实现。
控制单元负责解析输入并发出相应的控制信号。
运算单元是FPGA计算器的核心组件,它负责接收控制信号,并执行相应的运算操作。
输出单元将运算结果显示在计算器的屏幕上。
使用硬件描述语言(HDL)来实现FPGA计算器的设计可以提供高度的灵活性和可扩展性。
HDL允许开发人员通过编程方式定义逻辑门和电路功能,而不是通过物理硬件组件来实现。
这意味着开发人员可以根据需要添加新的运算功能,并且可以很容易地在FPGA计算器上进行修改和更新。
FPGA计算器可以通过对数据进行二进制表示来实现各种数学运算。
例如,加法可以通过将两个二进制数相加来实现。
具体实现可以使用查找表(Look-up Table)或全加器等组合逻辑电路来完成。
除法则比较复杂,通常需要使用除法算法来实现。
除了基本的数学运算,FPGA计算器还可以实现其他功能,如逻辑运算、位操作和存储器操作等。
逻辑运算可以用于实现条件语句和循环语句等流程控制功能。
位操作可以用于提取和修改数据的特定位。
存储器操作可以用于存储和读取数据。
基于FPGA的计算器设计有许多优点。
首先,FPGA计算器具有非常快的运算速度,比软件计算器更加高效。
其次,FPGA计算器具有较小的体积和低功耗,适合嵌入式系统或低功耗应用场景。
此外,由于FPGA计算器的硬件实现,它也具有较高的稳定性和可靠性。
然而,基于FPGA的计算器设计也存在一些挑战。
首先,硬件描述语言的学习成本较高,需要开发人员具备一定的硬件设计知识。
其次,FPGA 计算器的开发过程相对复杂,需要编写和调试大量的HDL代码。
基于FPGA的八位硬件乘法器课程设计,可以分以下几个步骤进行:
1. 确定设计要求:根据要求,设计一个能对两个八位二进制数进行乘法运算的硬件电路。
需要考虑到输入、输出、各种控制信号等。
2. 确定设计方案:根据设计要求,确定具体的设计方案。
可以使用Verilog语言进行描述,包括输入输出端口的定义、状态转移的描述等。
3. 编写Verilog代码:根据设计方案,编写Verilog代码。
代码需要对各种信号进行定义,并实现相应的逻辑功能。
4. 进行仿真:在编写完代码后,进行功能仿真。
可以使用ModelSim等仿真工具进行验证。
对代码进行仿真测试,在设计出现问题时可以及时进行调试和修改。
5. 进行综合和布局布线:通过综合和布局布线操作,将Verilog代码映射到FPGA芯片上,并生成bit文件,用于烧录到FPGA芯片中。
6. 进行验证:将bit文件烧录到FPGA芯片中,进行验证。
可以通过开发板上的按键等方式,输入两个八位二进制数并进行乘法运算,同时显示结果。
设计八位硬件乘法器需要了解数字电路设计基础知识和Verilog语言的使用。
同时,需要熟练掌握FPGA开发板的使用,以及相关的开发工具(如Quartus II等)的使用。
基于FPGA的乘法器设计乘法运算在数字信号处理、图像处理、通信系统等领域中非常常见。
传统的乘法运算通常是通过乘法器件(如芯片)来实现,这样的乘法器件通常是专用定制的,功耗高、成本昂贵。
而基于FPGA的乘法器设计可以通过编程的方式,在硬件级别上实现乘法运算,具有灵活性高、性能可调的优势。
1. 确定乘法算法:乘法运算的算法有很多种,比如简单乘法、Booth 算法、Wallace树算法等。
根据实际需求,选择适合的乘法算法。
2.确定数据位宽:乘法器设计需要根据给定的乘法算法确定输入数据的位宽和输出结果的位宽。
位宽的选择对乘法器的性能有重要影响,过小的位宽可能导致精度不足,过大的位宽则会增加硬件资源的使用。
3.设计乘法核心:乘法核心是乘法器设计的核心部分,根据选择的乘法算法和数据位宽,设计乘法核心的逻辑电路。
乘法核心通常包括乘法器和累加器。
4.优化设计:乘法器的设计需要考虑优化性能和资源利用率。
常见的优化方法包括流水线设计、并行计算、减少不必要的运算等。
5. 编写硬件描述语言(HDL)代码:HDL是一种用于描述硬件电路的语言,比如Verilog和VHDL。
根据设计的乘法器模块,编写HDL代码来描述乘法器的功能和电路结构。
6.仿真和调试:通过利用仿真工具对设计好的乘法器进行功能验证和调试,发现并修复存在的问题。
1.灵活性高:FPGA的可编程性使得乘法器的设计可以根据实际需求进行灵活调整和修改,而不需要重新设计和生产乘法器芯片。
2.性能可调:FPGA的资源(逻辑单元)可以根据需要配置使用,可以通过增加逻辑单元和优化设计来提高乘法器的性能。
3.低功耗:相比于专用乘法器件,基于FPGA的乘法器通常具有更低的功耗,可以在一定程度上减少系统能耗。
4.成本低:由于FPGA是可编程设备,相对于专用乘法器件的生产成本要低,尤其适用于小批量生产和特定需求。
综上所述,基于FPGA的乘法器设计具有灵活性高、性能可调和成本低的优势,能够满足不同领域对于乘法运算的需求。
fpga中做乘法
FPGA中可以使用各种方法进行乘法,下面列举了几种常用的方法:
1. 逻辑门级乘法器:可以利用AND、OR、XOR等逻辑门实现简单的乘法运算。
例如,使用一系列AND运算将两个输入位相乘,再使用逻辑门将它们相加得到结果。
这种方法的优点是简单易实现,缺点是速度较慢。
2. Booth编码乘法器:Booth编码乘法器是一种基于查找表的乘法器,利用Booth编码对乘数进行编码,根据编码结果进行查表并得到部分积,再将部分积相加得到最终结果。
这种方法的优点是速度较快,缺点是复杂度较高。
3. 数字信号处理(DSP)乘法器:FPGA中通常会包含一些专门设计用于进行高速乘法运算的DSP乘法器。
这些乘法器通常具有高速、低功耗和占用较少逻辑资源等特点,非常适合在FPGA中实现乘法运算。
4. 基于硬件乘法器的乘法:某些FPGA芯片可能包含硬件乘法器,可以直接使用硬件乘法器进行乘法运算。
硬件乘法器通常具有非常高的速度和低的功耗,但会占用较多的资源。
需要根据具体的应用场景和性能要求选择适合的乘法方法。
fpga课程设计乘法器一、课程目标知识目标:1. 让学生掌握FPGA的基本原理和结构,理解乘法器的设计方法。
2. 使学生了解数字信号处理中乘法运算的重要性,掌握乘法器的功能和应用。
3. 帮助学生掌握Verilog HDL语言编程,并能运用该语言设计简单的乘法器电路。
技能目标:1. 培养学生运用FPGA进行数字电路设计的能力,提高实际问题解决能力。
2. 培养学生运用Verilog HDL语言进行编程,实现特定功能的乘法器电路。
3. 培养学生进行团队协作,完成课程设计任务,提高沟通与协作能力。
情感态度价值观目标:1. 培养学生对FPGA技术及其应用的兴趣,激发学生的创新意识。
2. 培养学生严谨、务实的科学态度,养成勤奋、刻苦的学习习惯。
3. 增强学生的国家使命感和社会责任感,认识到我国在FPGA领域的发展潜力。
课程性质:本课程为电子工程与技术专业课程,以实践为主,理论联系实际。
学生特点:学生具备一定的电子电路基础和编程能力,对FPGA技术有一定了解。
教学要求:结合课程特点和学生特点,注重实践操作,提高学生的动手能力和创新能力。
在教学过程中,注重引导学生自主学习,培养团队协作精神。
通过课程学习,使学生能够独立完成乘法器的设计与实现,为后续相关课程打下坚实基础。
二、教学内容1. FPGA基本原理和结构复习:回顾FPGA的内部结构、工作原理以及配置技术,重点理解查找表(LUT)的原理和应用。
相关教材章节:第一章 FPGA概述。
2. 数字乘法器原理:介绍乘法器在数字信号处理中的应用,分析不同类型的乘法器设计方法,如并行乘法器、串行乘法器等。
相关教材章节:第三章 数字乘法器设计。
3. Verilog HDL语言编程基础:复习Verilog HDL的基本语法,重点掌握模块定义、数据类型、运算符和赋值语句等。
相关教材章节:第二章 Verilog HDL基础。
4. 乘法器设计实践:结合实际案例,引导学生利用Verilog HDL语言设计一个简单的乘法器电路,包括设计、仿真和综合。
信息科学与技术学院电子EDA技术课程设计课程题目:基于FPGA的乘法器设计目录中文摘要 (2)外文摘要 (2)1.绪论 (3)1.1概述 (3)1. 2 VHDL简介 (3)1.3实验平台 (5)2.乘法器初步设计 (6)2.1设计思想 (6)2.2乘法器原理 (6)2.3 乘法器设计流程 (7)3. 乘法器具体设计 (9)3.1右移寄存器的设计 (9)3.2 加法器模块的设计 (9)3.3 乘1模块设计 (10)3.4锁存器模块设计 (11)4. 乘法器仿真 (13)4.1 8位加法器仿真 (13)4.2 乘1模块仿真 (13)4.3 锁存器模块仿真 (14)4.4 8位乘法器仿真 (14)4.5 总仿真图 (15)参考文献 (16)摘要在微处理器芯片中,乘法器是进行数字信号处理的核心,同时也是微处理器中进行数据处理的关键部件,它已经是现代计算机必不可少的一部分。
本文主要是在于如何运用标准硬件描述语言(VHDL)完成十六位乘法器,以及如何做二进制位相乘的运算过程。
该乘法器是由十六位加法器构成的以时序方式设计十六位乘法器,通过逐项移位相加来实现乘法功能,并以Quartus_II9.1软件工具进行模拟,仿真并予以显示。
关键字:乘法器;标准硬件描述语言(VHDL);移位相加;Quartus_II9.1AbstractIn the microprocessor chip, the multiplier is a digital signal processing core microprocessor is also a key component of data processing, it is already an essential part of the modern computer. This article is on how to use standard hardware description language (VHDL) to complete eight multipliers, as well as how to make the process of a binary bit multiplication operation. The multiplier is composed of eight adder to timing approach in designing eight multiplier, achieved by adding the multiplication-by-shift function, and in Quartus_II9.1 software tools for simulation, emulation and be displayed.Keywords: multiplier; standard hardware description language (VHDL); shift sum; Quartus_II9.11.绪论1.1概述本课题的设计来源是基于标准硬件描述语言(Very High Speed Integrated Circuit Hardware Description Language,VHDL)及Quartus_II9.1软件开发工具的进行模拟仿真的16位乘法器,用于实现32位移位相加乘法器的乘法运算功能。
目录引言....................................................................................................................................... - 1 - 摘要....................................................................................................................................... - 2 -一、乘法器概述....................................................................................................................... - 3 -1.1 EDA技术的概念........................................................................................................ - 3 -1.2 EDA技术的特点........................................................................................................ - 3 -1.3 EDA设计流程............................................................................................................ - 5 -1.4硬件描述语言(Verilog HDL)................................................................................ - 5 -二、16位乘法器的设计要求与设计思路.............................................................................. - 6 -2.2 设计要求.................................................................................................................... - 6 -三、16位乘法器的总体框图.................................................................................................. - 6 -四、16位乘法器的综合设计.................................................................................................. - 7 -4.1 16位乘法器功能........................................................................................................ - 7 -4.2 16位乘法器设计思路................................................................................................ - 8 -4.3 基于Verilog HDL 硬件语言的乘法器设计 ............................................................ - 8 -(1)输入模块......................................................................................................... - 8 -(2)乘法模块......................................................................................................... - 9 -五、总体调试与仿真结果..................................................................................................... - 10 -5.1乘法器的RTL Viewer .......................................................................................... - 10 -5.2 16位乘法器的系统程序:....................................................................................... - 11 -5.3计算结果仿真结果................................................................................................... - 12 -5.3.1仿真测试程序(a=6,b=10).............................................................................. - 12 - 总结......................................................................................................................................... - 16 - 参考文献................................................................................................................................. - 16 -引言随着微电子技术的飞速发展,集成电路工艺进入深亚微米阶段,特征尺寸变得越来越小。