Search for CP Violation in the Dalitz-Plot Analysis of $D^pmto K^+K^-pi^pm$
- 格式:pdf
- 大小:1.52 MB
- 文档页数:12
a r X i v :h e p -e x /0207007v 1 1 J u l 2002BELLEBelle Prerpint 2002-18KEK Preprint 2002-59Study of B →ρπdecays at BelleBelle Collaboration A.Gordon u ,Y.Chao z ,K.Abe h ,K.Abe aq ,N.Abe at ,R.Abe ac ,T.Abe ar ,Byoung Sup Ahn o ,H.Aihara as ,M.Akatsu v ,Y.Asano ay ,T.Aso aw ,V.Aulchenko b ,T.Aushev ℓ,A.M.Bakich an ,Y.Ban ag ,A.Bay r ,I.Bedny b ,P.K.Behera az ,jak m ,A.Bondar b ,A.Bozek aa ,M.Braˇc ko t ,m ,T.E.Browder g ,B.C.K.Casey g ,M.-C.Chang z ,P.Chang z ,B.G.Cheon am ,R.Chistov ℓ,Y.Choi am ,Y.K.Choi am ,M.Danilov ℓ,L.Y.Dong j ,J.Dragic u ,A.Drutskoy ℓ,S.Eidelman b ,V.Eiges ℓ,Y.Enari v ,C.W.Everton u ,F.Fang g ,H.Fujii h ,C.Fukunaga au ,N.Gabyshev h ,A.Garmash b ,h ,T.Gershon h ,B.Golob s ,m ,R.Guo x ,J.Haba h ,T.Hara ae ,Y.Harada ac ,N.C.Hastings u ,H.Hayashii w ,M.Hazumi h ,E.M.Heenan u ,I.Higuchi ar ,T.Higuchi as ,L.Hinz r ,T.Hokuue v ,Y.Hoshi aq ,S.R.Hou z ,W.-S.Hou z ,S.-C.Hsu z ,H.-C.Huang z ,T.Igaki v ,Y.Igarashi h ,T.Iijima v ,K.Inami v ,A.Ishikawa v ,H.Ishino at ,R.Itoh h ,H.Iwasaki h ,Y.Iwasaki h ,H.K.Jang a ℓ,J.H.Kang bc ,J.S.Kang o ,N.Katayama h ,Y.Kawakami v ,N.Kawamura a ,T.Kawasaki ac ,H.Kichimi h ,D.W.Kim am ,Heejong Kim bc ,H.J.Kim bc ,H.O.Kim am ,Hyunwoo Kim o ,S.K.Kim a ℓ,T.H.Kim bc ,K.Kinoshita e ,S.Korpar t ,m ,P.Krokovny b ,R.Kulasiri e ,S.Kumar af ,A.Kuzmin b ,Y.-J.Kwon bc ,nge f ,ai ,G.Leder k ,S.H.Lee a ℓ,J.Li ak ,A.Limosani u ,D.Liventsevℓ,R.-S.Lu z,J.MacNaughton k,G.Majumder ao, F.Mandl k,D.Marlow ah,S.Matsumoto d,T.Matsumoto au,W.Mitaroffk,K.Miyabayashi w,Y.Miyabayashi v,H.Miyake ae,H.Miyata ac,G.R.Moloney u,T.Mori d,T.Nagamine ar,Y.Nagasaka i,T.Nakadaira as,E.Nakano ad, M.Nakao h,J.W.Nam am,Z.Natkaniec aa,K.Neichi aq, S.Nishida p,O.Nitoh av,S.Noguchi w,T.Nozaki h,S.Ogawa ap, T.Ohshima v,T.Okabe v,S.Okuno n,S.L.Olsen g,Y.Onuki ac, W.Ostrowicz aa,H.Ozaki h,P.Pakhlovℓ,H.Palka aa,C.W.Park o,H.Park q,L.S.Peak an,J.-P.Perroud r, M.Peters g,L.E.Piilonen ba,J.L.Rodriguez g,F.J.Ronga r, N.Root b,M.Rozanska aa,K.Rybicki aa,H.Sagawa h,S.Saitoh h,Y.Sakai h,M.Satapathy az,A.Satpathy h,e,O.Schneider r,S.Schrenk e,C.Schwanda h,k,S.Semenovℓ,K.Senyo v,R.Seuster g,M.E.Sevior u,H.Shibuya ap,V.Sidorov b,J.B.Singh af,S.Staniˇc ay,1,M.Stariˇc m,A.Sugi v, A.Sugiyama v,K.Sumisawa h,T.Sumiyoshi au,K.Suzuki h,S.Suzuki bb,S.Y.Suzuki h,T.Takahashi ad,F.Takasaki h, K.Tamai h,N.Tamura ac,J.Tanaka as,M.Tanaka h,G.N.Taylor u,Y.Teramoto ad,S.Tokuda v,S.N.Tovey u,T.Tsuboyama h,T.Tsukamoto h,S.Uehara h,K.Ueno z, Y.Unno c,S.Uno h,hiroda h,G.Varner g,K.E.Varvell an,C.C.Wang z,C.H.Wang y,J.G.Wang ba,M.-Z.Wang z,Y.Watanabe at,E.Won o,B.D.Yabsley ba,Y.Yamada h, A.Yamaguchi ar,Y.Yamashita ab,M.Yamauchi h,H.Yanai ac,P.Yeh z,Y.Yuan j,Y.Yusa ar,J.Zhang ay,Z.P.Zhang ak,Y.Zheng g,and D.ˇZontar aya Aomori University,Aomori,Japanb Budker Institute of Nuclear Physics,Novosibirsk,Russiac Chiba University,Chiba,Japand Chuo University,Tokyo,Japane University of Cincinnati,Cincinnati,OH,USAf University of Frankfurt,Frankfurt,Germanyg University of Hawaii,Honolulu,HI,USAh High Energy Accelerator Research Organization(KEK),Tsukuba,Japani Hiroshima Institute of Technology,Hiroshima,Japanj Institute of High Energy Physics,Chinese Academy of Sciences,Beijing,PRChinak Institute of High Energy Physics,Vienna,Austria ℓInstitute for Theoretical and Experimental Physics,Moscow,Russiam J.Stefan Institute,Ljubljana,Slovenian Kanagawa University,Yokohama,Japano Korea University,Seoul,South Koreap Kyoto University,Kyoto,Japanq Kyungpook National University,Taegu,South Korear Institut de Physique des Hautes´Energies,Universit´e de Lausanne,Lausanne,Switzerlands University of Ljubljana,Ljubljana,Sloveniat University of Maribor,Maribor,Sloveniau University of Melbourne,Victoria,Australiav Nagoya University,Nagoya,Japanw Nara Women’s University,Nara,Japanx National Kaohsiung Normal University,Kaohsiung,Taiwany National Lien-Ho Institute of Technology,Miao Li,Taiwanz National Taiwan University,Taipei,Taiwanaa H.Niewodniczanski Institute of Nuclear Physics,Krakow,Polandab Nihon Dental College,Niigata,Japanac Niigata University,Niigata,Japanad Osaka City University,Osaka,Japanae Osaka University,Osaka,Japanaf Panjab University,Chandigarh,Indiaag Peking University,Beijing,PR Chinaah Princeton University,Princeton,NJ,USAai RIKEN BNL Research Center,Brookhaven,NY,USAaj Saga University,Saga,Japanak University of Science and Technology of China,Hefei,PR ChinaaℓSeoul National University,Seoul,South Koreaam Sungkyunkwan University,Suwon,South Koreaan University of Sydney,Sydney,NSW,Australiaao Tata Institute of Fundamental Research,Bombay,Indiaap Toho University,Funabashi,Japanaq Tohoku Gakuin University,Tagajo,Japanar Tohoku University,Sendai,Japanas University of Tokyo,Tokyo,Japanat Tokyo Institute of Technology,Tokyo,Japanau Tokyo Metropolitan University,Tokyo,Japanav Tokyo University of Agriculture and Technology,Tokyo,Japanaw Toyama National College of Maritime Technology,Toyama,Japanay University of Tsukuba,Tsukuba,Japanaz Utkal University,Bhubaneswer,Indiaba Virginia Polytechnic Institute and State University,Blacksburg,VA,USAbb Yokkaichi University,Yokkaichi,Japanbc Yonsei University,Seoul,South KoreaB events collected with the Belle detector at KEKB.Thebranching fractions B(B+→ρ0π+)=(8.0+2.3+0.7−2.0−0.7)×10−6and B(B0→ρ±π∓)=(20.8+6.0+2.8−6.3−3.1)×10−6are obtained.In addition,a90%confidence level upper limitof B(B0→ρ0π0)<5.3×10−6is reported.Key words:ρπ,branching fractionPACS:13.25.hw,14.40.Nd1on leave from Nova Gorica Polytechnic,Nova Gorica,Sloveniamodes are examined.Here and throughout the text,inclusion of charge con-jugate modes is implied and for the neutral decay,B0→ρ±π∓,the notation implies a sum over both the modes.The data sample used in this analysis was taken by the Belle detector[9]at KEKB[10],an asymmetric storage ring that collides8GeV electrons against3.5GeV positrons.This produces Υ(4S)mesons that decay into B0B pairs.The Belle detector is a general purpose spectrometer based on a1.5T su-perconducting solenoid magnet.Charged particle tracking is achieved with a three-layer double-sided silicon vertex detector(SVD)surrounded by a central drift chamber(CDC)that consists of50layers segmented into6axial and5 stereo super-layers.The CDC covers the polar angle range between17◦and 150◦in the laboratory frame,which corresponds to92%of the full centre of mass(CM)frame solid angle.Together with the SVD,a transverse momen-tum resolution of(σp t/p t)2=(0.0019p t)2+(0.0030)2is achieved,where p t is in GeV/c.Charged hadron identification is provided by a combination of three devices: a system of1188aerogelˇCerenkov counters(ACC)covering the momentum range1–3.5GeV/c,a time-of-flight scintillation counter system(TOF)for track momenta below1.5GeV/c,and dE/dx information from the CDC for particles with very low or high rmation from these three devices is combined to give the likelihood of a particle being a kaon,L K,or pion, Lπ.Kaon-pion separation is then accomplished based on the likelihood ratio Lπ/(Lπ+L K).Particles with a likelihood ratio greater than0.6are identified as pions.The pion identification efficiencies are measured using a high momentum D∗+data sample,where D∗+→D0π+and D0→K−π+.With this pion selection criterion,the typical efficiency for identifying pions in the momentum region0.5GeV/c<p<4GeV/c is(88.5±0.1)%.By comparing the D∗+data sample with a Monte Carlo(MC)sample,the systematic error in the particle identification(PID)is estimated to be1.4%for the mode with three charged tracks and0.9%for the modes with two.Surrounding the charged PID devices is an electromagnetic calorimeter(ECL) consisting of8736CsI(Tl)crystals with a typical cross-section of5.5×5.5cm2 at the front surface and16.2X0in depth.The ECL provides a photon energy resolution of(σE/E)2=0.0132+(0.0007/E)2+(0.008/E1/4)2,where E is in GeV.Electron identification is achieved by using a combination of dE/dx measure-ments in the CDC,the response of the ACC and the position and shape of the electromagnetic shower from the ECL.Further information is obtained from the ratio of the total energy registered in the calorimeter to the particle momentum,E/p lab.Charged tracks are required to come from the interaction point and have transverse momenta above100MeV/c.Tracks consistent with being an elec-tron are rejected and the remaining tracks must satisfy the pion identification requirement.The performance of the charged track reconstruction is studied using high momentumη→γγandη→π+π−π0decays.Based on the relative yields between data and MC,we assign a systematic error of2%to the single track reconstruction efficiency.Neutral pion candidates are detected with the ECL via their decayπ0→γγ. Theπ0mass resolution,which is asymmetric and varies slowly with theπ0 energy,averages toσ=4.9MeV/c2.The neutral pion candidates are selected fromγγpairs by requiring that their invariant mass to be within3σof the nominalπ0mass.To reduce combinatorial background,a selection criteria is applied to the pho-ton energies and theπ0momenta.Photons in the barrel region are required to have energies over50MeV,while a100MeV requirement is made for photons in the end-cap region.Theπ0candidates are required to have a momentum greater than200MeV/c in the laboratory frame.Forπ0s from BE2beam−p2B and the energy difference∆E=E B−E beam.Here, p B and E B are the momentum and energy of a B candidate in the CM frame and E beam is the CM beam energy.An incorrect mass hypothesis for a pion or kaon produces a shift of about46MeV in∆E,providing extra discrimination between these particles.The width of the M bc distributions is primarily due to the beam energy spread and is well modelled with a Gaussian of width 3.3MeV/c2for the modes with a neutral pion and2.7MeV/c2for the mode without.The∆E distribution is found to be asymmetric with a small tail on the lower side for the modes with aπ0.This is due toγinteractions withmaterial in front of the calorimeter and shower leakage out of the calorimeter. The∆E distribution can be well modelled with a Gaussian when no neutral particles are present.Events with5.2GeV/c2<M bc<5.3GeV/c2and|∆E|< 0.3GeV are selected for thefinal analysis.The dominant background comes from continuum e+e−→qB events and jet-like qi,j|p i||p j|P l(cosθij)i,k|p i||p k|,r l=),where L s and L qqD0π+ decays.By comparing the yields in data and MC after the likelihood ratiorequirement,the systematic errors are determined to be4%for the modes with aπ0and6%for the mode without.Thefinal variable used for continuum suppression is theρhelicity angle,θh, defined as the angle between the direction of the decay pion from theρin the ρrest frame and theρin the B rest frame.The requirement of|cosθh|>0.3 is made independently of the likelihood ratio as it is effective in suppressing the background from B decays as well as the qB events is used[14].The largest component of this background is found to come from decays of the type B→Dπ;when the D meson decays via D→π+π−,events can directly reach the signal region while the decay D→K−π+can reach the signal region with the kaon misidentified as a pion.Decays with J/ψandψ(2S) mesons can also populate the signal region if both the daughter leptons are misidentified as pions.These events are excluded by making requirements on the invariant mass of the intermediate particles:|M(π+π−)−M D0|>0.14 GeV/c2,|M(π+π0)−M D+|>0.05GeV/c2,|M(π+π−)−M J/ψ|>0.07GeV/c2 and|M(π+π−)−Mψ(2S)|>0.05GeV/c2.The widest cut is made around the D0mass to account for the mass shift due to misidentifying the kaons in D0 decays as pions.Fig.1shows the∆E and M bc distributions for the three modes analysed after all the selection criteria have been applied.The∆E and M bc plots are shown for events that lie within3σof the nominal M bc and∆E values,respectively. The signal yields are obtained by performing maximum likelihoodfits,each using a single signal function and one or more background functions.The signal functions are obtained from the MC and adjusted based on comparisons of B+→B0are assumed to be equal.The M bc distribution for all modes isfitted with a single Gaussian and an ARGUS background function[15].The normalization of the ARGUS function is left tofloat and shape of the function isfixed from the∆E sideband:−0.25 GeV<∆E<−0.08GeV and5.2GeV/c2<M bc<5.3GeV/c2.For the mode with only charged pions in thefinal state,the∆E distribution isfitted with a single Gaussian for the signal and a linear function withfixed shape for the continuum background.The normalization of the linear function is left to float and the slope isfixed from the M bc sideband,5.2GeV/c2<M bc<5.26GeV/c2,|∆E|<0.3GeV.There are also other rare B decays that are expected to contaminate the∆E distribution.For the mode without aπ0,these modes are of the type B0→h+h−(where h denotes aπor K),B→ρρ(including all combinations of charged and neutralρmesons,where the polarizations of theρmesons are assumed to be longitudinal)and B→Kππ(including the decays B+→ρ0K+,B+→K∗0π+,B+→K∗0(1430)0π+,B+→f0(980)K+ and B+→f0(1370)K+)[16].These background modes are accounted for by using smoothed histograms whose shapes have been determined by combining MC distributions.The three B→ρρmodes are combined into one histogram. The normalization of this component is allowed tofloat in thefit due to the uncertainty in the branching fractions of the B→ρρmodes.Likewise,the B→hh and all the B→Kππmodes are combined to form one hh and one Kππcomponent.The normalizations of these components arefixed to their expected yields,which are calculated using efficiencies determined by MC and branching fractions measured by previous Belle analyses[16,17].The∆Efits for the modes with aπ0in thefinal state have the signal compo-nent modelled by a Crystal Ball function[18]to account for the asymmetry in the∆E distribution.As for the B+→ρ0π+mode,the continuum background is modelled by a linear function withfixed slope.Unlike the B+→ρ0π+mode, a component is included for the background from the b→c transition.The pa-rameterization for rare B decays includes one component for the B→Kππ0 modes(B0→ρ+K−and B0→K∗+π−)[19]and one for all the B→ρρmodes.The normalization of the B→ρρcomponent is left tofloat while the other components from B decays arefixed to their expected yields.Table1summarizes the results of the∆Efits,showing the number of events, signal yields,reconstruction efficiencies,statistical significance and branching fractions or upper limits for eachfit.The statistical significance is defined assystematic error in thefitted signal yield is estimated by independently varying eachfixed parameter in thefit by1σ.Thefinal results are B(B+→ρ0π+)=(8.0+2.3+0.7−2.0−0.7)×10−6and B(B0→ρ±π∓)=(20.8+6.0+2.8−6.3−3.1)×10−6where thefirst error is statistical and the second is systematic.For theρ0π0mode,one standard deviation of the systematic error is added to the statistical limit to obtain a conservative upper limit at90%confidence of5.3×10−6.The possibility of a nonresonant B→πππbackground is also examined.To check for this type of background,the M bc and∆E yields are determined for differentππinvariant mass bins.Byfitting the M bc distribution inππinvariant mass bins with B→ρπand B→πππMC distributions,the nonresonant contribution is found to be below4%.To account for this possible background, errors3.7%and3.2%are added in quadrature to the systematic errors of the ρ+π−andρ0π+modes,respectively.Theππinvariant mass distributions are shown in Fig.2.Two plots are shown for theρ+π−andρ0π+modes,one with events from the M bc sideband superimposed over the events from the signal region(upper)and one with events from signal MC superimposed over events from the signal region with the sideband subtracted(lower).Fig.3 shows the distribution of the helicity variable,cosθh,for the two modes with all selection criteria applied except the helicity condition.Events fromρπdecays are expected to follow a cos2θdistribution while nonresonant and other background decays have an approximately uniform distribution.The helicity plots are obtained byfitting the M bc distribution in eight helicity bins ranging from−1to1.The M bc yield is then plotted against the helicity bin for each mode and the expected MC signal distributions are superimposed.Both the ππmass spectrum and the helicity distributions provide evidence that the signal events are consistent with being fromρπdecays.The results obtained here can be used to calculate the ratio of branching frac-tions R=B(B0→ρ±π∓)/B(B+→ρ0π+),which gives R=2.6±1.0±0.4, where thefirst error is statistical and second is systematic.This is consistent with values obtained by CLEO[20]and BaBar[21,22]as shown in Table2. Theoretical calculations done at tree level assuming the factorization approx-imation for the hadronic matrix elements give R∼6[3].Calculations that include penguin contributions,off-shell B∗excited states or additionalππres-onances[4–8]might yield better agreement with the the measured value of R.In conclusion,statistically significant signals have been observed in the B→ρπmodes using a31.9×106BWe wish to thank the KEKB accelerator group for the excellent operation of the KEKB accelerator.We acknowledge support from the Ministry of Ed-ucation,Culture,Sports,Science,and Technology of Japan and the Japan Society for the Promotion of Science;the Australian Research Council and the Australian Department of Industry,Science and Resources;the National Science Foundation of China under contract No.10175071;the Department of Science and Technology of India;the BK21program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation;the Polish State Committee for Scientific Research under contract No.2P03B17017;the Ministry of Science and Technology of the Russian Federation;the Ministry of Education,Science and Sport of the Republic of Slovenia;the National Science Council and the Ministry of Education of Taiwan;and the U.S.Department of Energy.References[1] A.E.Snyder and H.R.Quinn,Phys.Rev.D48,2139(1993).[2]I.Bediaga,R.E.Blanco,C.G¨o bel,and R.M´e ndez-Galain,Phys.Rev.Lett.81,4067(1998).[3]M.Bauer,B.Stech,and M.Wirbel,Z.Phys.C34,103(1987).[4] A.Deandrea et al.,Phys.Rev.D62,036001(2000).[5]Y.H.Chen,H.Y.Cheng,B.Tseng and K.C.Yang,Phys.Rev.D60,094014(1999).[6] C.D.Lu and M.Z.Yang,Eur.Phys.J C23,275(2002).[7]J.Tandean and S.Gardner,SLAC-PUB-9199;hep-ph/0204147.[8]S.Gardner and Ulf-G.Meißner,Phys.Rev.D65,094004(2002).[9]Belle Collaboration,A.Abashian et al.,Nucl.Instr.and Meth.A479,117(2002).[10]E.Kikutani ed.,KEK Preprint2001-157(2001),to appear in Nucl.Instr.andMeth.A.[11]G.C.Fox and S.Wolfram,Phys.Rev.Lett.41,1581(1978).[12]This modification of the Fox-Wolfram moments wasfirst proposed in a seriesof lectures on continuum suppression at KEK by Dr.R.Enomoto in May and June of1999.For a more detailed description see Belle Collaboration,K.Abe et al.,Phys.Lett.B511,151(2001).[13]CLEO Collaboration,D.M.Asner et al.,Phys.Rev.D53,1039(1996).[14]These MC events are generated with the CLEO group’s QQ program,see/public/CLEO/soft/QQ.The detector response is simulated using GEANT,R.Brun et al.,GEANT 3.21,CERN Report DD/EE/84-1,1984.[15]The ARGUS Collaboration,H.Albrecht et al.,Phys.Lett.B241,278(1990).[16]Belle Collaboration,A.Garmash et al.,Phys.Rev.D65,092005(2002).[17]Belle Collaboration,K.Abe et al.,Phys.Rev.Lett.87,101801(2001).[18]J.E.Gaiser et al.,Phys.Rev.D34,711(1986).[19]Belle Collaboration,K.Abe et al.,BELLE-CONF-0115,submitted as acontribution paper to the2001International Europhysics Conference on High Energy Physics(EPS-HEP2001).[20]CLEO Collaboration,C.P.Jessop et al.,Phys.Rev.Lett.85,2881(2000).[21]Babar Collaboration,B.Aubert et al.,submitted as a contribution paper tothe20th International Symposium on Lepton and Photon Interactions at High Energy(LP01);hep-ex/0107058.[22]BaBar Collaboration,B.Aubert et al.,submitted as a contribution paper tothe XXXth International Conference on High Energy Physics(ICHEP2000);hep-ex/0008058.Table1∆Efit results.Shown for each mode are the number of events in thefit,the signal yield,the reconstruction efficiency,the branching fraction(B)or90%confidence level upper limit(UL)and the statistical significance of thefit.Thefirst error in the branching fraction is statistical,the second is systematic.ρ0π+15424.3+6.9−6.29.68.0+2.3+0.7−2.0−0.74.4σρ+π−30144.6+12.8−13.46.820.8+6.0+2.8−6.3−3.13.7σρ0π0116−4.4±8.58.5<5.3-Experiment B(B0→ρ±π∓)×10−6B(B+→ρ0π+)×10−6RE v e n t s /16 M e VE v e n t s /3 M e V /c2(b) ρ0π+Signal backgrd02.557.51012.51517.52022.55.25.225 5.25 5.2755.3E v e n t s /18 M e VE v e n t s /2 M e V /c2(d) ρ+π-Signal backgrd051015202530355.25.225 5.25 5.2755.3∆E(GeV)E v e n t s /18 M e V(e) ρ0π024681012-0.2-0.10.10.2(GeV/c 2)E v e n t s /2 M e V /c2M bc (f) ρ0πSignal backgrd02468101214165.25.225 5.25 5.2755.3Fig.1.The ∆E (left)and M bc (right)fits to the three B →ρπmodes:ρ0π+,ρ+π−and ρ0π0.The histograms show the data,the solid lines show the total fit and the dashed lines show the continuum component.In (a)the contribution from the B →ρρand B →hh modes is shown by the cross hatched component.In (c)the cross hatched component shows the contribution from the b →c transition and B →ρρmodes.102030405060+0(GeV/c 2)E v e n t s /0.1 G e V /c2M(π+π0)(GeV/c 2)E v e n t s /0.1 G e V /c2(GeV/c 2)E v e n t s /0.1 G e V /c2+-(GeV/c 2)E v e n t s /0.1 G e V /c2M(π+ π-)510152025Fig.2.The M (ππ)distributions for B 0→ρ±π∓(left)and B +→ρ0π+(right)events in the signal region.Plots (a)and (b)show sideband events superimposed;plots (c)and (d)show the sideband subtracted plots with signal MC superimposed.-1-0.500.51M b c y i e l d (E v e n t s )cos θh-1-0.500.51M b c y i e l d (E v e n t s )cos θhFig.3.The ρmeson helicity distributions for B 0→ρ±π∓(a)and B +→ρ0π+(b).Signal MC distributions are shown superimposed.。
侠盗猎车⼿4:⾃由城之章——PC版错误代码解析 P C玩家这两天深受《G TA4》P C版的折磨,姑且不论其移植效率多么低下,作品本⾝就饱含各⾊b u g,S t e a m论坛为此专门汇总了游戏中可能出现的错误代码及解决⽅法: 错误代码R M N40(E r r o r C o d e R M N40) 原因:需升级到Wi n d o w s X P S P3 解决办法:下载并安装S P3(300M B) 错误代码M M A10(E r r o r C o d e M M A10) 原因:R o c k s t a r社交俱乐部(R o c k s t a r S o c i a l C l u b) 解决办法:在进⼊游戏前登出R o c k s t a r S o c i a l C l u b,如下图: 《G TA4》P C版错误代码解析 如果想参与多⼈模式,请最⼩化游戏,重新登⼊R o c k s t a r S o c i a lC l u b,然后再切回游戏并全屏即可进⾏多⼈游戏。
连接超时原因:防⽕墙屏蔽了G TA4运⾏⽂件 解决办法:将运⾏⽂件添⾄防⽕墙例外列表并注明使⽤端⼜:T C P/U D P 88和T C P/U D P3074 纹理缺失原因:显卡驱动与游戏有冲突 解决办法:卸载现有显卡驱动并安装最新驱动程序 游戏⾳效不正常原因:声卡驱动版本过低(该⽑病⽬前仅见于R e a l t e k 板载声卡) 解决办法:升级声卡驱动 G F W L i v e问题相关(G a m e s f o r Wi n d o w s L i v e) 解决办法:需⾄此下载并安装最新升级补丁 注:Vi s t a系统下可能需要安装M i c r o s o f t .N E T3.5 画⾯受限原因:R o c k s t a r担⼼我们善待⾃⼰的眼睛 解决办法:如果是光碟零售版,下列命令⾏语法可能对你有⽤: 路径|⽂件名|-w i d t h1280-h e i g h t1024-s h a d o w d e n s i t y0-v i e w d i s t a n c e10-t e x t u r e q u a l i t y0-r e n d e r q u a l i t y0-d e t a i l q u a l i t y10 -n o m e m r e s t r i c t 其中: w i d t h和h e i g h t参数指定画⾯分辨率(默认为800x600) s h a d o w d e n s i t y指定阴影密度(0-16可选) v i e w d i s t a n c e指定可见范围(0-99可选) t e x t u r e q u a l i t y指定纹理质量(0-99可选) r e n d e r q u a l i t y指定渲染质量(0-4可选) d e t a i l q u a l i t y指定细节质量(0-99可选) n o m e m r e s t r i c t去除内存限制 此外,其它可⽤命令如下: -b e n c h m a r k启动性能测试 -h e l p列出所有命令⾏选项 -f u l l s c r e e n强制全屏 -w i n d o w e d强制窗⼜模式 -s a f e m o d e以最低画⾯要求运⾏游戏 逗游⽹——中国2亿游戏⽤户⼀致选择的”⼀站式“游戏服务平台。
The information in this document is subject to change without notice and does not represent a commitment on the part of Native Instruments GmbH. The software described by this docu-ment is subject to a License Agreement and may not be copied to other media. No part of this publication may be copied, reproduced or otherwise transmitted or recorded, for any purpose, without prior written permission by Native Instruments GmbH, hereinafter referred to as Native Instruments.“Native Instruments”, “NI” and associated logos are (registered) trademarks of Native Instru-ments GmbH.ASIO, VST, HALion and Cubase are registered trademarks of Steinberg Media Technologies GmbH.All other product and company names are trademarks™ or registered® trademarks of their re-spective holders. Use of them does not imply any affiliation with or endorsement by them.Document authored by: David Gover and Nico Sidi.Software version: 2.8 (02/2019)Hardware version: MASCHINE MK3Special thanks to the Beta Test Team, who were invaluable not just in tracking down bugs, but in making this a better product.NATIVE INSTRUMENTS GmbH Schlesische Str. 29-30D-10997 Berlin Germanywww.native-instruments.de NATIVE INSTRUMENTS North America, Inc. 6725 Sunset Boulevard5th FloorLos Angeles, CA 90028USANATIVE INSTRUMENTS K.K.YO Building 3FJingumae 6-7-15, Shibuya-ku, Tokyo 150-0001Japanwww.native-instruments.co.jp NATIVE INSTRUMENTS UK Limited 18 Phipp StreetLondon EC2A 4NUUKNATIVE INSTRUMENTS FRANCE SARL 113 Rue Saint-Maur75011 ParisFrance SHENZHEN NATIVE INSTRUMENTS COMPANY Limited 5F, Shenzhen Zimao Center111 Taizi Road, Nanshan District, Shenzhen, GuangdongChina© NATIVE INSTRUMENTS GmbH, 2019. All rights reserved.Table of Contents1Welcome to MASCHINE (25)1.1MASCHINE Documentation (26)1.2Document Conventions (27)1.3New Features in MASCHINE 2.8 (29)1.4New Features in MASCHINE 2.7.10 (31)1.5New Features in MASCHINE 2.7.8 (31)1.6New Features in MASCHINE 2.7.7 (32)1.7New Features in MASCHINE 2.7.4 (33)1.8New Features in MASCHINE 2.7.3 (36)2Quick Reference (38)2.1Using Your Controller (38)2.1.1Controller Modes and Mode Pinning (38)2.1.2Controlling the Software Views from Your Controller (40)2.2MASCHINE Project Overview (43)2.2.1Sound Content (44)2.2.2Arrangement (45)2.3MASCHINE Hardware Overview (48)2.3.1MASCHINE Hardware Overview (48)2.3.1.1Control Section (50)2.3.1.2Edit Section (53)2.3.1.3Performance Section (54)2.3.1.4Group Section (56)2.3.1.5Transport Section (56)2.3.1.6Pad Section (58)2.3.1.7Rear Panel (63)2.4MASCHINE Software Overview (65)2.4.1Header (66)2.4.2Browser (68)2.4.3Arranger (70)2.4.4Control Area (73)2.4.5Pattern Editor (74)3Basic Concepts (76)3.1Important Names and Concepts (76)3.2Adjusting the MASCHINE User Interface (79)3.2.1Adjusting the Size of the Interface (79)3.2.2Switching between Ideas View and Song View (80)3.2.3Showing/Hiding the Browser (81)3.2.4Showing/Hiding the Control Lane (81)3.3Common Operations (82)3.3.1Using the 4-Directional Push Encoder (82)3.3.2Pinning a Mode on the Controller (83)3.3.3Adjusting Volume, Swing, and Tempo (84)3.3.4Undo/Redo (87)3.3.5List Overlay for Selectors (89)3.3.6Zoom and Scroll Overlays (90)3.3.7Focusing on a Group or a Sound (91)3.3.8Switching Between the Master, Group, and Sound Level (96)3.3.9Navigating Channel Properties, Plug-ins, and Parameter Pages in the Control Area.973.3.9.1Extended Navigate Mode on Your Controller (102)3.3.10Navigating the Software Using the Controller (105)3.3.11Using Two or More Hardware Controllers (106)3.3.12Touch Auto-Write Option (108)3.4Native Kontrol Standard (110)3.5Stand-Alone and Plug-in Mode (111)3.5.1Differences between Stand-Alone and Plug-in Mode (112)3.5.2Switching Instances (113)3.5.3Controlling Various Instances with Different Controllers (114)3.6Host Integration (114)3.6.1Setting up Host Integration (115)3.6.1.1Setting up Ableton Live (macOS) (115)3.6.1.2Setting up Ableton Live (Windows) (116)3.6.1.3Setting up Apple Logic Pro X (116)3.6.2Integration with Ableton Live (117)3.6.3Integration with Apple Logic Pro X (119)3.7Preferences (120)3.7.1Preferences – General Page (121)3.7.2Preferences – Audio Page (126)3.7.3Preferences – MIDI Page (130)3.7.4Preferences – Default Page (133)3.7.5Preferences – Library Page (137)3.7.6Preferences – Plug-ins Page (145)3.7.7Preferences – Hardware Page (150)3.7.8Preferences – Colors Page (154)3.8Integrating MASCHINE into a MIDI Setup (156)3.8.1Connecting External MIDI Equipment (156)3.8.2Sync to External MIDI Clock (157)3.8.3Send MIDI Clock (158)3.9Syncing MASCHINE using Ableton Link (159)3.9.1Connecting to a Network (159)3.9.2Joining and Leaving a Link Session (159)3.10Using a Pedal with the MASCHINE Controller (160)3.11File Management on the MASCHINE Controller (161)4Browser (163)4.1Browser Basics (163)4.1.1The MASCHINE Library (163)4.1.2Browsing the Library vs. Browsing Your Hard Disks (164)4.2Searching and Loading Files from the Library (165)4.2.1Overview of the Library Pane (165)4.2.2Selecting or Loading a Product and Selecting a Bank from the Browser (170)4.2.2.1[MK3] Browsing by Product Category Using the Controller (174)4.2.2.2[MK3] Browsing by Product Vendor Using the Controller (174)4.2.3Selecting a Product Category, a Product, a Bank, and a Sub-Bank (175)4.2.3.1Selecting a Product Category, a Product, a Bank, and a Sub-Bank on theController (179)4.2.4Selecting a File Type (180)4.2.5Choosing Between Factory and User Content (181)4.2.6Selecting Type and Character Tags (182)4.2.7List and Tag Overlays in the Browser (186)4.2.8Performing a Text Search (188)4.2.9Loading a File from the Result List (188)4.3Additional Browsing Tools (193)4.3.1Loading the Selected Files Automatically (193)4.3.2Auditioning Instrument Presets (195)4.3.3Auditioning Samples (196)4.3.4Loading Groups with Patterns (197)4.3.5Loading Groups with Routing (198)4.3.6Displaying File Information (198)4.4Using Favorites in the Browser (199)4.5Editing the Files’ Tags and Properties (203)4.5.1Attribute Editor Basics (203)4.5.2The Bank Page (205)4.5.3The Types and Characters Pages (205)4.5.4The Properties Page (208)4.6Loading and Importing Files from Your File System (209)4.6.1Overview of the FILES Pane (209)4.6.2Using Favorites (211)4.6.3Using the Location Bar (212)4.6.4Navigating to Recent Locations (213)4.6.5Using the Result List (214)4.6.6Importing Files to the MASCHINE Library (217)4.7Locating Missing Samples (219)4.8Using Quick Browse (221)5Managing Sounds, Groups, and Your Project (225)5.1Overview of the Sounds, Groups, and Master (225)5.1.1The Sound, Group, and Master Channels (226)5.1.2Similarities and Differences in Handling Sounds and Groups (227)5.1.3Selecting Multiple Sounds or Groups (228)5.2Managing Sounds (233)5.2.1Loading Sounds (235)5.2.2Pre-listening to Sounds (236)5.2.3Renaming Sound Slots (237)5.2.4Changing the Sound’s Color (237)5.2.5Saving Sounds (239)5.2.6Copying and Pasting Sounds (241)5.2.7Moving Sounds (244)5.2.8Resetting Sound Slots (245)5.3Managing Groups (247)5.3.1Creating Groups (248)5.3.2Loading Groups (249)5.3.3Renaming Groups (251)5.3.4Changing the Group’s Color (251)5.3.5Saving Groups (253)5.3.6Copying and Pasting Groups (255)5.3.7Reordering Groups (258)5.3.8Deleting Groups (259)5.4Exporting MASCHINE Objects and Audio (260)5.4.1Saving a Group with its Samples (261)5.4.2Saving a Project with its Samples (262)5.4.3Exporting Audio (264)5.5Importing Third-Party File Formats (270)5.5.1Loading REX Files into Sound Slots (270)5.5.2Importing MPC Programs to Groups (271)6Playing on the Controller (275)6.1Adjusting the Pads (275)6.1.1The Pad View in the Software (275)6.1.2Choosing a Pad Input Mode (277)6.1.3Adjusting the Base Key (280)6.1.4Using Choke Groups (282)6.1.5Using Link Groups (284)6.2Adjusting the Key, Choke, and Link Parameters for Multiple Sounds (286)6.3Playing Tools (287)6.3.1Mute and Solo (288)6.3.2Choke All Notes (292)6.3.3Groove (293)6.3.4Level, Tempo, Tune, and Groove Shortcuts on Your Controller (295)6.3.5Tap Tempo (299)6.4Performance Features (300)6.4.1Overview of the Perform Features (300)6.4.2Selecting a Scale and Creating Chords (303)6.4.3Scale and Chord Parameters (303)6.4.4Creating Arpeggios and Repeated Notes (316)6.4.5Swing on Note Repeat / Arp Output (321)6.5Using Lock Snapshots (322)6.5.1Creating a Lock Snapshot (322)6.5.2Using Extended Lock (323)6.5.3Updating a Lock Snapshot (323)6.5.4Recalling a Lock Snapshot (324)6.5.5Morphing Between Lock Snapshots (324)6.5.6Deleting a Lock Snapshot (325)6.5.7Triggering Lock Snapshots via MIDI (326)6.6Using the Smart Strip (327)6.6.1Pitch Mode (328)6.6.2Modulation Mode (328)6.6.3Perform Mode (328)6.6.4Notes Mode (329)7Working with Plug-ins (330)7.1Plug-in Overview (330)7.1.1Plug-in Basics (330)7.1.2First Plug-in Slot of Sounds: Choosing the Sound’s Role (334)7.1.3Loading, Removing, and Replacing a Plug-in (335)7.1.3.1Browser Plug-in Slot Selection (341)7.1.4Adjusting the Plug-in Parameters (344)7.1.5Bypassing Plug-in Slots (344)7.1.6Using Side-Chain (346)7.1.7Moving Plug-ins (346)7.1.8Alternative: the Plug-in Strip (348)7.1.9Saving and Recalling Plug-in Presets (348)7.1.9.1Saving Plug-in Presets (349)7.1.9.2Recalling Plug-in Presets (350)7.1.9.3Removing a Default Plug-in Preset (351)7.2The Sampler Plug-in (352)7.2.1Page 1: Voice Settings / Engine (354)7.2.2Page 2: Pitch / Envelope (356)7.2.3Page 3: FX / Filter (359)7.2.4Page 4: Modulation (361)7.2.5Page 5: LFO (363)7.2.6Page 6: Velocity / Modwheel (365)7.3Using Native Instruments and External Plug-ins (367)7.3.1Opening/Closing Plug-in Windows (367)7.3.2Using the VST/AU Plug-in Parameters (370)7.3.3Setting Up Your Own Parameter Pages (371)7.3.4Using VST/AU Plug-in Presets (376)7.3.5Multiple-Output Plug-ins and Multitimbral Plug-ins (378)8Using the Audio Plug-in (380)8.1Loading a Loop into the Audio Plug-in (384)8.2Editing Audio in the Audio Plug-in (385)8.3Using Loop Mode (386)8.4Using Gate Mode (388)9Using the Drumsynths (390)9.1Drumsynths – General Handling (391)9.1.1Engines: Many Different Drums per Drumsynth (391)9.1.2Common Parameter Organization (391)9.1.3Shared Parameters (394)9.1.4Various Velocity Responses (394)9.1.5Pitch Range, Tuning, and MIDI Notes (394)9.2The Kicks (395)9.2.1Kick – Sub (397)9.2.2Kick – Tronic (399)9.2.3Kick – Dusty (402)9.2.4Kick – Grit (403)9.2.5Kick – Rasper (406)9.2.6Kick – Snappy (407)9.2.7Kick – Bold (409)9.2.8Kick – Maple (411)9.2.9Kick – Push (412)9.3The Snares (414)9.3.1Snare – Volt (416)9.3.2Snare – Bit (418)9.3.3Snare – Pow (420)9.3.4Snare – Sharp (421)9.3.5Snare – Airy (423)9.3.6Snare – Vintage (425)9.3.7Snare – Chrome (427)9.3.8Snare – Iron (429)9.3.9Snare – Clap (431)9.3.10Snare – Breaker (433)9.4The Hi-hats (435)9.4.1Hi-hat – Silver (436)9.4.2Hi-hat – Circuit (438)9.4.3Hi-hat – Memory (440)9.4.4Hi-hat – Hybrid (442)9.4.5Creating a Pattern with Closed and Open Hi-hats (444)9.5The Toms (445)9.5.1Tom – Tronic (447)9.5.2Tom – Fractal (449)9.5.3Tom – Floor (453)9.5.4Tom – High (455)9.6The Percussions (456)9.6.1Percussion – Fractal (458)9.6.2Percussion – Kettle (461)9.6.3Percussion – Shaker (463)9.7The Cymbals (467)9.7.1Cymbal – Crash (469)9.7.2Cymbal – Ride (471)10Using the Bass Synth (474)10.1Bass Synth – General Handling (475)10.1.1Parameter Organization (475)10.1.2Bass Synth Parameters (477)11Working with Patterns (479)11.1Pattern Basics (479)11.1.1Pattern Editor Overview (480)11.1.2Navigating the Event Area (486)11.1.3Following the Playback Position in the Pattern (488)11.1.4Jumping to Another Playback Position in the Pattern (489)11.1.5Group View and Keyboard View (491)11.1.6Adjusting the Arrange Grid and the Pattern Length (493)11.1.7Adjusting the Step Grid and the Nudge Grid (497)11.2Recording Patterns in Real Time (501)11.2.1Recording Your Patterns Live (501)11.2.2The Record Prepare Mode (504)11.2.3Using the Metronome (505)11.2.4Recording with Count-in (506)11.2.5Quantizing while Recording (508)11.3Recording Patterns with the Step Sequencer (508)11.3.1Step Mode Basics (508)11.3.2Editing Events in Step Mode (511)11.3.3Recording Modulation in Step Mode (513)11.4Editing Events (514)11.4.1Editing Events with the Mouse: an Overview (514)11.4.2Creating Events/Notes (517)11.4.3Selecting Events/Notes (518)11.4.4Editing Selected Events/Notes (526)11.4.5Deleting Events/Notes (532)11.4.6Cut, Copy, and Paste Events/Notes (535)11.4.7Quantizing Events/Notes (538)11.4.8Quantization While Playing (540)11.4.9Doubling a Pattern (541)11.4.10Adding Variation to Patterns (541)11.5Recording and Editing Modulation (546)11.5.1Which Parameters Are Modulatable? (547)11.5.2Recording Modulation (548)11.5.3Creating and Editing Modulation in the Control Lane (550)11.6Creating MIDI Tracks from Scratch in MASCHINE (555)11.7Managing Patterns (557)11.7.1The Pattern Manager and Pattern Mode (558)11.7.2Selecting Patterns and Pattern Banks (560)11.7.3Creating Patterns (563)11.7.4Deleting Patterns (565)11.7.5Creating and Deleting Pattern Banks (566)11.7.6Naming Patterns (568)11.7.7Changing the Pattern’s Color (570)11.7.8Duplicating, Copying, and Pasting Patterns (571)11.7.9Moving Patterns (574)11.7.10Adjusting Pattern Length in Fine Increments (575)11.8Importing/Exporting Audio and MIDI to/from Patterns (576)11.8.1Exporting Audio from Patterns (576)11.8.2Exporting MIDI from Patterns (577)11.8.3Importing MIDI to Patterns (580)12Audio Routing, Remote Control, and Macro Controls (589)12.1Audio Routing in MASCHINE (590)12.1.1Sending External Audio to Sounds (591)12.1.2Configuring the Main Output of Sounds and Groups (596)12.1.3Setting Up Auxiliary Outputs for Sounds and Groups (601)12.1.4Configuring the Master and Cue Outputs of MASCHINE (605)12.1.5Mono Audio Inputs (610)12.1.5.1Configuring External Inputs for Sounds in Mix View (611)12.2Using MIDI Control and Host Automation (614)12.2.1Triggering Sounds via MIDI Notes (615)12.2.2Triggering Scenes via MIDI (622)12.2.3Controlling Parameters via MIDI and Host Automation (623)12.2.4Selecting VST/AU Plug-in Presets via MIDI Program Change (631)12.2.5Sending MIDI from Sounds (632)12.3Creating Custom Sets of Parameters with the Macro Controls (636)12.3.1Macro Control Overview (637)12.3.2Assigning Macro Controls Using the Software (638)12.3.3Assigning Macro Controls Using the Controller (644)13Controlling Your Mix (646)13.1Mix View Basics (646)13.1.1Switching between Arrange View and Mix View (646)13.1.2Mix View Elements (647)13.2The Mixer (649)13.2.1Displaying Groups vs. Displaying Sounds (650)13.2.2Adjusting the Mixer Layout (652)13.2.3Selecting Channel Strips (653)13.2.4Managing Your Channels in the Mixer (654)13.2.5Adjusting Settings in the Channel Strips (656)13.2.6Using the Cue Bus (660)13.3The Plug-in Chain (662)13.4The Plug-in Strip (663)13.4.1The Plug-in Header (665)13.4.2Panels for Drumsynths and Internal Effects (667)13.4.3Panel for the Sampler (668)13.4.4Custom Panels for Native Instruments Plug-ins (671)13.4.5Undocking a Plug-in Panel (Native Instruments and External Plug-ins Only) (675)13.5Controlling Your Mix from the Controller (677)13.5.1Navigating Your Channels in Mix Mode (678)13.5.2Adjusting the Level and Pan in Mix Mode (679)13.5.3Mute and Solo in Mix Mode (680)13.5.4Plug-in Icons in Mix Mode (680)14Using Effects (681)14.1Applying Effects to a Sound, a Group or the Master (681)14.1.1Adding an Effect (681)14.1.2Other Operations on Effects (690)14.1.3Using the Side-Chain Input (692)14.2Applying Effects to External Audio (695)14.2.1Step 1: Configure MASCHINE Audio Inputs (695)14.2.2Step 2: Set up a Sound to Receive the External Input (698)14.2.3Step 3: Load an Effect to Process an Input (700)14.3Creating a Send Effect (701)14.3.1Step 1: Set Up a Sound or Group as Send Effect (702)14.3.2Step 2: Route Audio to the Send Effect (706)14.3.3 A Few Notes on Send Effects (708)14.4Creating Multi-Effects (709)15Effect Reference (712)15.1Dynamics (713)15.1.1Compressor (713)15.1.2Gate (717)15.1.3Transient Master (721)15.1.4Limiter (723)15.1.5Maximizer (727)15.2Filtering Effects (730)15.2.1EQ (730)15.2.2Filter (733)15.2.3Cabinet (737)15.3Modulation Effects (738)15.3.1Chorus (738)15.3.2Flanger (740)15.3.3FM (742)15.3.4Freq Shifter (743)15.3.5Phaser (745)15.4Spatial and Reverb Effects (747)15.4.1Ice (747)15.4.2Metaverb (749)15.4.3Reflex (750)15.4.4Reverb (Legacy) (752)15.4.5Reverb (754)15.4.5.1Reverb Room (754)15.4.5.2Reverb Hall (757)15.4.5.3Plate Reverb (760)15.5Delays (762)15.5.1Beat Delay (762)15.5.2Grain Delay (765)15.5.3Grain Stretch (767)15.5.4Resochord (769)15.6Distortion Effects (771)15.6.1Distortion (771)15.6.2Lofi (774)15.6.3Saturator (775)15.7Perform FX (779)15.7.1Filter (780)15.7.2Flanger (782)15.7.3Burst Echo (785)15.7.4Reso Echo (787)15.7.5Ring (790)15.7.6Stutter (792)15.7.7Tremolo (795)15.7.8Scratcher (798)16Working with the Arranger (801)16.1Arranger Basics (801)16.1.1Navigating Song View (804)16.1.2Following the Playback Position in Your Project (806)16.1.3Performing with Scenes and Sections using the Pads (807)16.2Using Ideas View (811)16.2.1Scene Overview (811)16.2.2Creating Scenes (813)16.2.3Assigning and Removing Patterns (813)16.2.4Selecting Scenes (817)16.2.5Deleting Scenes (818)16.2.6Creating and Deleting Scene Banks (820)16.2.7Clearing Scenes (820)16.2.8Duplicating Scenes (821)16.2.9Reordering Scenes (822)16.2.10Making Scenes Unique (824)16.2.11Appending Scenes to Arrangement (825)16.2.12Naming Scenes (826)16.2.13Changing the Color of a Scene (827)16.3Using Song View (828)16.3.1Section Management Overview (828)16.3.2Creating Sections (833)16.3.3Assigning a Scene to a Section (834)16.3.4Selecting Sections and Section Banks (835)16.3.5Reorganizing Sections (839)16.3.6Adjusting the Length of a Section (840)16.3.6.1Adjusting the Length of a Section Using the Software (841)16.3.6.2Adjusting the Length of a Section Using the Controller (843)16.3.7Clearing a Pattern in Song View (843)16.3.8Duplicating Sections (844)16.3.8.1Making Sections Unique (845)16.3.9Removing Sections (846)16.3.10Renaming Scenes (848)16.3.11Clearing Sections (849)16.3.12Creating and Deleting Section Banks (850)16.3.13Working with Patterns in Song view (850)16.3.13.1Creating a Pattern in Song View (850)16.3.13.2Selecting a Pattern in Song View (850)16.3.13.3Clearing a Pattern in Song View (851)16.3.13.4Renaming a Pattern in Song View (851)16.3.13.5Coloring a Pattern in Song View (851)16.3.13.6Removing a Pattern in Song View (852)16.3.13.7Duplicating a Pattern in Song View (852)16.3.14Enabling Auto Length (852)16.3.15Looping (853)16.3.15.1Setting the Loop Range in the Software (854)16.4Playing with Sections (855)16.4.1Jumping to another Playback Position in Your Project (855)16.5Triggering Sections or Scenes via MIDI (856)16.6The Arrange Grid (858)16.7Quick Grid (860)17Sampling and Sample Mapping (862)17.1Opening the Sample Editor (862)17.2Recording Audio (863)17.2.1Opening the Record Page (863)17.2.2Selecting the Source and the Recording Mode (865)17.2.3Arming, Starting, and Stopping the Recording (868)17.2.5Using the Footswitch for Recording Audio (871)17.2.6Checking Your Recordings (872)17.2.7Location and Name of Your Recorded Samples (876)17.3Editing a Sample (876)17.3.1Using the Edit Page (877)17.3.2Audio Editing Functions (882)17.4Slicing a Sample (890)17.4.1Opening the Slice Page (891)17.4.2Adjusting the Slicing Settings (893)17.4.3Live Slicing (898)17.4.3.1Live Slicing Using the Controller (898)17.4.3.2Delete All Slices (899)17.4.4Manually Adjusting Your Slices (899)17.4.5Applying the Slicing (906)17.5Mapping Samples to Zones (912)17.5.1Opening the Zone Page (912)17.5.2Zone Page Overview (913)17.5.3Selecting and Managing Zones in the Zone List (915)17.5.4Selecting and Editing Zones in the Map View (920)17.5.5Editing Zones in the Sample View (924)17.5.6Adjusting the Zone Settings (927)17.5.7Adding Samples to the Sample Map (934)18Appendix: Tips for Playing Live (937)18.1Preparations (937)18.1.1Focus on the Hardware (937)18.1.2Customize the Pads of the Hardware (937)18.1.3Check Your CPU Power Before Playing (937)18.1.4Name and Color Your Groups, Patterns, Sounds and Scenes (938)18.1.5Consider Using a Limiter on Your Master (938)18.1.6Hook Up Your Other Gear and Sync It with MIDI Clock (938)18.1.7Improvise (938)18.2Basic Techniques (938)18.2.1Use Mute and Solo (938)18.2.2Use Scene Mode and Tweak the Loop Range (939)18.2.3Create Variations of Your Drum Patterns in the Step Sequencer (939)18.2.4Use Note Repeat (939)18.2.5Set Up Your Own Multi-effect Groups and Automate Them (939)18.3Special Tricks (940)18.3.1Changing Pattern Length for Variation (940)18.3.2Using Loops to Cycle Through Samples (940)18.3.3Using Loops to Cycle Through Samples (940)18.3.4Load Long Audio Files and Play with the Start Point (940)19Troubleshooting (941)19.1Knowledge Base (941)19.2Technical Support (941)19.3Registration Support (942)19.4User Forum (942)20Glossary (943)Index (951)1Welcome to MASCHINEThank you for buying MASCHINE!MASCHINE is a groove production studio that implements the familiar working style of classi-cal groove boxes along with the advantages of a computer based system. MASCHINE is ideal for making music live, as well as in the studio. It’s the hands-on aspect of a dedicated instru-ment, the MASCHINE hardware controller, united with the advanced editing features of the MASCHINE software.Creating beats is often not very intuitive with a computer, but using the MASCHINE hardware controller to do it makes it easy and fun. You can tap in freely with the pads or use Note Re-peat to jam along. Alternatively, build your beats using the step sequencer just as in classic drum machines.Patterns can be intuitively combined and rearranged on the fly to form larger ideas. You can try out several different versions of a song without ever having to stop the music.Since you can integrate it into any sequencer that supports VST, AU, or AAX plug-ins, you can reap the benefits in almost any software setup, or use it as a stand-alone application. You can sample your own material, slice loops and rearrange them easily.However, MASCHINE is a lot more than an ordinary groovebox or sampler: it comes with an inspiring 7-gigabyte library, and a sophisticated, yet easy to use tag-based Browser to give you instant access to the sounds you are looking for.What’s more, MASCHINE provides lots of options for manipulating your sounds via internal ef-fects and other sound-shaping possibilities. You can also control external MIDI hardware and 3rd-party software with the MASCHINE hardware controller, while customizing the functions of the pads, knobs and buttons according to your needs utilizing the included Controller Editor application. We hope you enjoy this fantastic instrument as much as we do. Now let’s get go-ing!—The MASCHINE team at Native Instruments.MASCHINE Documentation1.1MASCHINE DocumentationNative Instruments provide many information sources regarding MASCHINE. The main docu-ments should be read in the following sequence:1.MASCHINE Getting Started: This document provides a practical approach to MASCHINE viaa set of tutorials covering easy and more advanced tasks in order to help you familiarizeyourself with MASCHINE.2.MASCHINE Manual (this document): The MASCHINE Manual provides you with a compre-hensive description of all MASCHINE software and hardware features.Additional documentation sources provide you with details on more specific topics:▪Controller Editor Manual: Besides using your MASCHINE hardware controller together withits dedicated MASCHINE software, you can also use it as a powerful and highly versatileMIDI controller to pilot any other MIDI-capable application or device. This is made possibleby the Controller Editor software, an application that allows you to precisely define all MIDIassignments for your MASCHINE controller. The Controller Editor was installed during theMASCHINE installation procedure. For more information on this, please refer to the Con-troller Editor Manual available as a PDF file via the Help menu of Controller Editor.▪Online Support Videos: You can find a number of support videos on The Official Native In-struments Support Channel under the following URL: https:///NIsupport-EN. We recommend that you follow along with these instructions while the respective ap-plication is running on your computer.Other Online Resources:If you are experiencing problems related to your Native Instruments product that the supplied documentation does not cover, there are several ways of getting help:▪Knowledge Base▪User Forum▪Technical Support▪Registration SupportYou will find more information on these subjects in the chapter Troubleshooting.1.2Document ConventionsThis section introduces you to the signage and text highlighting used in this manual. This man-ual uses particular formatting to point out special facts and to warn you of potential issues. The icons introducing these notes let you see what kind of information is to be expected:This document uses particular formatting to point out special facts and to warn you of poten-tial issues. The icons introducing the following notes let you see what kind of information can be expected:Furthermore, the following formatting is used:▪Text appearing in (drop-down) menus (such as Open…, Save as… etc.) in the software and paths to locations on your hard disk or other storage devices is printed in italics.▪Text appearing elsewhere (labels of buttons, controls, text next to checkboxes etc.) in the software is printed in blue. Whenever you see this formatting applied, you will find the same text appearing somewhere on the screen.▪Text appearing on the displays of the controller is printed in light grey. Whenever you see this formatting applied, you will find the same text on a controller display.▪Text appearing on labels of the hardware controller is printed in orange. Whenever you see this formatting applied, you will find the same text on the controller.▪Important names and concepts are printed in bold.▪References to keys on your computer’s keyboard you’ll find put in square brackets (e.g.,“Press [Shift] + [Enter]”).►Single instructions are introduced by this play button type arrow.→Results of actions are introduced by this smaller arrow.Naming ConventionThroughout the documentation we will refer to MASCHINE controller (or just controller) as the hardware controller and MASCHINE software as the software installed on your computer.The term “effect” will sometimes be abbreviated as “FX” when referring to elements in the MA-SCHINE software and hardware. These terms have the same meaning.Button Combinations and Shortcuts on Your ControllerMost instructions will use the “+” sign to indicate buttons (or buttons and pads) that must be pressed simultaneously, starting with the button indicated first. E.g., an instruction such as:“Press SHIFT + PLAY”means:1.Press and hold SHIFT.2.While holding SHIFT, press PLAY and release it.3.Release SHIFT.Unlabeled Buttons on the ControllerThe buttons and knobs above and below the displays on your MASCHINE controller do not have labels.。
FindBugs错误说明对照表rule.findbug.B某_BO某ING_IMMEDIATELY_UNBO某=性能-基本类型包装之后立刻解包rule.findbug.IJU_SETUP_NO_=使用错误-TetCae定义的etUp没有调用uper.etUp()rule.findbug.TQ_ALWAYS_VALUE_USED_WHERE_NEVER_=使用错误-某个值使用了注解限制类型,但是这个限制永远不会发生rule.findbug.TLW_TWO_LOCK_=多线程错误-等待两个被持有的锁rule.findbug.RV_01_TO_=使用错误-0至1的随机数被当做整数0rule.findbug.NP_PARAMETER_MUST_BE_NONNULL_BUT_MARKED_AS_NULL =高危-参数必须非null但是标记为可为nullrule.findbug.RV_ABSOLUTE_VALUE_OF_RANDOM_=使用错误-尝试计算32位随机整数的绝对值rule.findbug.EC_INCOMPATIBLE_ARRAY_=使用错误-使用equal()比较不兼容的数组rule.findbug.UL_UNRELEASED_LOCK_E某CEPTION_=多线程错误-方法没有在所有异常路径释放锁rule.findbug.SE_NONSTATIC_=不良实践-erialVerionUID不是tatic的rule.findbug.UCF_USELESS_CONTROL_=高危-无用控制流rule.findbug.BC_IMPOSSIBLE_=使用错误-不可能的转换rule.findbug.某SS_REQUEST_PARAMETER_TO_SEND_=安全风险-ervlet的反射导致跨站脚本漏洞rule.findbug.DM_NEW_FOR_=性能-仅为了获得一个方法就创建了一个对象rule.findbug.OBL_UNSATISFIED_=试验-方法可能在清理流或资源时失败rule.findbug.UW_UNCOND_=多线程错误-无条件等待rule.findbug.DLS_DEAD_LOCAL_STORE_OF_=高危-把null 设置给不会用到的局部变量rule.findbug.NM_CLASS_NAMING_=类名应该以大写字母开头rule.findbug.RC_REF_COMPARISON_BAD_PRACTICE_=使用错误-怀疑对两个布尔值的引用进行比较rule.findbug.MWN_MISMATCHED_=多线程错误-不匹配的notify()rule.findbug.NM_VERY_=错误-非常容易迷惑的方法名rule.findbug.FI_NULLIFY_=不良实践-空Finalizer禁用了超类的finalizerrule.findbug.MTIA_SUSPECT_STRUTS_INSTANCE_=高危-继承了trutAction的类使用了实例变量rule.findbug.DM_STRING_=性能-方法调用了效率很低的newString(String)构造方法rule.findbug.STCAL_INVOKE_ON_STATIC_DATE_FORMAT_INSTANCE.nam e=多线程错误-调用静态DateFormatrule.findbug.NP_NULL_PARAM_DEREF_=使用错误-非虚拟方法调用向非空参数传入了nullrule.findbug.FI_=不良实践-应该删除空的finalizerrule.findbug.CD_CIRCULAR_=试验-类间存在循环引用rule.findbug.EC_UNRELATED_=使用错误-使用equal()比较不同类型rule.findbug.EI_E某POSE_STATIC_=恶意代码漏洞-把可变对象保存到静态字段中可能会暴露内部静态状态rule.findbug.DMI_INVOKING_TOSTRING_ON_ANONYMOUS_=错误-对数组执行toStringrule.findbug.SIC_INNER_SHOULD_BE_STATIC_=性能-可以重构成一个静态内部类rule.findbug.STI_INTERRUPTED_ON_=错误-在thread实例上调用了静态Thread.interrupted()方法_IDIOM_NO_SUPER_=不良实践-clone方法没有调用uper.clone()rule.findbug.VA_FORMAT_STRING_BAD_=错误用法-格式化字符串占位符与传入的参数不匹配rule.findbug.EQ_DOESNT_OVERRIDE_=高危-类没有覆盖父类的equal方法rule.findbug.BC_IMPOSSIBLE_DOWNCAST_OF_=错误用法-集合转换为数组元素时发生的类型转换错误rule.findbug.SE_NO_SUITABLE_CONSTRUCTOR_FOR_E某=不良实践-类是可扩展的,但是没有提供无参数的构造方法rule.findbug.TQ_E某PLICIT_UNKNOWN_SOURCE_VALUE_REACHES_ALWAYS_=错误用法-数值需要类型标示,但是却标记为未知rule.findbug.SIC_INNER_SHOULD_BE_STATIC_NEEDS_=性能-可以筹够成一个静态内部类rule.findbug.EQ_CHECK_FOR_OPERAND_NOT_COMPATIBLE_WITH_THIS.n ame=不良实践-equal检测不兼容的参数操作rule.findbug.RV_RETURN_VALUE_OF_PUTIFABSENT_=错误用法-忽略了putIfAbent的返回值,传递给putIfAbent的值被重用rule.findbug.STCAL_INVOKE_ON_STATIC_CALENDAR_=多线程错误-调用静态Calendarrule.findbug.MS_CANNOT_BE_=恶意代码漏洞-字段不是final的,不能防止恶意代码的攻击rule.findbug.IS_INCONSISTENT_=多线程错误-不一致的同步rule.findbug.SE_NO_=不良实践-类是可序列化的,但是没有定义erialVerionUIDrule.findbug.EI_E某POSE_=恶意代码漏洞-可能暴露内部实现,通过与可变对象引用协作rule.findbug.NM_METHOD_CONSTRUCTOR_=错误用法-明显的方法/构造方法混淆rule.findbug.ICAST_INTEGER_MULTIPLY_CAST_TO_=高危-整形乘法的结果转换为long型rule.findbug.QF_QUESTIONABLE_FOR_=高危-for循环中存在复杂,微妙或者错误的自增rule.findbug.DLS_DEAD_STORE_OF_CLASS_=错误用法-类中保存了无用字符rule.findbug.NM_FUTURE_KEYWORD_USED_AS_MEMBER_IDENTIFIER.nam e=不良实践-使用了未来java版本中成为关键字的标识rule.findbug.BC_VACUOUS_=高危-intanceof会一直返回truerule.findbug.INT_VACUOUS_BIT_=高危-在整形上进行位操作时有一些位上出现空洞rule.findbug.NP_NULL_=错误用法-一个已知的null值被检测它是否是一个类型的实例rule.findbug.SIC_THREADLOCAL_DEADLY_=错误用法-非静态内部类和ThreadLocal的致命结合rule.findbug.EQ_=高危-罕见的equal方法rule.findbug.IJU_NO_=错误用法-TetCae没有任何测试rule.findbug.EQ_OVERRIDING_EQUALS_NOT_=错误用法-equal方法覆盖了父类的equal可能功能不符rule.findbug.某FB_某ML_FACTORY_=高危-方法直接调用了某ml接口的一个具体实现rule.findbug.SWL_SLEEP_WITH_LOCK_=多线程错误-方法在获得锁时调用了Thread.leep()_=不良实践-类实现了Cloneable,但是没有定义或使用clone方法rule.findbug.WA_AWAIT_NOT_IN_=多线程错误-未在循环中使用的Condition.await()rule.findbug.DM_FP_NUMBER_=性能-方法调用了低效的浮点书构造方法;应该使用静态的valueOf代替rule.findbug.SF_SWITCH_NO_=Switch语句中没有包含defaultrule.findbug.NP_NULL_ON_SOME_PATH_FROM_RETURN_=高危-调用返回返回值可能出现null值rule.findbug.NP_CLONE_COULD_RETURN_=不良实践-Clone 方法可能返回nullrule.findbug.MS_OOI_=恶意代码漏洞-属性应该从接口中移除并将访问权限设置为包保护rule.findbug.DM_BO某ED_PRIMITIVE_=性能-方法使用了装箱的基本类型只为了调用toStringrule.findbug.EQ_ABSTRACT_=不良实践-抽象类定义了协变的equal方法rule.findbug.DM_STRING_=性能-方法调用了String 的toString()方法rule.findbug.SE_METHOD_MUST_BE_=错误用法-方法必须是private的为了让序列化正常工作rule.findbug.DL_SYNCHRONIZATION_ON_=多线程错误-在Boolean上使用同步可能导致死锁rule.findbug.UWF_UNWRITTEN_=错误用法-未赋值属性rule.findbug.IS2_INCONSISTENT_=多线程错误-不一致的同步rule.findbug.IM_AVERAGE_COMPUTATION_COULD_=高危-计算平均值可能溢出rule.findbug.BIT_SIGNED_CHECK_HIGH_=错误用法-检查位运算的符号rule.findbug.FL_MATH_USING_FLOAT_=错误用法-方法进行数学运算时使用了浮点数的精度rule.findbug.WS_WRITEOBJECT_=多线程错误-类的writeObject()方法是同步的,但是没有做其他事情rule.findbug.RV_RETURN_VALUE_=错误用法-方法忽略了返回值rule.findbug.SQL_NONCONSTANT_STRING_PASSED_TO_E某=安全风险-非常量的字符串传递给方法执行SQL语句rule.findbug.JCIP_FIELD_ISNT_FINAL_IN_IMMUTABLE_=不良实践-不可变的类的属性应该是finalrule.findbug.AM_CREATES_EMPTY_ZIP_FILE_=不良实践-创建了一个空的zip文件的入口rule.findbug.DM_NE某TINT_VIA_NE某=性能-使用Random的ne某tInt方法来获得一个随机整数,而不是ne某tDoublerule.findbug.UI_INHERITANCE_UNSAFE_=不良实践-如果类被扩展,GetReource的使用可能就是不安全的rule.findbug.SIO_SUPERFLUOUS_=错误用法-不必要的类型检测使用intanceof操作符rule.findbug.EQ_OTHER_NO_=错误用法-equal()方法定义,但是没有覆盖equal(Object)M_USELESS_ABSTRACT_=试验-抽象方法已经在实现的接口中定义了rule.findbug.MTIA_SUSPECT_SERVLET_INSTANCE_=高危-扩展Servlet的类使用了实例变量rule.findbug.DM_USELESS_=多线程错误-使用默认的空run方法创建了一个线程rule.findbug.ML_SYNC_ON_UPDATED_=多线程错误-方法在一个修改了的属性上进行了同步rule.findbug.BC_UNCONFIRMED_=高危-未检查/未证实的类型转换rule.findbug.FI_FINALIZER_NULLS_=不良实践-Finalizer空属性rule.findbug.BIT_=错误用法-不兼容的位掩码(BIT_AND) rule.findbug.FE_FLOATING_POINT_=高危-测试浮点数相等rule.findbug.TQ_E某PLICIT_UNKNOWN_SOURCE_VALUE_REACHES_NEVER_=错误用法-值不要求有类型标示,但是标记为未知rule.findbug.NP_NULL_PARAM_=错误用法-方法调用把null传递给一个非null参数rule.findbug.FB_MISSING_E某PECTED_=试验-findbug 丢失了期待或需要的警告rule.findbug.DMI_INVOKING_HASHCODE_ON_=错误用法-在数组上调用了hahCoderule.findbug.QBA_QUESTIONABLE_BOOLEAN_=错误用法-方法在布尔表达式中分配了boolean文字rule.findbug.SA_FIELD_SELF_=错误用法-属性自己与自己进行了比较rule.findbug.UR_UNINIT_READ_CALLED_FROM_SUPER_CONSTRUCTOR.na me=错误用法-父类的构造方法调用未初始化属性的方法rule.findbug.ES_COMPARING_PARAMETER_STRING_WITH_=不良实践-比较字符串参数使用了==或!=rule.findbug.INT_BAD_COMPARISON_WITH_NONNEGATIVE_=错误用法-错误比较非负值与负数rule.findbug.INT_BAD_COMPARISON_WITH_SIGNED_=错误用法-错误比较带符号的byterule.findbug.IO_APPENDING_TO_OBJECT_OUTPUT_=错误用法-尝试向一个对象输出流添加信息rule.findbug.FI_MISSING_SUPER_=不良实践-Finalizer 没有调用父类的finalizerrule.findbug.VA_FORMAT_STRING_E某TRA_ARGUMENTS_=错误用法-传递了多余实际使用的格式化字符串的参数rule.findbug.HE_EQUALS_USE_=不良实践-类定义了equal(),但使用了Object.hahCode()rule.findbug.IJU_BAD_SUITE_=错误用法-TetCae声明了一个错误的uite方法rule.findbug.DMI_CONSTANT_DB_=安全风险-硬编码了数据库密码rule.findbug.REC_CATCH_E某=高危-捕获了没有抛出的异常rule.findbug.PS_PUBLIC_=高危-类在公用接口中暴露了同步和信号rule.findbug.EC_UNRELATED_=错误用法-调用equal()比较不同的接口类型rule.findbug.UCF_USELESS_CONTROL_FLOW_NE某T_=错误用法-执行到下一行的无用流程控制rule.findbug.LG_LOST_LOGGER_DUE_TO_WEAK_=试验-OpenJDK中存在潜在的丢失logger的风险,因为弱引用rule.findbug.NP_UNWRITTEN_=错误用法-读取未初始化的属性rule.findbug.DMI_UNSUPPORTED_=高危-调用不支持的方法rule.findbug.RCN_REDUNDANT_COMPARISON_OF_NULL_AND_NONNULL_VA =高危-重复比较非空值和nullrule.findbug.EC_BAD_ARRAY_=错误用法-调用equal(),与==效果一样rule.findbug.EI_E某POSE_=恶意代码漏洞-可能通过返回一个可变对象的引用暴露了内部实现rule.findbug.NP_DEREFERENCE_OF_READLINE_=高危-没有判断readLine()的结果是否为空rule.findbug.UPM_UNCALLED_PRIVATE_=性能-从未用到的私有方法rule.findbug.NP_NULL_ON_SOME_=错误用法-可能出现空指针引用rule.findbug.NP_EQUALS_SHOULD_HANDLE_NULL_=不良实践-equal()方法没有检测null参数rule.findbug.EC_NULL_=错误用法-使用空参数调用equal() rule.findbug.SE_BAD_FIELD_=不良实践-非序列化值保存在序列化类的实例变量中rule.findbug.VO_VOLATILE_REFERENCE_TO_=多线程错误-数组的volatile引用不会把数组元素也当做volatile来引用rule.findbug.NP_SYNC_AND_NULL_CHECK_=多线程错误-同步和空值检测发生在同一个属性上rule.findbug.DM_E某=不良实践-方法调用了Sytem.e某it(...)rule.findbug.RC_REF_=不良实践-怀疑进行了引用比较rule.findbug.SE_NO_SUITABLE_=不良实践-类是可序列化的,但是父类没有定义无参数构造方法rule.findbug.DC_=多线程错误-可能对属性进行了双重检测rule.findbug.DMI_LONG_BITS_TO_DOUBLE_INVOKED_ON_=错误用法-在int上调用了Double.longBitToDoublerule.findbug.RpC_REPEATED_CONDITIONAL_=错误用法-重复判断条件rule.findbug.WMI_WRONG_MAP_=性能-keySet迭代是低效的,使用entrySet代替rule.findbug.DLS_DEAD_LOCAL_=高危-未用的局部变量rule.findbug.INT_BAD_REM_BY_=错误用法-整数剩余模1 rule.findbug.RV_RETURN_VALUE_IGNORED_BAD_=不良实践-方法忽略异常返回值rule.findbug.SA_LOCAL_SELF_=高危-局部变量的自我赋值rule.findbug.MS_SHOULD_BE_=恶意代码漏洞-属性不是final,但是应该设置成finalrule.findbug.SIC_INNER_SHOULD_BE_=性能-应该是一个静态内部类rule.findbug.NP_GUARANTEED_=错误用法-null值一定会被调用rule.findbug.SE_READ_RESOLVE_MUST_RETURN_=不良实践-readReolve方法必须返回Objectrule.findbug.NP_LOAD_OF_KNOWN_NULL_=高危-加载了已知的null值rule.findbug.B某_BO某ING_IMMEDIATELY_UNBO某ED_TO_PERFORM_=性能-基本数据被装箱又被拆箱_IMPLEMENTS_CLONE_BUT_NOT_=不良实践-类定义了clone()但没有实现Cloneablerule.findbug.BAC_BAD_APPLET_=试验-错误的Applet构造方法依赖未初始化的AppletStubrule.findbug.EQ_GETCLASS_AND_CLASS_=不良实践-equal方法因为子类失败rule.findbug.DB_DUPLICATE_SWITCH_=高危-在两个witch语句中使用了相同的代码rule.findbug.DB_DUPLICATE_=高危-在两个分支中使用了相同的代码rule.findbug.UOE_USE_OBJECT_=试验-在final类上调用了equal,但是没有覆盖Object的equal方法rule.findbug.FI_=不良实践-Finalizer除了调用父类的finalizer以外什么也没做rule.findbug.NP_ALWAYS_=错误用法-调用了null指针rule.findbug.DMI_VACUOUS_SELF_COLLECTION_=错误用法-集合的调用不能被感知rule.findbug.DLS_DEAD_LOCAL_STORE_IN_=错误用法-返回语句中的无用的赋值rule.findbug.IJU_ASSERT_METHOD_INVOKED_FROM_RUN_=错误用法-在run方法中的JUnit检验不能报告给JUnitrule.findbug.DMI_EMPTY_DB_=安全风险-空的数据库密码rule.findbug.DM_BOOLEAN_=性能-方法调用了低效的Boolean构造方法;使用Boolean.valueOf(...)代替rule.findbug.BC_IMPOSSIBLE_=错误用法-不可能转型rule.findbug.BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS.na me=不良实践-Equal方法不应该假设任何有关参数类型的事宜rule.findbug.RV_E某CEPTION_NOT_=错误用法-异常创建后就丢弃了,没有抛出rule.findbug.VA_PRIMITIVE_ARRAY_PASSED_TO_OBJECT_ =错误用法-基本类型数组传递给一个期待可变对象类型参数的方法rule.findbug.LI_LAZY_INIT_UPDATE_=多线程错误-错误的延迟初始化和更新静态属性rule.findbug.SA_FIELD_SELF_=错误用法-属性自身赋值rule.findbug.EQ_ALWAYS_=错误用法-equal方法一直返回falerule.findbug.DMI_RANDOM_USED_ONLY_=不良实践-Random 对象创建后只用了一次rule.findbug.NM_CLASS_NOT_E某=不良实践-Cla没有继承E某ception,虽然名字像一个异常rule.findbug.SA_LOCAL_DOUBLE_=高危-给局部变量双重赋值rule.findbug.NP_NULL_PARAM_DEREF_ALL_TARGETS_=错误用法-方法调用传递null给非空参数(ALL_TARGETS_DANGEROUS) rule.findbug.NP_TOSTRING_COULD_RETURN_=不良实践-toString方法可能返回nullrule.findbug.BC_BAD_CAST_TO_ABSTRACT_=高危-转换成抽象集合值得怀疑rule.findbug.NM_LCASE_=类定义了hahcode();应该是hahCode()吧?rule.findbug.RU_INVOKE_=多线程错误-在线程中调用了run(你的意思是再启动一次么?)rule.findbug.DMI_INVOKING_TOSTRING_ON_=错误用法-调用了数组的toStringrule.findbug.NM_METHOD_NAMING_=方法名应该以小写字母开头rule.findbug.RCN_REDUNDANT_COMPARISON_TWO_NULL_=高危-重复比较两个null值rule.findbug.SA_LOCAL_SELF_=错误用法-对一个变量进行无意义的自我计算(比如某&某)rule.findbug.MS_MUTABLE_=恶意代码漏洞-属性是可变的Hahtablerule.findbug.RV_DONT_JUST_NULL_CHECK_=高危-方法丢掉了readLine的结果,在检测它是非空之后。
DIRECTIVE NUMBER: CPL 02-00-150 EFFECTIVE DATE: April 22, 2011 SUBJECT: Field Operations Manual (FOM)ABSTRACTPurpose: This instruction cancels and replaces OSHA Instruction CPL 02-00-148,Field Operations Manual (FOM), issued November 9, 2009, whichreplaced the September 26, 1994 Instruction that implemented the FieldInspection Reference Manual (FIRM). The FOM is a revision of OSHA’senforcement policies and procedures manual that provides the field officesa reference document for identifying the responsibilities associated withthe majority of their inspection duties. This Instruction also cancels OSHAInstruction FAP 01-00-003 Federal Agency Safety and Health Programs,May 17, 1996 and Chapter 13 of OSHA Instruction CPL 02-00-045,Revised Field Operations Manual, June 15, 1989.Scope: OSHA-wide.References: Title 29 Code of Federal Regulations §1903.6, Advance Notice ofInspections; 29 Code of Federal Regulations §1903.14, Policy RegardingEmployee Rescue Activities; 29 Code of Federal Regulations §1903.19,Abatement Verification; 29 Code of Federal Regulations §1904.39,Reporting Fatalities and Multiple Hospitalizations to OSHA; and Housingfor Agricultural Workers: Final Rule, Federal Register, March 4, 1980 (45FR 14180).Cancellations: OSHA Instruction CPL 02-00-148, Field Operations Manual, November9, 2009.OSHA Instruction FAP 01-00-003, Federal Agency Safety and HealthPrograms, May 17, 1996.Chapter 13 of OSHA Instruction CPL 02-00-045, Revised FieldOperations Manual, June 15, 1989.State Impact: Notice of Intent and Adoption required. See paragraph VI.Action Offices: National, Regional, and Area OfficesOriginating Office: Directorate of Enforcement Programs Contact: Directorate of Enforcement ProgramsOffice of General Industry Enforcement200 Constitution Avenue, NW, N3 119Washington, DC 20210202-693-1850By and Under the Authority ofDavid Michaels, PhD, MPHAssistant SecretaryExecutive SummaryThis instruction cancels and replaces OSHA Instruction CPL 02-00-148, Field Operations Manual (FOM), issued November 9, 2009. The one remaining part of the prior Field Operations Manual, the chapter on Disclosure, will be added at a later date. This Instruction also cancels OSHA Instruction FAP 01-00-003 Federal Agency Safety and Health Programs, May 17, 1996 and Chapter 13 of OSHA Instruction CPL 02-00-045, Revised Field Operations Manual, June 15, 1989. This Instruction constitutes OSHA’s general enforcement policies and procedures manual for use by the field offices in conducting inspections, issuing citations and proposing penalties.Significant Changes∙A new Table of Contents for the entire FOM is added.∙ A new References section for the entire FOM is added∙ A new Cancellations section for the entire FOM is added.∙Adds a Maritime Industry Sector to Section III of Chapter 10, Industry Sectors.∙Revises sections referring to the Enhanced Enforcement Program (EEP) replacing the information with the Severe Violator Enforcement Program (SVEP).∙Adds Chapter 13, Federal Agency Field Activities.∙Cancels OSHA Instruction FAP 01-00-003, Federal Agency Safety and Health Programs, May 17, 1996.DisclaimerThis manual is intended to provide instruction regarding some of the internal operations of the Occupational Safety and Health Administration (OSHA), and is solely for the benefit of the Government. No duties, rights, or benefits, substantive or procedural, are created or implied by this manual. The contents of this manual are not enforceable by any person or entity against the Department of Labor or the United States. Statements which reflect current Occupational Safety and Health Review Commission or court precedents do not necessarily indicate acquiescence with those precedents.Table of ContentsCHAPTER 1INTRODUCTIONI.PURPOSE. ........................................................................................................... 1-1 II.SCOPE. ................................................................................................................ 1-1 III.REFERENCES .................................................................................................... 1-1 IV.CANCELLATIONS............................................................................................. 1-8 V. ACTION INFORMATION ................................................................................. 1-8A.R ESPONSIBLE O FFICE.......................................................................................................................................... 1-8B.A CTION O FFICES. .................................................................................................................... 1-8C. I NFORMATION O FFICES............................................................................................................ 1-8 VI. STATE IMPACT. ................................................................................................ 1-8 VII.SIGNIFICANT CHANGES. ............................................................................... 1-9 VIII.BACKGROUND. ................................................................................................. 1-9 IX. DEFINITIONS AND TERMINOLOGY. ........................................................ 1-10A.T HE A CT................................................................................................................................................................. 1-10B. C OMPLIANCE S AFETY AND H EALTH O FFICER (CSHO). ...........................................................1-10B.H E/S HE AND H IS/H ERS ..................................................................................................................................... 1-10C.P ROFESSIONAL J UDGMENT............................................................................................................................... 1-10E. W ORKPLACE AND W ORKSITE ......................................................................................................................... 1-10CHAPTER 2PROGRAM PLANNINGI.INTRODUCTION ............................................................................................... 2-1 II.AREA OFFICE RESPONSIBILITIES. .............................................................. 2-1A.P ROVIDING A SSISTANCE TO S MALL E MPLOYERS. ...................................................................................... 2-1B.A REA O FFICE O UTREACH P ROGRAM. ............................................................................................................. 2-1C. R ESPONDING TO R EQUESTS FOR A SSISTANCE. ............................................................................................ 2-2 III. OSHA COOPERATIVE PROGRAMS OVERVIEW. ...................................... 2-2A.V OLUNTARY P ROTECTION P ROGRAM (VPP). ........................................................................... 2-2B.O NSITE C ONSULTATION P ROGRAM. ................................................................................................................ 2-2C.S TRATEGIC P ARTNERSHIPS................................................................................................................................. 2-3D.A LLIANCE P ROGRAM ........................................................................................................................................... 2-3 IV. ENFORCEMENT PROGRAM SCHEDULING. ................................................ 2-4A.G ENERAL ................................................................................................................................................................. 2-4B.I NSPECTION P RIORITY C RITERIA. ..................................................................................................................... 2-4C.E FFECT OF C ONTEST ............................................................................................................................................ 2-5D.E NFORCEMENT E XEMPTIONS AND L IMITATIONS. ....................................................................................... 2-6E.P REEMPTION BY A NOTHER F EDERAL A GENCY ........................................................................................... 2-6F.U NITED S TATES P OSTAL S ERVICE. .................................................................................................................. 2-7G.H OME-B ASED W ORKSITES. ................................................................................................................................ 2-8H.I NSPECTION/I NVESTIGATION T YPES. ............................................................................................................... 2-8 V.UNPROGRAMMED ACTIVITY – HAZARD EVALUATION AND INSPECTION SCHEDULING ............................................................................ 2-9 VI.PROGRAMMED INSPECTIONS. ................................................................... 2-10A.S ITE-S PECIFIC T ARGETING (SST) P ROGRAM. ............................................................................................. 2-10B.S CHEDULING FOR C ONSTRUCTION I NSPECTIONS. ..................................................................................... 2-10C.S CHEDULING FOR M ARITIME I NSPECTIONS. ............................................................................. 2-11D.S PECIAL E MPHASIS P ROGRAMS (SEP S). ................................................................................... 2-12E.N ATIONAL E MPHASIS P ROGRAMS (NEP S) ............................................................................... 2-13F.L OCAL E MPHASIS P ROGRAMS (LEP S) AND R EGIONAL E MPHASIS P ROGRAMS (REP S) ............ 2-13G.O THER S PECIAL P ROGRAMS. ............................................................................................................................ 2-13H.I NSPECTION S CHEDULING AND I NTERFACE WITH C OOPERATIVE P ROGRAM P ARTICIPANTS ....... 2-13CHAPTER 3INSPECTION PROCEDURESI.INSPECTION PREPARATION. .......................................................................... 3-1 II.INSPECTION PLANNING. .................................................................................. 3-1A.R EVIEW OF I NSPECTION H ISTORY .................................................................................................................... 3-1B.R EVIEW OF C OOPERATIVE P ROGRAM P ARTICIPATION .............................................................................. 3-1C.OSHA D ATA I NITIATIVE (ODI) D ATA R EVIEW .......................................................................................... 3-2D.S AFETY AND H EALTH I SSUES R ELATING TO CSHO S.................................................................. 3-2E.A DVANCE N OTICE. ................................................................................................................................................ 3-3F.P RE-I NSPECTION C OMPULSORY P ROCESS ...................................................................................................... 3-5G.P ERSONAL S ECURITY C LEARANCE. ................................................................................................................. 3-5H.E XPERT A SSISTANCE. ........................................................................................................................................... 3-5 III. INSPECTION SCOPE. ......................................................................................... 3-6A.C OMPREHENSIVE ................................................................................................................................................... 3-6B.P ARTIAL. ................................................................................................................................................................... 3-6 IV. CONDUCT OF INSPECTION .............................................................................. 3-6A.T IME OF I NSPECTION............................................................................................................................................. 3-6B.P RESENTING C REDENTIALS. ............................................................................................................................... 3-6C.R EFUSAL TO P ERMIT I NSPECTION AND I NTERFERENCE ............................................................................. 3-7D.E MPLOYEE P ARTICIPATION. ............................................................................................................................... 3-9E.R ELEASE FOR E NTRY ............................................................................................................................................ 3-9F.B ANKRUPT OR O UT OF B USINESS. .................................................................................................................... 3-9G.E MPLOYEE R ESPONSIBILITIES. ................................................................................................. 3-10H.S TRIKE OR L ABOR D ISPUTE ............................................................................................................................. 3-10I. V ARIANCES. .......................................................................................................................................................... 3-11 V. OPENING CONFERENCE. ................................................................................ 3-11A.G ENERAL ................................................................................................................................................................ 3-11B.R EVIEW OF A PPROPRIATION A CT E XEMPTIONS AND L IMITATION. ..................................................... 3-13C.R EVIEW S CREENING FOR P ROCESS S AFETY M ANAGEMENT (PSM) C OVERAGE............................. 3-13D.R EVIEW OF V OLUNTARY C OMPLIANCE P ROGRAMS. ................................................................................ 3-14E.D ISRUPTIVE C ONDUCT. ...................................................................................................................................... 3-15F.C LASSIFIED A REAS ............................................................................................................................................. 3-16VI. REVIEW OF RECORDS. ................................................................................... 3-16A.I NJURY AND I LLNESS R ECORDS...................................................................................................................... 3-16B.R ECORDING C RITERIA. ...................................................................................................................................... 3-18C. R ECORDKEEPING D EFICIENCIES. .................................................................................................................. 3-18 VII. WALKAROUND INSPECTION. ....................................................................... 3-19A.W ALKAROUND R EPRESENTATIVES ............................................................................................................... 3-19B.E VALUATION OF S AFETY AND H EALTH M ANAGEMENT S YSTEM. ....................................................... 3-20C.R ECORD A LL F ACTS P ERTINENT TO A V IOLATION. ................................................................................. 3-20D.T ESTIFYING IN H EARINGS ................................................................................................................................ 3-21E.T RADE S ECRETS. ................................................................................................................................................. 3-21F.C OLLECTING S AMPLES. ..................................................................................................................................... 3-22G.P HOTOGRAPHS AND V IDEOTAPES.................................................................................................................. 3-22H.V IOLATIONS OF O THER L AWS. ....................................................................................................................... 3-23I.I NTERVIEWS OF N ON-M ANAGERIAL E MPLOYEES .................................................................................... 3-23J.M ULTI-E MPLOYER W ORKSITES ..................................................................................................................... 3-27 K.A DMINISTRATIVE S UBPOENA.......................................................................................................................... 3-27 L.E MPLOYER A BATEMENT A SSISTANCE. ........................................................................................................ 3-27 VIII. CLOSING CONFERENCE. .............................................................................. 3-28A.P ARTICIPANTS. ..................................................................................................................................................... 3-28B.D ISCUSSION I TEMS. ............................................................................................................................................ 3-28C.A DVICE TO A TTENDEES .................................................................................................................................... 3-29D.P ENALTIES............................................................................................................................................................. 3-30E.F EASIBLE A DMINISTRATIVE, W ORK P RACTICE AND E NGINEERING C ONTROLS. ............................ 3-30F.R EDUCING E MPLOYEE E XPOSURE. ................................................................................................................ 3-32G.A BATEMENT V ERIFICATION. ........................................................................................................................... 3-32H.E MPLOYEE D ISCRIMINATION .......................................................................................................................... 3-33 IX. SPECIAL INSPECTION PROCEDURES. ...................................................... 3-33A.F OLLOW-UP AND M ONITORING I NSPECTIONS............................................................................................ 3-33B.C ONSTRUCTION I NSPECTIONS ......................................................................................................................... 3-34C. F EDERAL A GENCY I NSPECTIONS. ................................................................................................................. 3-35CHAPTER 4VIOLATIONSI. BASIS OF VIOLATIONS ..................................................................................... 4-1A.S TANDARDS AND R EGULATIONS. .................................................................................................................... 4-1B.E MPLOYEE E XPOSURE. ........................................................................................................................................ 4-3C.R EGULATORY R EQUIREMENTS. ........................................................................................................................ 4-6D.H AZARD C OMMUNICATION. .............................................................................................................................. 4-6E. E MPLOYER/E MPLOYEE R ESPONSIBILITIES ................................................................................................... 4-6 II. SERIOUS VIOLATIONS. .................................................................................... 4-8A.S ECTION 17(K). ......................................................................................................................... 4-8B.E STABLISHING S ERIOUS V IOLATIONS ............................................................................................................ 4-8C. F OUR S TEPS TO BE D OCUMENTED. ................................................................................................................... 4-8 III. GENERAL DUTY REQUIREMENTS ............................................................. 4-14A.E VALUATION OF G ENERAL D UTY R EQUIREMENTS ................................................................................. 4-14B.E LEMENTS OF A G ENERAL D UTY R EQUIREMENT V IOLATION.............................................................. 4-14C. U SE OF THE G ENERAL D UTY C LAUSE ........................................................................................................ 4-23D.L IMITATIONS OF U SE OF THE G ENERAL D UTY C LAUSE. ..............................................................E.C LASSIFICATION OF V IOLATIONS C ITED U NDER THE G ENERAL D UTY C LAUSE. ..................F. P ROCEDURES FOR I MPLEMENTATION OF S ECTION 5(A)(1) E NFORCEMENT ............................ 4-25 4-27 4-27IV.OTHER-THAN-SERIOUS VIOLATIONS ............................................... 4-28 V.WILLFUL VIOLATIONS. ......................................................................... 4-28A.I NTENTIONAL D ISREGARD V IOLATIONS. ..........................................................................................4-28B.P LAIN I NDIFFERENCE V IOLATIONS. ...................................................................................................4-29 VI. CRIMINAL/WILLFUL VIOLATIONS. ................................................... 4-30A.A REA D IRECTOR C OORDINATION ....................................................................................................... 4-31B.C RITERIA FOR I NVESTIGATING P OSSIBLE C RIMINAL/W ILLFUL V IOLATIONS ........................ 4-31C. W ILLFUL V IOLATIONS R ELATED TO A F ATALITY .......................................................................... 4-32 VII. REPEATED VIOLATIONS. ...................................................................... 4-32A.F EDERAL AND S TATE P LAN V IOLATIONS. ........................................................................................4-32B.I DENTICAL S TANDARDS. .......................................................................................................................4-32C.D IFFERENT S TANDARDS. .......................................................................................................................4-33D.O BTAINING I NSPECTION H ISTORY. .....................................................................................................4-33E.T IME L IMITATIONS..................................................................................................................................4-34F.R EPEATED V. F AILURE TO A BATE....................................................................................................... 4-34G. A REA D IRECTOR R ESPONSIBILITIES. .............................................................................. 4-35 VIII. DE MINIMIS CONDITIONS. ................................................................... 4-36A.C RITERIA ................................................................................................................................................... 4-36B.P ROFESSIONAL J UDGMENT. ..................................................................................................................4-37C. A REA D IRECTOR R ESPONSIBILITIES. .............................................................................. 4-37 IX. CITING IN THE ALTERNATIVE ............................................................ 4-37 X. COMBINING AND GROUPING VIOLATIONS. ................................... 4-37A.C OMBINING. ..............................................................................................................................................4-37B.G ROUPING. ................................................................................................................................................4-38C. W HEN N OT TO G ROUP OR C OMBINE. ................................................................................................4-38 XI. HEALTH STANDARD VIOLATIONS ....................................................... 4-39A.C ITATION OF V ENTILATION S TANDARDS ......................................................................................... 4-39B.V IOLATIONS OF THE N OISE S TANDARD. ...........................................................................................4-40 XII. VIOLATIONS OF THE RESPIRATORY PROTECTION STANDARD(§1910.134). ....................................................................................................... XIII. VIOLATIONS OF AIR CONTAMINANT STANDARDS (§1910.1000) ... 4-43 4-43A.R EQUIREMENTS UNDER THE STANDARD: .................................................................................................. 4-43B.C LASSIFICATION OF V IOLATIONS OF A IR C ONTAMINANT S TANDARDS. ......................................... 4-43 XIV. CITING IMPROPER PERSONAL HYGIENE PRACTICES. ................... 4-45A.I NGESTION H AZARDS. .................................................................................................................................... 4-45B.A BSORPTION H AZARDS. ................................................................................................................................ 4-46C.W IPE S AMPLING. ............................................................................................................................................. 4-46D.C ITATION P OLICY ............................................................................................................................................ 4-46 XV. BIOLOGICAL MONITORING. ...................................................................... 4-47CHAPTER 5CASE FILE PREPARATION AND DOCUMENTATIONI.INTRODUCTION ............................................................................................... 5-1 II.INSPECTION CONDUCTED, CITATIONS BEING ISSUED. .................... 5-1A.OSHA-1 ................................................................................................................................... 5-1B.OSHA-1A. ............................................................................................................................... 5-1C. OSHA-1B. ................................................................................................................................ 5-2 III.INSPECTION CONDUCTED BUT NO CITATIONS ISSUED .................... 5-5 IV.NO INSPECTION ............................................................................................... 5-5 V. HEALTH INSPECTIONS. ................................................................................. 5-6A.D OCUMENT P OTENTIAL E XPOSURE. ............................................................................................................... 5-6B.E MPLOYER’S O CCUPATIONAL S AFETY AND H EALTH S YSTEM. ............................................................. 5-6 VI. AFFIRMATIVE DEFENSES............................................................................. 5-8A.B URDEN OF P ROOF. .............................................................................................................................................. 5-8B.E XPLANATIONS. ..................................................................................................................................................... 5-8 VII. INTERVIEW STATEMENTS. ........................................................................ 5-10A.G ENERALLY. ......................................................................................................................................................... 5-10B.CSHO S SHALL OBTAIN WRITTEN STATEMENTS WHEN: .......................................................................... 5-10C.L ANGUAGE AND W ORDING OF S TATEMENT. ............................................................................................. 5-11D.R EFUSAL TO S IGN S TATEMENT ...................................................................................................................... 5-11E.V IDEO AND A UDIOTAPED S TATEMENTS. ..................................................................................................... 5-11F.A DMINISTRATIVE D EPOSITIONS. .............................................................................................5-11 VIII. PAPERWORK AND WRITTEN PROGRAM REQUIREMENTS. .......... 5-12 IX.GUIDELINES FOR CASE FILE DOCUMENTATION FOR USE WITH VIDEOTAPES AND AUDIOTAPES .............................................................. 5-12 X.CASE FILE ACTIVITY DIARY SHEET. ..................................................... 5-12 XI. CITATIONS. ..................................................................................................... 5-12A.S TATUTE OF L IMITATIONS. .............................................................................................................................. 5-13B.I SSUING C ITATIONS. ........................................................................................................................................... 5-13C.A MENDING/W ITHDRAWING C ITATIONS AND N OTIFICATION OF P ENALTIES. .................................. 5-13D.P ROCEDURES FOR A MENDING OR W ITHDRAWING C ITATIONS ............................................................ 5-14 XII. INSPECTION RECORDS. ............................................................................... 5-15A.G ENERALLY. ......................................................................................................................................................... 5-15B.R ELEASE OF I NSPECTION I NFORMATION ..................................................................................................... 5-15C. C LASSIFIED AND T RADE S ECRET I NFORMATION ...................................................................................... 5-16。
a rXiv:087.4545v1[he p-ex]28J u l28CLNS 08/2036CLEO 08-19Search for CP Violation in the Dalitz-Plot Analysis of D ±→K +K −π±P.Rubin,1B.I.Eisenstein,2I.Karliner,2S.Mehrabyan,2N.Lowrey,2M.Selen,2E.J.White,2J.Wiss,2R.E.Mitchell,3M.R.Shepherd,3D.Besson,4T.K.Pedlar,5D.Cronin-Hennessy,6K.Y.Gao,6J.Hietala,6Y.Kubota,6T.Klein,ng,6R.Poling,6A.W.Scott,6P.Zweber,6S.Dobbs,7Z.Metreveli,7K.K.Seth,7B.J.Y.Tan,7A.Tomaradze,7J.Libby,8L.Martin,8A.Powell,8G.Wilkinson,8K.M.Ecklund,9W.Love,10V.Savinov,10H.Mendez,11J.Y.Ge,ler,12I.P.J.Shipsey,12B.Xin,12G.S.Adams,13D.Hu,13B.Moziak,13J.Napolitano,13Q.He,14J.Insler,14H.Muramatsu,14C.S.Park,14E.H.Thorndike,14F.Yang,14M.Artuso,15S.Blusk,15S.Khalil,15J.Li,15R.Mountain,15S.Nisar,15K.Randrianarivony,15N.Sultana,15T.Skwarnicki,15S.Stone,15J.C.Wang,15L.M.Zhang,15G.Bonvicini,16D.Cinabro,16M.Dubrovin,16A.Lincoln,16P.Naik,17J.Rademacker,17D.M.Asner,18K.W.Edwards,18J.Reed,18R.A.Briere,19G.Tatishvili,19H.Vogel,19J.L.Rosner,20J.P.Alexander,21D.G.Cassel,21J.E.Duboscq ∗,21R.Ehrlich,21L.Fields,21L.Gibbons,21R.Gray,21S.W.Gray,21D.L.Hartill,21B.K.Heltsley,21D.Hertz,21J.M.Hunt,21J.Kandaswamy,21D.L.Kreinick,21V.E.Kuznetsov,21J.Ledoux,21H.Mahlke-Kr¨u ger,21D.Mohapatra,21P.U.E.Onyisi,21J.R.Patterson,21D.Peterson,21D.Riley,21A.Ryd,21A.J.Sadoff,21X.Shi,21S.Stroiney,21W.M.Sun,21T.Wilksen,21S.B.Athar,22R.Patel,22and J.Yelton 22(CLEO Collaboration)1George Mason University,Fairfax,Virginia 22030,USA 2University of Illinois,Urbana-Champaign,Illinois 61801,USA 3Indiana University,Bloomington,Indiana 47405,USA 4University of Kansas,Lawrence,Kansas 66045,USA 5Luther College,Decorah,Iowa 52101,USA 6University of Minnesota,Minneapolis,Minnesota 55455,USA 7Northwestern University,Evanston,Illinois 60208,USA 8University of Oxford,Oxford OX13RH,UK 9State University of New York at Buffalo,Buffalo,New York 14260,USA10University of Pittsburgh,Pittsburgh,Pennsylvania 15260,USA11University of Puerto Rico,Mayaguez,Puerto Rico 0068112Purdue University,West Lafayette,Indiana 47907,USA13Rensselaer Polytechnic Institute,Troy,New York 12180,USA14University of Rochester,Rochester,New York 14627,USA15Syracuse University,Syracuse,New York 13244,USA16Wayne State University,Detroit,Michigan 48202,USA17University of Bristol,Bristol BS81TL,UK18Carleton University,Ottawa,Ontario,Canada K1S 5B619Carnegie Mellon University,Pittsburgh,Pennsylvania 15213,USA20Enrico Fermi Institute,University of Chicago,Chicago,Illinois 60637,USA21Cornell University,Ithaca,New York14853,USA22University of Florida,Gainesville,Florida32611,USAAbstractWe report on a search for CP asymmetry in the singly Cabibbo-suppressed decay D+→K+K−π+using a data sample of818pb−1accumulated with the CLEO-c detector on theψ(3770) resonance.A Dalitz-plot analysis is used to determine the amplitudes of the intermediate states. Wefind no evidence for CP violation either in specific two-body amplitudes or integrated over the entire phase space.The CP asymmetry in the latter case is measured to be(−0.03±0.84±0.29)%. PACS numbers:13.25.Ft,11.30.ErD-meson decays are predicted in the Standard Model(SM)to exhibit CP-violating charge asymmetries smaller than O(10−3)[1].Measurement of a CP asymmetry in the D system with higher rate would clearly signal new physics(NP)[2,3].Singly Cabibbo-suppressed (SCS)decays via c→u¯q q transitions are sensitive to NP contributions to the∆C=1 penguin process.Interestingly,such processes do not contribute to either the Cabibbo-favored(c→s¯du)or the doubly Cabibbo-suppressed(c→d¯s u)decays.Direct CP violation in SCS decays could arise from interference between tree and penguin processes.In charged D-meson decays,mixing effects are absent,allowing us to probe direct CP violation and consequently NP.Weak decays of D mesons are expected to be dominated by quasi two-body decays with resonant intermediate states.Dalitz-plot analysis techniques can be used to explore the resonant substructure.The intermediate structures of D+→K+K−π+decay were studied by E687[4]with a Dalitz-plot analysis and by FOCUS[5]with a non-parametric technique.B A B A R searched for direct CP asymmetries in this mode using a counting method[6].Using 281pb−1of data,CLEO previously measured the absolute hadronic branching fractions and the CP asymmetries of Cabibbo-favored D-meson decay modes and the phase-space integrated asymmetry in the K+K−π+mode we study here[7].The previous investigations of this decay were either limited by statistics,and did not search for CP violation,or did not study the resonant substructure.We present the results of a search for direct CP asymmetry in the decay D±→K+K−π±. This includes a study of the integrated decay rate,as well as decays through various inter-mediate states.We perform the present analysis on818pb−1of e+e−collision data collected at a center-of-mass energy of3774MeV with the CLEO-c detector[8,9,10]at the Cor-nell Electron Storage Ring(CESR).The CLEO-c detector is a general purpose solenoidal detector that includes a tracking system for measuring momentum and specific ionization (dE/dx)of charged particles,a Ring Imaging Cherenkov detector(RICH)to aid in particle identification,and a CsI calorimeter for detection of electromagnetic showers.We reconstruct D+→K+K−π+,and the charge-conjugate mode D−→K+K−π−. (Charge-conjugate modes are included throughout this report unless noted otherwise.) Charged tracks are required to be well measured and to satisfy criteria based on the trackfit quality.They must also be consistent with coming from the interaction point in three dimen-sions.Pions and kaons are identified using dE/dx and RICH information,when available. We define two signal variables:∆E≡ i E i−E beam(1) andm BC≡FIG.1:The m BC distributions for(a)D+and(b)D−candidates.The solid curves show thefits to the data(points with error bars),while the dashed curves indicate the background.we use a Crystal Ball line shape function[12],whose parameters are allowed tofloat.For the background,an ARGUS function[13]is used with shape parameters determined from the events in the∆E sideband(50MeV<|∆E|<100MeV).Wefind9757±116D+ and9701±115D−.Figure1shows the m BC distributions of D+and D−samples withfit functions superimposed;the totalχ2is241for180degrees of freedom(d.o.f.).We obtain the efficiency from a GEANT-based signal Monte Carlo(MC)simulation of the detector.The signal MC requires one of the two D mesons in an event to decay in accordance with all known modes and the other one to decay to the signal mode.For the signal D meson, we generate events that uniformly populate phase space.The average efficiency,accounting for a non-uniform population density of data,is calculated as follows.The Dalitz plot of the data isfirst divided into16bins that are approximately equally populated.The signal yields are obtained from the m BCfits bin by bin and the corresponding efficiencies are calculated from the MC.The average efficiency is the sum of the yields divided by the sum of the efficiency-corrected yields.Wefind the efficienciesǫ±for the D±decays are(44.13±0.15)% and(43.85±0.15)%,respectively.The CP asymmetry,defined asN+/ǫ+−N−/ǫ−A CP=TABLE I:Fit results for three models with different S -wave parameterizations.The K −π+S -wave contains contributions from K ∗0(1430)0and κ(800)in fit B,and from the LASS amplitude in fit C.The errors are statistical,experimental systematic,and decay-model systematic,respectively.MagnitudePhase (◦)Fit Fraction (%)K ∗01(fixed)0(fixed)25.0±0.6+0.2+0.2−0.3−1.2K ∗2(1430)06.4±0.9+0.5+1.9−0.1−3.6150±6+1+28−0−131.2±0.3+0.2+0.8−0.0−0.6NR5.1±0.3+0.0+0.6−0.1−0.253±7+1+18−4−1114.7±1.8+0.2+3.9−0.4−1.5K ∗01(fixed)0(fixed)25.7±0.5+0.2+0.1−0.3−1.2K ∗2(1430)07.6±0.8+0.5+2.4−0.2−4.8171±4+0+24−2−111.7±0.4+0.3+1.2−0.1−0.7κ(800)2.30±0.13+0.01+0.52−0.11−0.29−87±6+2+15−3−107.0±0.8+0.0+3.5−0.6−1.9K ∗01(fixed)0(fixed)25.3±0.5+0.2+0.2−0.4−0.7LASS 3.81±0.06+0.05+0.13−0.01−0.4625.1±2+0+6−2−540.6±0.8+0.4+1.6−0.0−9.1φ1.193±0.015+0.003+0.021−0.010−0.011−176±2+0+8−2−828.6±0.4+0.0+0.2−0.3−0.5a 0(1450)01.73±0.07+0.14+0.68−0.01−0.38122±2+0+8−1−106.0±0.4+0.9+5.5−0.1−2.4φ(1680)1.71±0.16+0.02+0.41−0.02−0.77−72±8+0+10−2−220.42±0.08+0.02+0.19−0.01−0.16σf 2,(6)where the index i runs over all N events.The last term is used to constrain the signal fraction f to be the value f 0=84.26%within its error σf =0.10%obtained from the m BCfit.The first term contains the likelihood functionL (m 2+,m 2−)=f ε(m 2+,m 2−)|M|2N bg,(7)where N sig =ε(m 2+,m 2−)|M|2dm 2+dm 2−(8)and N bg =F bg (m 2+,m 2−)dm 2+dm 2−(9)are the normalization factors,and ε(m 2+,m 2−)and F bg (m 2+,m 2−)are efficiency and back-ground functions.The fit parameters are a r ,φr and f .We determine the efficiency ε(m 2+,m 2−)using the same signal MC sample described before.The efficiency function is parameterized by a cubic polynomial in (m 2+,m 2−)multiplied by threshold factors T (m 2+max −m 2+;p xy )×T (m 2−max −m 2−;p xy )×T (z max −z ;p z ),where T (x ;p )= sin(px ),0<px <π/21,otherwise ,(10)z ≡m 2K +K −,m 2±max or z max is the maximum value of m 2±or z in this decay,p xy and p zare the fit parameters.The threshold factors are used to account for tracking inefficiency at the Dalitz-plot corners,where one of three particles might be produced with very low momentum and escape detection.Figure 1shows that the background is significant.To construct a model of the back-ground shape F bg (m 2+,m 2−),we select events from the sideband region (24<|∆E |<42MeV and |m BC −m D +|<9MeV/c 2).There are 12324events,about 3.5times the amount of background we estimate in the signal region,which is dominated by random combinations of unrelated tracks.Although the background includes φand K ∗mesons combined with random tracks,these events will not interfere with each other.Thus the shape is param-eterized by a two-dimensional quadratic polynomial with terms representing non-coherent contributions from φand K ∗meson decays,multiplied by the threshold factors.We consider fifteen intermediate states,φπ+,φ(1680)π+,K ∗0(1430)0K +,K ∗2(1430)0K +,κ(800)K +,f 0(980)π+,f 0(1370)π+,f 0(1500)π+,f 2(1270)π+,f ′2(1525)π+,a 0(980)0π+,a 0(1450)0π+and a 2(1320)0π+,as well as a nonresonant (NR)con-tribution.The parameters of the established resonances are taken from Ref.[11],except for the f 0(980)which is taken from Ref.[16]and the a 0(980)taken from Ref.[17].A complex pole function is used to model the κ(800)with pole position at s κ=(0.71−i 0.31)2GeV 2[18].The nonresonant contribution is modeled as a uniform distribution over the allowed phase space.For the K −π+S -wave states in the decays,we also consider the LASS am-plitude as described in Ref.[19,20],instead of a coherent sum of the statesK ∗0K +isassigned to have zero phase and unit magnitude.We choose the same phase conventions for the intermediate resonances as E687[4]used.We begin to fit the data by considering only the three componentsK ∗0(1430)0and obtain a result consistent with E687.To present a relative goodness-of-fit estimator,we divide the Dalitz-plot region into bins with dimensions0.05(GeV/c2)2×0.05(GeV/c2)2and calculateχ2asχ2=−2721i=1n i ln p i|M|2dm2+dm2−.(12) The results of ourfits are presented in Table I.Wefind that threefits(denoted as A-C) describe the data with similar quality.The only difference among them is in description of the K−π+S-wave contribution,which is represented by theK∗0(1430)0andκ(800)infit B,and by the LASS amplitude infit C.Figure2shows the Dalitz plot for the D+→K+K−π+candidates and three projections of the data with the result offit B superimposed.Fit B gives the best agreement with the data;thus we choose it to search for CP-violation (CP V).The resonances in D+(D−)decays are allowed to have different magnitudes,a r+b r (a r−b r),and phases,δr+φr(δr−φr),in the decay amplitude M(ε+(m2+,m2−)|M|2dm2+dm2−(13) for the D+sample and byM|2M|2dm2+dm2−(14)for the D−sample,whereε±are efficiency functions obtained from the D±signal MC separately.We cannot determine the relative magnitude and phase between D+and D−directly,and assume b=0andφ=0for the(|M|2+|(|M|2+|FIG.2:(a)The Dalitz plot for D+→K+K−π+candidates.(b)-(d)Projections of the results of thefit B(line)and the data(points).The dashed line shows the background contribution.and the CP V interference fraction(IF)asIF r=k=r[2a k e iδk cos(φk−φr)A k]b r A∗r dm2+dm2−M|2)dm2+dm2−.(17)The CP-conservingfit fraction is the same for the D+and D−by construction.The CP V fit fraction defined by Eq.16is sensitive to CP violation in the resonant decay.The CP V interference fractions of Eq.17sum over the contribution proportional to a k e+iδk b r so they are sensitive to CP violation in interference between resonances.The phases are important and allow the possibility of cancelation in this sum.In Table II,we report the magnitude asymmetries b r/a r,phase differencesφr andfit fraction asymmetries.Thefit fraction asymmetry is computed as the difference between the D+and D−fit fractions divided by the sum.The largestfit fraction asymmetry,forthe K∗2(1430)0is small.The CP-conservingfit fractions and the95%confidence level(C.L.)upper limits for CP Vfit fraction,CP V interference fraction,and the ratio of CP V interference to CP-conservingfit fraction are given in Table III.We notice that the CP-conservingfit fractions are consistent with those offit B in Table I.Figure3shows the difference of the Dalitz-plot projections of data andfit between D+and D−decays.TABLE II:The magnitude asymmetries b r/a r,phase differencesφr and asymmetries on the D+and D−fit fractions fromfit B.The errors are statistical,experimental systematic,and decay-model systematic,respectively.r b/a(%)φ(◦)FF asymmetry(%)K∗00(fixed)0(fixed)−0.4±2.0+0.2+0.6−0.5−0.3K∗2(1430)023+12+1+3−11−7−75+5+1+3−4−3−143±19+1+5−13−12κ(800)−6±6+3+1−1−53±6+4+1−2−4−12±11+0+14−6−2TABLE III:The CP-conservingfit fractions from Eq.15and the95%confidence level(C.L.)upper limits for CP Vfit fraction from Eq.16,CP V interference fraction from Eq.17,and the ratio of CP V interference to CP-conservingfit fraction.The95%C.L.upper limits include statistical and systematic effects.FF(CP V)IF Ratio(×10−3)(×10−3)(%)Component FF(CP C)(%)(95%C.L.upper limits)K∗025.7±0.50(fixed)0(fixed)0(fixed)K∗2(1430)01.8±0.4<6.9<3.9<22κ(800)7.0±0.8<4.2<17.2<25We calculate an integrated CP asymmetry across the Dalitz plot,defined asA CP= |M|2−||M|2+|K∗0regions by requiring the K+K−and K−π+invariant mass to be within15FIG.3:The difference of the Dalitz-plot projections of data(points)andfit(line)between D+ and D−decays.and10MeV/c2of the nominalφandK∗0region,respectively.Systematic uncertainties from experimental sources and from the decay model are con-sidered separately.Our general procedure is to change some aspect of ourfit and interpret the change in the values of the magnitudes,phases,fit fractions,b r/a r,φr,andfit fraction asymmetries as an estimation of the systematic uncertainty.Contributions to the experimental systematic uncertainties arise from our model of the background,the efficiency and the event selection.Our nominalfitfixes the coefficients of the background determined from a sideband region.To estimate the systematic uncertainty on this background shape,afit is done with the coefficients allowed tofloat and constrained by the covariance matrix obtained from the backgroundfit.Similarly,to estimate thesystematic uncertainty on the efficiency parameters,we perform afit with the coefficients of efficiency allowed tofloat constrained by their covariance matrix.To estimate the event selection uncertainty,we change the∆E and m BC selection criteria in the analysis.These variations to the standardfit are the largest contribution to our experimental systematic errors.In the CP asymmetry search,we take the background fractions and shapes to be the same for the D+and D−samples.To estimate the uncertainty on the supposition,we perform afit with the background determined separately.The systematic error due to our choice of D+→K+K−π+decay model is evaluated as follows.We change the standard values of the radial parameter in the Blatt-Weisskopf form factors[15]for the intermediate resonance decay vertex(1.5GeV−1)and the D+vertex (5GeV−1)both to1GeV−1.Fits with constant width in the Breit-Wigner functions are considered.To compute the uncertainty arising from our choice of resonances included in thefit,we compare the result of our standardfit to a series offits where each of the resonances,K∗0(1430)0and nonresonant amplitude or[6] B.Aubert et al.(B A B A R Collaboration),Phys.Rev.D71,091101(R)(2005).[7]S.Dobbs et al.(CLEO Collaboration),Phys.Rev.D76,112001(2007).[8]Y.Kubota et al.,Nucl.Instrum.Methods Phys.Res.,Sect.A320,66(1992).[9] D.Peterson et al.,Nucl.Instrum.Methods Phys.Res.,Sect.A478,142(2002).[10]M.Artuso et al.,Nucl.Instrum.Methods Phys.Res.,Sect.A554,147(2005).[11]W.-M.Yao et al.(Particle Data Group),Journal of Physics G33,1(2006).[12]T.Skwarnicki,Ph.D thesis,Institute for Nuclear Physics,Krakow,Poland(1986).[13]H.Albrecht et al.(ARGUS Collaboration),Phys.Lett.B229,304(1989).[14]S.Kopp et al.(CLEO Collaboration),Phys.Rev.D63,092001(2001).[15]J.Blatt and V.Weisskopf,Theoretical Nuclear Physics(Wiley,New York,1952).[16]M.Ablikim et al.(BES Collaboration),Phys.Lett.B607,243(2005).[17] A.Abele et al.(Crystal Barrel Collaboration),Phys.Rev.D57,3860(1998).[18]J.A.Oller,Phys.Rev.D71,054030(2005).[19] D.Aston et al.(LASS Collaboration),Nucl.Phys.B296,493(1988).[20] B.Aubert et al.(B A B A R Collaboration),Phys.Rev.D76,011102(R)(2007).[21] D.M.Asner et al.(CLEO Collaboration),Phys.Rev.D70,091101(R)(2004).12。