高二数学3.2一元二次不等式及其解法第二课时
- 格式:ppt
- 大小:2.10 MB
- 文档页数:7
学科:数学教学内容:一元二次不等式的解法(第二课时)【自学导引】1.如果αb <0,则α,b 满足.0000⎩⎨⎧><⎩⎨⎧<>b a b a 或 2.如果ba >0,则α,b 满足⎩⎨⎧<<⎩⎨⎧>>0000b a b a 或.【思考导学】1.一元二次不等式怎样转化为一元一次不等式组?答:先把不等式化为(x -α)(x -b )<0,它的解集是不等式组⎩⎨⎧<-<-⎩⎨⎧<->-000b x a x b x a x 与的解集的并集.2.分式不等式怎样转化为整式不等式来解?答:分式不等式0)()(>g g x f (<0)的解集是f (x )g (x )>0(<0)的解集.【典例剖析】 [例1]解不等式31-+x x <0.解:(1)(方法一)原不等式等价于 (Ⅰ)⎩⎨⎧<->+0301x x 或(Ⅱ)⎩⎨⎧>-<+0301x x由(Ⅰ)得-1<x <3,由(Ⅱ)得x ∈∅综上所述,原不等式的解集是{x |-1<x <3}(方法二)原不等式等价于(x +1)·(x -3)<0即x 2-2x -3<0 解方程x 2-2x -3=0,得x 1=3,x 2=-1∴原不等式的解集是{x |-1<x <3}.点评:把分式不等式转化为不等式组或一元二次不等式来解是解题的两个基本思路[例2]解不等式x 2-(a +1)x +a >0. 解:原不等式整理得(x -a )(x -1)>0∴原不等式可转化为下面两个不等式组来解: (Ⅰ)⎩⎨⎧>->-01x 0a x 或(Ⅱ)⎩⎨⎧<-<-01x 0a x即(Ⅰ)⎩⎨⎧>>1x a x 或(Ⅱ)⎩⎨⎧<<1x ax∴当a >1时,原不等式的解集为{x |x >a 或x <1} 当a <1时,原不等式的解集为{x |x >1或x <a }当a =1时,原不等式的解集为{x |x ∈R 且x ≠1} 点评:当得出(Ⅰ) ⎩⎨⎧>>1x a x (Ⅱ) ⎩⎨⎧<<1x a x 后,由于a 与1的大小不确定,为了使问题能够顺利解下去,应对a 与1的大小关系进行讨论,讨论时,不要忽略“a =1”这种情况.[例3]解不等式xx 211-->1.解法一:原不等式整理得1223--x x <0得原不等式的解集是{x |3221<<x }.解法二:原不等式等价于下面两个不等式组 (Ⅰ)⎩⎨⎧->->-xx x 211021 (Ⅱ)⎩⎨⎧-<-<-xx x 211021不等式组(Ⅰ)的解集是∅ 不等式组(Ⅱ)的解集是{x |21<x <32}.∴原不等式的解集为{x |21<x <32}.点评:关于分式不等式,一般是化为一边为零,另一边进行通分,转化为等价的一元二次不等式或不等式组来解,在明确分母的符号的情况下,也可考虑去分母,转化为整式不等式(组).【随堂训练】1.与不等式(x -2)(x +1)<0的解集相同的是( )A .⎩⎨⎧<+>-0102x xB .⎩⎨⎧>+<-0102x xC .⎩⎨⎧>+<-⎩⎨⎧<+>-01020102x x x x 或 D . ⎩⎨⎧>+<-⎩⎨⎧<+>-01020102x x x x 且 答案: C 2.不等式x1>1的解集为( )A .{x |x <1}B .{0|0<x <1}C .{x |x <1且x ≠0}D .{x |x >1}解析: 原不等式可化为xx -1>0即(x -1)x <0,∴0<x <1.答案: B 3.如果x 满足231--x x <0,那么化简29124x x +--122+-x x 的结果是( )A .2x -1B .1-2xC .3-4xD .4x -3 解析: 由231--x x <0得32<x <1∴原式==---22)1()23(x x |3x -2|-|x -1|=3x -2-(1-x )=4x -3. 答案: D 4.不等式:523322++++x x x x <1的解集为( )A .{x |0<x <2}B .{x |x >2}C .{x |x <2}D .R解析: 原不等式可化为:5222++-x x x <0∵x 2+2x +5=(x +1)2+4>0 ∴x -2<0即x <2.答案: C 5.不等式xx 211-->0的解集是______.解析: 原不等式可化为x x 211--<0∴原不等式解集为{x |21<x <1}答案: {x |21<x <1}6.x1<11-x 的解集是______.解析: 原不等式整理得)1(1-x x >0∴x (x -1)>0,∴x >1或x <0. 答案: {x |x <0或x >1}【强化训练】 1.与不等式xx +-11>0有相同解集的是( )A .x 2-1<0B .x 2-1>0 C .⎩⎨⎧<+<-0101x xD .11+-x x >0答案: A 2.不等式23--x x ≤0的解集为A ,不等式(x 2+1)(x -a )>0的解集为B .若A B ,则a的取值范围是( )A .a <2B .a ≤2C .a >2D .a <3 解析: 由23--x x ≤0得2<x ≤3,∴A ={x |2<x ≤3}由(x 2+1)(x -a )>0得x >a ,∴B ={x |x >a } 若A B ,则a ≤2. 答案: B 3.不等式xx --213≥1的解集是( )A .{x |43≤x <2}B .{x |43≤x ≤2}C .{x |x >2或x ≤43}D .{x |x >2} 解析:xx --213≥1可化为xx --234≥0,即234--x x ≤0,∴43≤x <2.答案: A4.设a <-1,则关于x 的不等式a (x -a )(x -a1)<0的解集是( )A .{x |x <a 或x >a 1}B .{x |x >a }C .{x |x >a 或x <a1}D .{x |x <a 1}解析: 方程a (x -a )(x -a1)=0的解为x 1=a ,x 2=a1 ∵a <-1,∴原不等式等价于(x -a )(x -a1)>0,且a1>a∴原不等式的解集为{x |x >a1或x <a }.答案: A 5.不等式|x x +1|>x x +1的解集是______. 解析: 由|xx +1|>xx +1得xx +1<0.∴原不等式解集为{x |-1<x <0}. 答案: {x |-1<x <0} 6.不等式2)1()12)(43(-+-x x x <0的解集是______.解析: 原不等式等价于⎩⎨⎧≠<+-10)12)(43(x x x ,∴⎪⎩⎪⎨⎧≠<<-13421x x 答案: {x |-21<x <34且x ≠1}7.解不等式85-+x x ≤0.解:原不等式可化为(x +5)(x -8)≤0且x -8≠0∴-5≤x <8,解集为{x |-5≤x <8}. 8.解不等式122||2---x x x <0.解:原不等式可化为⎩⎨⎧<-->-⎩⎨⎧>--<-01202||01202||22x x x x x x 或 由⎩⎨⎧>--<-01202||2x x x 得解集为∅,由⎩⎨⎧<-->-01202||2x x x 得解集为{x |2<x <4或-3<x <-2}∴原不等式的解集为{x |-3<x <-2或2<x <4}. 9.解不等式x1a x -->0.解:原不等式可化为(x -a )(x -1)<0 ∴当a >1时,不等式解集为{x |1<x <a } 当a <1时,不等式解集为{x |a <x <1}当a =1时,不等式变为(x -1)2<0,此时不等式无解. 10.k 为何值时,关于x 的不等式3642222++++x x k kx x <1的解集是一切实数.解:∵分母4x 2+6x +3的Δ<0∴4x 2+6x +3>0对任意实数x 恒成立∴原不等式可化为2x 2+2kx +k <4x 2+6x +3 即2x 2+(6-2k )x +3-k >0恒成立解得⎩⎨⎧<-⨯--=∆>0)3(42)26(022k k 即1<k <3故当1<k <3时,关于x 的不等式3642222++++x x k kx x <1的解集是R .【学后反思】分式不等式的解法主要依据以下等价变形来求解: 设A 、B 表示关于x 的整式代数式则有: (1)BA >0⇔AB >0⇔(Ⅰ)⎩⎨⎧>>00B A 或(Ⅱ)⎩⎨⎧<<00B A(2)BA <0⇔AB <0⇔(Ⅰ) ⎩⎨⎧<>00B A 或(Ⅱ) ⎩⎨⎧><00B A(3)B A ≥0⇔⎩⎨⎧≠≥00B AB(4) BA ≤0⇔⎩⎨⎧≠≤00B AB。
课题:3.2一元二次不等式及其解法(2)
【学习目标】
1.知识与技能:理解一元二次不等式解法与二次函数的关系本质,继续探究一元二次不等式解法的步骤和过程。
2.过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;
3.情感、态度与价值观:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想
【学习重点】熟练掌握一元二次不等式的解法
【学习难点】理解一元二次不等式与一元二次方程、二次函数的关系
【授课类型】新授课
课后反思:
高二数学教·学案
【学习目标】
通过进一步探究一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系,研究含有参数的一元二次不等式的解法,提高分析问题和解决问题的能力。
【学习重点】
含参数的一元二次不等式的解法
【学习难点】
含参数的一元二次不等式的解法
【授课类型】新授课
【学习方法】讲练结合法。
第2课时 含参数一元二次不等式的解法A 级 基础巩固一、选择题1.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解是( B ) A .x >5a 或x <-a B .x >-a 或x <5a C .5a <x <-aD .-a <x <5a[解析] 化为:(x +a )(x -5a )>0,相应方程的两根x 1=-a ,x 2=5a ,∵a <0,∴x 1>x 2.∴不等式解为x <5a 或x >-a . 2.不等式(x -2)2(x -3)x +1<0的解集为( A )A .{x |-1<x <2或2<x <3}B .{x |1<x <3}C .{x |2<x <3}D .{x |-1<x <3}[解析] 原不等式等价于⎩⎪⎨⎪⎧(x -3)(x +1)<0x +1≠0(x -2)2≠0,解得-1<x <3,且x ≠2,故选A .3.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( A ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4D .a <-4或a >4[解析] 因不等式x 2+ax +4<0的解集为空集,则Δ=a 2-16≤0,∴-4≤a ≤4. 4.函数y =-x 2-3x +4x的定义域为( D )A .[-4,1]B .[-4,0)C .(0,1]D .[-4,0)∪(0,1][解析] 要使函数有意义,则需⎩⎪⎨⎪⎧-x 2-3x +4≥0x ≠0,解得-4≤x ≤1且x ≠0,故定义域为[-4,0)∪(0,1].5.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( A ) A .m <-2或m >2B .-2<m <2C .m ≠±2D .1<m <3[解析] ∵f (x )=-x 2+mx -1有正值, ∴Δ=m 2-4>0,∴m <-2或m >2.6.下列选项中,使不等式x <1x<x 2成立的x 的取值范围是( A )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)[解析] 本题考查了分式不等式解法等.由1x >x 知1x -x >0,1-x 2x>0即x (1-x 2)>0,所以x <-1或0<x <1;由1x <x 2知1x -x 2<0,1-x 3x<0,即x (1-x 3)<0,所以x <0或x >1,所以不等式x <1x<x 2的解为x <-1,选A .本题可也用特殊值代入法进行排除.二、填空题7.不等式x 2+mx +m2>0恒成立的条件是__0<m <2__.[解析] x 2+mx +m2>0恒成立,等价于Δ<0,即m 2-4×m2<0,解得0<m <2.8.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是__0≤a ≤4__. [解析] ①若a =0,则1<0不成立,此时解集为空.②若a ≠0,则⎩⎪⎨⎪⎧Δ=a 2-4a ≤0a >0,∴0<a ≤4.综上知0≤a ≤4. 三、解答题 9.解下列不等式: (1)2x -13x +1>0; (2)axx +1<0.[解析] (1)原不等式等价于(2x -1)(3x +1)>0, ∴x <-13或x >12.故原不等式的解集为{x |x <-13或x >12}.(2)axx +1<0⇔ax (x +1)<0.当a >0时,ax (x +1)<0⇔x (x +1)<0⇔-1<x <0, ∴解集为{x |-1<x <0};当a =0时,原不等式的解集为∅;当a <0时,ax (x +1)<0⇔x (x +1)>0⇔x <-1或x >0, ∴解集为{x |x <-1,或x >0}.综上可知,当a >0时,原不等式的解集为{x |-1<x <0};当a =0时,原不等式的解集为∅;当a <0时,原不等式的解集为{x |x <-1或x >0}.10.当a 为何值时,不等式(a 2-1)x 2+(a -1)x -1<0的解集是R? [解析] 由a 2-1=0,得a =±1. 当a =1时,原不等式化为-1<0恒成立, ∴当a =1时,满足题意.当a =-1时,原不等式化为-2x -1<0,∴x >-12,∴当a =-1时,不满足题意,故a ≠-1.当a ≠±1时,由题意,得⎩⎪⎨⎪⎧a 2-1<0Δ=(a -1)2+4(a 2-1)<0,解得-35<a <1.综上可知,实数a 的取值范围是-35<a ≤1.B 级 素养提升一、选择题1.已知关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则有( A ) A .m ≤-3 B .m ≥-3 C .-3≤m <0D .m ≥-4[解析] 令f (x )=x 2-4x =(x -2)2-4,因为f (x )在(0,1]上为减函数,所以当x =1时,f (x )取最小值-3,所以m ≤-3.2.如果不等式2x 2+2mx +m4x 2+6x +3<1对一切实数x 均成立,则实数m 的取值范围是( A )A .(1,3)B .(-∞,3)C .(-∞,1)∪(2,+∞)D .(-∞,+∞)[解析] 由4x 2+6x +3=(2x +32)2+34>0对一切x ∈R 恒成立,从而原不等式等价于2x 2+2mx +m <4x 2+6x +3(x ∈R )⇔2x 2+(6-2m )x +(3-m )>0对一切实数x 恒成立⇔Δ=(6-2m )2-8(3-m )=4(m -1)(m -3)<0,解得1<m <3.3.已知关于x 的不等式组⎩⎪⎨⎪⎧x 2-x -2>0,2x 2+(2k +5)x +5k <0的整数解只有-2,则实数k 的取值范围是( A )A .[-3,2)B .(-∞,2)C .(-3,2]D .(-∞,2][解析] 由x 2-x -2>0得x <-1或x >2,由2x 2+(2k +5)x +5k <0得(2x +5)(x +k )<0,依题意,结合数轴得-2<-k ≤3,即-3≤k <2.故选A .4.已知不等式:(1)x 2-4x +3<0;(2)x 2-6x +8<0;(3)2x 2-9x +m <0.若同时满足(1)(2)的x 的值也满足(3),则实数m 的取值范围是( C )A .{m |m >9}B .{m |m =9}C .{m |m ≤9}D .{m |0<m <9}[解析] 解不等式(1)得1<x <3.解不等式(2)得2<x <4,所以同时满足不等式(1)(2)的x 的取值范围是{x |2<x <3}.依题意,当2<x <3时2x 2-9x +m <0恒成立,即m <-2x 2+9x 恒成立,而当x ∈(2,3)时,-2x 2+9x ∈(9,818].故当m ≤9时,m <-2x 2+9x 恒成立.故选C .二、填空题5.若关于x 的方程8x 2-(m -1)x +m -7=0的两根均大于1,则m 的取值范围是__{m |m ≥25}__.[解析] 令f (x )=8x 2-(m -1)x +m -7. ∵方程8x 2-(m -1)x +m -7=0的两根均大于1,∴由二次函数图象得⎩⎪⎨⎪⎧Δ=(m -1)2-32(m -7)≥0,m -116>1,f (1)>0,解得⎩⎪⎨⎪⎧m ≥25或m ≤9,m >17,m ∈R ,∴m 的取值范围是{m |m ≥25}.6.已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +4),则实数c 的值为__4__.[解析] 因为函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),所以Δ=a 2-4b =0,又f (x )<c 的解集为(m ,m +4),即m ,m +4是方程x 2+ax +a 24-c=0的两根,所以⎩⎪⎨⎪⎧m +m +4=-a ,m (m +4)=a 24-c ,将a =-2m -4代入m (m +4)=a 24-c ,整理得c =4.三、解答题7.(2019·山东寿光现代中学高二月考)解关于x 的不等式x 2-(a +a 2)x +a 3>0. [解析] 原不等式可化为(x -a )(x -a 2)>0.则方程x 2-(a +a 2)x +a 3=0的两根为x 1=a ,x 2=a 2, 由a 2-a =a (a -1)可知, (1)当a <0或a >1时,a 2>a . ∴原不等式的解为x >a 2或x <a . (2)当0<a <1时,a 2<a , ∴原不等的解为x >a 或x <a 2.(3)当a =0时,原不等式为x 2>0,∴x ≠0. (4)当a =1时,原不等式为(x -1)2>0,∴x ≠1. 综上可知:当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =0时,原不等式的解集为{x |x ≠0}; 当a =1时,原不等式的解集为{x |x ≠1}.8.某省每年损失耕地20万亩,每亩耕地价值24 000元,为了减小耕地损失,决定按耕地价格的t %征收耕地占用税,这样每年的耕地损失可减少52t 万亩,为了既减少耕地的损失又保证此项税收一年不少于9 000万元,t %应在什么范围内变动?[解析] 由题意可列不等式如下:(20-52t )·24 000·t %≥9 000,整理得t 2-8t +15≤0,解得,3≤t ≤5.所以t %应控制在3%到5%范围内.。
人教A版高中数学必修5《一元二次不等式及其解法》(第一课时)3.2一元二次不等式及其解法(一)教材:人教版《普通高中课程标准实验教科书·数学(A版)》必修5课题:3.2 一元二次不等式及其解法(一)一、教学目标知识目标:正确理解一元二次方程、二次函数与一元二次不等式的关系,掌握一元二次不等式的解法;能力目标:通过看图象找解集,培养学生“从形到数”的转化能力和从“特殊到一般”的归纳能力;德育目标:学习“三个二次”的关系,体会事物之间普遍联系的辩证思想;情感目标:创设问题情境,培养学生的探索精神和合作意识。
二、教学重点、难点1.教学重点:一元二次不等式的解法2.教学难点:理解一元二次方程、二次函数与一元二次不等式的关系三、教学过程设计1.一元二次不等式概念的引入(1)创设情境,引入概念播放2014“新闻联播最萌结尾”,为学生创设如下问题情境:春天来了,熊猫饲养员计划在靠墙的位置为它们圈建一个矩形的室外活动室。
现有可以做出20m栅栏的材料,要求使得活动室的面积不小于42m2,你能确定与墙平行的栅栏的长度范围吗?分析可得如下数学模型:设与墙平行的栅栏长度为x(0<x<20)则依题意得:整理得:x2师生活动:针对问题情境,在教师的引导下,展开课堂讨论,分析得出以上数学模型。
设计意图:舍弃课本上枯燥的收费问题,换用一个鲜活的实例吸引学生的注意力,激发学习兴趣,以便顺利导入新课。
(2)观察归纳,形成概念观察式子:x2-20x+84≤0抢答竞赛:(1)该式子是等式还是不等式?(2)该式中含有几个未知数?(3)未知数的最高次数是几次?通过抢答竞赛,你能归纳出一元二次不等式的定义吗?定义:我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。
其一般形式为:ax2+bx+c>0 (a≠0)ax2+bx+c<0 (a≠0)ax2+bx+c≥0 (a≠0)ax2+bx+c≤0 (a≠0)师生活动:让学生观察所得式子,抢答以上三个问题。