糖基转移酶和糖苷酶
- 格式:ppt
- 大小:4.15 MB
- 文档页数:110
糖及糖组学考试复习题及答案解析1、糖⽣物学:通过运⽤分析化学、合成有机化学、⽣物化学与分⼦⽣物学、遗传学和细胞⽣物学等多学科⼿段研究糖及其衍⽣物的结构、合成代谢、⽣物学功能,以及与疾病的关系的⼀门交叉科学,包括糖化学、糖链合成、糖链在⽣物系统中功能及糖链操作技术等。
2、糖组学:是从分析和破解⼀个⽣物或⼀个细胞全部糖链所含信息这⼀⾓度⼊⼿,研究糖链的分⼦结构、表达调控、功能多样性以及疾病的关系的科学。
3、糖缀合物:⼜叫糖偶联复合物,糖与蛋⽩或脂类形成的共价结合物,如糖蛋⽩、糖脂、糖胺聚糖、蛋⽩聚糖及⼩分⼦糖苷。
4、糖基化反应:核苷糖供体和受体(如单糖、寡糖、蛋⽩质、脂和DNA)在特定的糖基转移酶的催化下⽣成糖基化受体同时释放出核苷酸的过程。
5、糖基转移酶:负责催化糖苷键的合成,是膜结合蛋⽩,有跨膜区,茎区和催化域组成。
糖基转移酶对受体结构有⾼度的特异性,并且酶的底物专⼀性相互重叠。
糖基转移酶的表达是基本⽔平组成型表达,还有发育阶段依赖及组织专⼀性,有105家族。
6、核苷糖转运⼦:在真核细胞中,能够将在细胞质中合成的核苷糖转运到亚细胞器(如内质⽹/⾼尔基体)的腔内,并从亚细胞器中送出核苷⼆磷酸转化⽣成的核苷⼀磷酸的蛋⽩载体,位于膜上。
7、N-糖链:糖链连接到蛋⽩质的天冬酰胺上,核⼼结构是Asn-GlcNAc2Man3,糖链较长,结构较复杂。
8、O-糖链:糖链连接到蛋⽩质的丝氨酸或苏氨酸上,糖链短,结构简单。
9、糖苷酶:是⼀类催化糖苷键⽔解的酶。
在酸性条件下,能催化由半缩醛羟基与醇羟基反应形成的糖苷键的断裂,有内切糖苷酶和外切糖苷酶。
根据结构差异分为135个家族(GH1-GH135)。
10、凝集素:⼀类⾮免疫来源的糖结合蛋⽩,没有酶活性,蛋⽩上有糖识别域,特异识别糖链末端特定的糖结构,能引起细胞凝集。
11、植物疫苗:病原体侵染植物,细胞表⾯半纤维素类多糖降解为寡糖,寡糖作为信号分⼦诱导植物基因表达,使植物表现出多种防卫功能,这些寡糖类物质具有类似疫苗的功能,植物疫苗有壳寡糖和⼏丁寡糖、葡寡糖、寡聚半乳糖醛酸。
糖基转移酶与糖基转移酶抑制剂摘要:糖基转移酶在生物体内催化活化的糖连接到不同的受体分子,如蛋白、核酸、寡糖、脂和小分子上,糖基化的产物具有很多生物学功能。
其是糖蛋白、糖脂中糖链生物合成的关键酶之一。
与此同时,对糖基化抑制剂的研究也是必要的。
两者在治疗一些因为糖基转移酶非正常表达引起的疾病有很大作用。
关键词:糖基转移酶;糖基化;糖基化抑制剂前言:糖基转移酶是广泛存在于内质网和高尔基体内的一大类酶,参与体内重要生物活性物质如糖蛋白和糖脂中糖链的合成,其作用是把相应的活性供体(通常是二磷酸核苷NDP-糖)的单糖部分转移至糖、蛋白质、脂类和核酸等,完成后者的糖基化加工,实现其生物学功能。
因此糖基转移酶的表达和活性的变化与许多疾病联系在一起,并可作为某些疾病的诊断标志,如α-1,3-半乳糖基转移酶活性在体内的再现会引发自身免疫反应,导致类风湿,并在器官异体移植中引起排斥反应;N-乙酰氨基葡萄糖基转移酶、岩藻糖基转移酶等在成熟细胞中活性的明显升高被视为肿瘤发生的重要标志,并且被认为是肿瘤迁移恶化的重要原因。
因此设计合成糖基转移酶抑制剂,对于寻找抗肿瘤、抗免疫系统等新药研究有重要意义。
1 糖基转移酶的存在糖蛋白是通过蛋白质的糖基化组装实现的,而糖基化过程则通过多种糖基转移酶完成——在肽链合成的同时或合成后,在糖基转移酶的催化下,糖链被连接到肽链的特定糖基化位点上。
糖基转移酶具有高度的底物专一性,即同时对糖基的供体和受体具有专一性。
对糖基转移酶进行研究,是糖基化研究的第1步。
目前已对多种糖基转移酶的结构以及编码它们的基因研究清楚,并认为糖链的合成没有特定的模板,而是通过糖基转移酶将糖基由其供体转移到受体上。
糖链可以认为是基因的次级产物,一个基因编码一个糖基转移酶,一个糖基转移酶专一地催化一个糖苷键的合成;这样一条糖链的合成就需要一个多酶系统,也就对应了一个基因组。
下文简要介绍几类重要的糖基转移酶。
1.1 N-乙酰氨基葡萄糖转移酶(N-acetylglucosa-minyl-transferase,Gnt)糖蛋白中糖链通过还原端的N-乙酰氨基葡萄糖以β-1,4糖苷键与蛋白质肽链上Asn-XXX-Ser/Thr序列(XXX为除脯氨酸以外的氨基酸)中Asn残基上的氨基(-NH2)相连,被称为N-糖链。
糖生物学基础举出5个糖复合物例子,说明其合成途径及重要生物功能。
现以N-连接糖蛋白中免疫球蛋白G、卵清蛋白;0-连接糖蛋白中黏蛋白、运铁蛋白;蛋白聚糖中肝素共5种糖复合物为例。
一.N-连接糖蛋白定义:糖蛋白的糖链与蛋白部分的Asn-X-Ser序列的Asn氮以共价键连接称N-连接糖蛋白。
连接点的结构:GlcNAcβ-N-Asn糖基化位点:N-连接聚糖中Asn-X-Ser/Thr三个氨基酸残基序列子(其中X 是除脯氨酸外的任一氨基酸)称为糖基化位点。
结构:(三型)结构特点:A.每种类型都具有一个五糖核心B.它们具有不同的分支,这些寡糖链分支常常被称为天线C.血液循环中和膜上的糖蛋白常常是N-糖苷连接N-连接寡糖的合成:N-连接寡糖是在内质网上以长萜醇(dolichol)作为糖链载体,先合成含14糖基的寡糖链,然后转移至肽链的糖基化位点上,进一步在内质网和高尔基体进行加工而成。
每一步加工都由特异的糖基转移酶或糖苷酶催化完成,糖基必须活化为UDP或UDP的衍生物。
免疫球蛋白G属N-连接糖蛋白。
生物功能如下:I g分子具有结合抗原和刺激抗体生成的双重功能。
首先,它能与抗原结合,产生多种生物效应,包括:①与病原微生物或它分泌的毒素结合,产生抗感染免疫;②活化体液的一类正常组分,即补体分子,起到杀伤病原体或靶细胞的作用;③加强吞噬细胞等免疫细胞的吞噬或杀伤效应;④与组织中的肥大细胞或嗜碱性粒细胞结合,产生过敏反应;⑤封闭移植的脏器,增强对它的保护,减缓排斥;⑥封闭肿瘤细胞,降低免疫保护。
免疫球蛋白还能穿过胎盘输送给胎儿。
此外,由于Ig分子由糖蛋白组成,所以除了上述抗体活性,还有抗原性,可活化自身免疫细胞,使之产生针对抗体的抗体──抗独特型抗体(Id抗体),从而形成自身调节的功能。
各类免疫球蛋白的特性五类Ig在理化及生物学特性上各有不同。
IgG。
IgG是生物体液内主要的Ig,约占血液中Ig总量的70~75%。
由于IgG能通过胎盘,所以新生儿从母体获得的IgG 在抵抗感染方面起重要作用。
糖代谢知识要点(一)糖酵解途径:糖酵解途径中,葡萄糖在一系列酶得催化下,经10 步反应降解为2 分子丙酮酸,同时产生2 分子NADH+H+与2 分子ATP。
主要步骤为:(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛与磷酸二羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H 及磷酸变成丙酮酸,脱去得2H 被NAD+所接受,形成NADH+H+。
(二)丙酮酸得去路:(1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1 分子NADH+H+。
乙酰辅酶A 进入三羧酸循环,最后氧化为CO2 与H2O。
(2)在厌氧条件下,可生成乳酸与乙醇。
同时NAD+得到再生,使酵解过程持续进行。
(三)三羧酸循环:在线粒体基质中,丙酮酸氧化脱羧生成得乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。
柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧与脱羧生成琥珀酰CoA;琥珀酰CoA 发生底物水平磷酸化产生1 分子GTP 与琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始得草酰乙酸。
三羧酸循环每循环一次放出2 分子CO2,产生3 分子NADH+H+,与一分子FADH2。
(四)磷酸戊糖途径:在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段与非氧化阶段被氧化分解为CO2,同时产生NADPH + H+。
其主要过程就是G6P 脱氧生成6磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖5磷酸。
6 分子核酮糖5磷酸经转酮反应与转醛反应生成5 分子6磷酸葡萄糖。
中间产物甘油醛3磷酸,果糖6磷酸与糖酵解相衔接;核糖5磷酸就是合成核酸得原料,4磷酸赤藓糖参与芳香族氨基酸得合成;NADPH+H+提供各种合成代谢所需要得还原力。
(五)糖异生作用:非糖物质如丙酮酸,草酰乙酸与乳酸等在一系列酶得作用下合成糖得过程,称为糖异生作用。
糖异生作用不就是糖酵解得逆反应,因为要克服糖酵解得三个不可逆反应,且反应过程就是在线粒体与细胞液中进行得。
糖基转移酶名词解释概述及解释说明1. 引言1.1 概述糖基转移酶是一类重要的生物催化剂,它在细胞中起着关键的调控和介导作用。
糖基转移酶能够将一种糖基从一个底物分子上转移到另一个底物分子上,从而改变底物分子的化学性质和功能。
这些底物可以是蛋白质、核酸或其他小分子,糖基转移酶对于细胞内的信号传导、代谢调节以及糖类结构修饰等方面都具有重要作用。
1.2 文章结构本文将围绕糖基转移酶展开详细的解释和说明。
首先,在引言部分我们将对糖基转移酶进行概述,包括定义与原理、功能与作用以及分类与种类等方面的内容。
然后,我们将关注糖基转移酶在生物学意义、医学应用以及工业应用中的重要性。
接下来,我们将介绍研究糖基转移酶所采用的常见方法和技术,并给出一些实例和案例分析。
最后,在结论部分,我们将总结糖基转移酶的重要性和应用价值,并对未来研究提出展望与建议。
1.3 目的本文的目的在于对糖基转移酶进行全面而深入的解释和说明,帮助读者理解糖基转移酶的定义、原理、功能等方面的知识。
同时,通过介绍糖基转移酶在生物学、医学和工业领域中的重要性和应用,以及相关的研究方法和技术,希望进一步引发读者对该领域的兴趣,并为未来研究提供参考和指导。
2. 糖基转移酶概述:2.1 定义与原理:糖基转移酶是一类存在于生物体内的酶,其主要功能是将糖基从一个化合物转移到另一个化合物上。
该过程涉及到底物分子上的糖基团与活性位点上的特定氨基酸残基之间的相互作用。
这样的转移反应可以改变底物分子的特性和功能。
2.2 功能与作用:糖基转移酶在细胞中扮演着关键角色。
它们参与了多种生物学过程,包括代谢调节、细胞信号传导、蛋白质修饰等。
糖基转移酶还参与了糖复合物、磷脂等重要生物分子的合成和修饰,从而影响其稳定性和活性。
此外,糖基转移酶还能够催化毒素代谢和药物代谢过程。
2.3 分类与种类:根据其底物和产物类型的不同,糖基转移酶可被分为多个家族。
常见的糖基转移酶家族包括葡萄糖苷转移酶(GLUT)家族、糖基转移酶1(GT-1)家族和核糖基转移酶(RMT)家族等。
1.2蛋白质糖基化类型与特点蛋白质的糖基化是一种最常见的蛋白翻译后修饰,是在糖基转移酶作用下将糖类转移至蛋白质,和蛋白质上特殊的氨基酸残基形成糖苷键的过程。
研究表明,70%人类蛋白包含一个或多个糖链,1%的人类基因组参与了糖链的合成和修饰。
哺乳动物中蛋白质的糖基化类型可分为三种:N-糖基化、0-糖基化和GPI糖基磷脂酰肌醇锚。
大多数糖蛋白质只含有一种糖基化类型,但是有些蛋白多肽同时连有N-糖链、O-糖链或糖氨聚糖。
(l) N-糖基化:糖链通过与蛋白质的天冬氨酸的自由NH基共价连接,将这种2糖基化称为N-糖基化。
N-连接的糖链合成起始于内质网(ER),完成于高尔基体。
N-糖链合成的第一步是将一个14糖的核心寡聚糖添加到新形成多肽链的特征序列为Asn-X-Ser/Thr(X代表任何一种氨基酸)的天冬酰胺上,天冬酰胺作为糖链受体。
核心寡聚糖是由两分子N-乙酰葡萄糖胺、九分子甘露糖和三分子葡萄糖依次组成,第一位N-乙酰葡萄糖胺与ER双脂层膜上的磷酸多萜醇的磷酸基结合,当ER膜上有新多肽合成时,整个糖链一起转移。
寡聚糖转移到新生肽以后,在ER 中进一步加工,依次切除三分子葡萄糖和一分子甘露糖。
在ER形成的糖蛋白具有相似的糖链,由Cis面进入高尔基体后,在各膜囊之间的转运过程中,原来糖链上的大部分甘露糖被切除,但又由多种糖基转移酶依次加上了不同类型的糖分子,形成了结构各异的寡糖链。
血浆等体液中蛋白质多发生N-糖基化,因此N-糖蛋白又称为血浆型糖蛋白。
(2) O-糖基化:糖链与蛋白质的丝氨酸或苏氨酸的自由OH基共价连接。
0-糖基化位点没有保守序列,糖链也没有固定的核心结构,组成既可是一个单糖,也可以是巨大的磺酸化多糖,因此与糖基化相比,0-糖基化分析会更加复杂。
0-连接的糖基化在高尔基体中进行,通常第一个连接上去的糖单元是N-乙酰半乳糖,连接的部位为Ser、Thr或Hyp的羟基,然后逐次将糖残基转移上去形成寡糖链,糖的供体同样为核苷糖,如UDP-半乳糖。
dna糖苷酶名词解释
DNA糖苷酶是一种酶类,它的主要功能是在DNA分子结构中去除糖苷基团。
以下是DNA糖苷酶相关的名词解释:
1. 糖苷酶
糖苷酶是一类酶,它在生物体内起到去除糖苷基团的作用,从而影响到糖苷基团与其他分子之间的反应。
DNA糖苷酶就属于其中一类。
2. DNA
DNA是指脱氧核糖核酸,它是存在于生物体内的大分子复合物,包含有遗传信息,这些信息通过基因表达表现出来。
DNA由脱氧核糖和磷酸分子构成,其中主要的结构单元是核苷酸。
3. 糖苷基团
糖苷基团是DNA中重要的结构单元之一,它由一种五元糖和一种杂环氧嘧啶基组成。
通过这种结构,DNA可以保持分子构成的稳定性,同时也能让DNA的序列信息被保留下来。
4. 核苷酸
核苷酸是构成DNA和RNA分子结构的基本单元,它由糖类、磷酸和氮碱基三部分组成。
DNA的核苷酸由脱氧核糖、磷酸和氮碱基三部分构成,其中氮碱基又可以分为腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶四种。
5. 碱基切除修复
碱基切除修复是DNA修复机制的一种方式,主要作用是去除DNA 链上受损的碱基,替换为正确的碱基,从而保证DNA序列的准确性和稳定性。
DNA糖苷酶在这个过程中扮演着重要的角色,它通过去除受损的糖苷基团,使得相邻的碱基容易受到检测和修复。
综上所述,DNA糖苷酶是一类重要的酶类,它通过去除DNA分子中的糖苷基团,维持DNA结构及信息的稳定性。
我们可以通过了解相关的名词及术语,更深入的理解DNA糖苷酶在生物体内的作用及其治疗应用的可能性。
糖基转移酶的研究概述邓传怀(河北大学生命科学学院2012生物技术中国保定071000)摘要糖基转移酶在生物体内催化活化的糖连接到不同的受体分子,如蛋白、核酸、寡糖、脂上,糖基化的产物具有很多生物学功能并具有高度的底物专一性。
本文综述了糖基转移酶的种类、功能、特性及其在组合生物合成中的应用与研究前景。
关键词糖基转移酶结构功能应用Outline about research ofglycosyltransferasesDeng Chuanhuai( College of Life Sciences , Biotechnology 2012, Hebei University ,Baoding )Abstract Glycosyltransferase catalyzing the biosynthesis of the sugar attached to different activated receptor molecules, such as proteins, nucleic acids, oligosaccharides, the lipid glycosylation product has many biological functions with a high degree of substrate specificity[1]. In glycosylation project, carried out by enzymatic protein glycosylation and important means of natural glycosylated glycoproteins to study the structure and function of glycoproteins[2].This article provides anoverview of the categories, functions, characteristics of Gtfs, their app lications in combinatorial biosynthesis, and the p rospects for research.Key Words Glycosyltransferase Structure and Function Application糖基转移酶是广泛存在于内质网和高尔基体内的一大类酶类[3],参与体内重要的活性物质如糖蛋白和糖脂中糖链的合成。
寡糖基转移酶寡糖基转移酶(GTase)是一种有机催化酶,全称为糖基转移酶(Glycosyltransferase)。
其主要作用是在生物体内或体外催化糖分子间的转移,从而形成多糖或寡糖,如蛋白质糖基化。
在酵母菌、细菌和哺乳动物中,寡糖基转移酶有着非常广泛的应用,对于微生物代谢、细菌感染和免疫反应具有重要意义。
在哺乳动物中,寡糖基转移酶广泛存在于细胞膜上,特别是在其内质网和高尔基体之间的转移过程中起着重要作用。
它们可以催化果糖、半乳糖、半乳果糖、核糖和核苷糖等小分子糖基之间的转移。
其中,蛋白质糖基化是寡糖基转移酶应用最为广泛的应用领域之一。
蛋白质糖基化主要包括N-糖基化和O-糖基化两种形式。
这些反应通常在内质网上发生,涉及多个寡糖基转移酶以及一系列糖苷酶和糖蛋白酶等酶参与。
其中,N-糖基化主要由N-乙酰葡萄糖胺基转移酶(GnT).α-辅酶A转移酶(Cosmc)和α-或β-1,6-分支转移酶等催化,而O-糖基化则由葡聚糖岀现缺陷1(Dol-P-Man缺陷1,DDOST)酶和20多个不同的糖酸转移酶催化。
除了其在糖基化上的应用外,在合成蛋白质药物方面,寡糖基转移酶也具有重要的应用价值。
蛋白质药物在合成过程中常常需要进行后修饰,包括糖基化、磷酸化、乙酰化和甲基化等。
其中糖基化是最重要的后修饰之一,糖基化对蛋白质的稳定性、活性、药物吸收和分布性都有着重要的影响。
寡糖基转移酶能够催化不同糖分子的转移反应,并且还有很强的底物特异性。
因此,可以通过选择特定的寡糖基转移酶,来实现对药物糖基化的定制化控制。
由于不同的糖基化结构会对药物的稳定性、药效、毒性和免疫原性产生重要影响,因此这种糖基化控制技术可以有效提高药物的治疗效果和安全性。
总之,寡糖基转移酶在生物化学中具有许多重要应用,包括糖基化、药物合成等方面。
对于今后的生物技术研究和药物合成的优化发展,寡糖基转移酶的研究及应用仍有很大的发展空间。
蛋白质糖基化工程赵洪亮 刘志敏3(军事医学科学院生物工程研究所 北京 100071)摘要 糖基化是蛋白质的一种重要的翻译后修饰,对蛋白质的结构和功能有重要影响。
蛋白质糖基化工程是通过对蛋白质表面的糖链进行改造,从而改良蛋白质性质的一种技术。
综述了蛋白质糖基化工程的原理、方法和应用。
关键词 蛋白质糖基化 糖基化工程 蛋白质改造收稿日期:20032062123通讯作者,电话:010*********1 蛋白质的糖基化及其作用糖基化是蛋白质的一种重要的翻译后修饰[1]。
根据糖链和肽链的连接方式的不同,蛋白质的糖基化可分为N 2糖基化和O 2糖基化。
N 2糖基化是通过糖链的还原端的N 2乙酰氨基葡萄糖(G lc 2NAc )和肽链中某些Asn 侧链酰氨基上的氮原子相连。
能接有糖链的Asn 必须处于Asn 2X 2Ser ΠThr 3残基构成的基序(m otif )中,其中X 可为除Pro 的任意的氨基酸残基。
O 2糖基化的结构比N 2糖基化简单,一般糖链较短,但是种类比N 2糖基化多得多。
肽链中可以糖基化的主要是Ser 和Thr ,此外还有酪氨酸、羟赖氨酸和羟脯氨酸,连接的位点是这些残基侧链上的羟基氧原子。
蛋白质分子表面的糖链可对蛋白质分子的结构产生深远的影响,其主要的功能有:111 糖基化影响蛋白质分子的生物活性对于某些蛋白质分子如人绒毛膜促性腺激素(hCG )而言,糖基化是其发挥生物学活性必需的。
同时研究表明,改变蛋白质的糖基化还可以使蛋白分子产生新的生物学活性[2]。
112 糖基化增加蛋白质的稳定性糖基化可增加蛋白质对于各种变性条件(如变性剂、热等)的稳定性[3],防止蛋白质的相互聚集[4]。
同时,蛋白质表面的糖链还可覆盖蛋白质分子中的某些蛋白酶降解位点,从而增加蛋白质对于蛋白酶的抗性[5]。
113 糖基化与蛋白质的免疫原性一方面,蛋白质表面的糖链可诱发特定的免疫反应,另一方面,糖链又可遮盖蛋白质表面的某些表位从而降低其免疫原性。
期末考核课程:Glycobiology植物糖基转移酶研究进展:***学号:***班级:***时间:****植物糖基转移酶研究进展摘要:糖基转移酶一类是能够催化糖基从激活的供体转移到特定的受体分子上的一类酶,在生物体中普遍存在并形成了超基因家族。
糖基转移酶广泛参与植物生命活动的各种生物学过程。
本文综述了近年来的研究报道,综述了糖基转移酶的分类、别离鉴定方法及在生物学功能方面的研究进展,期望为相关研究工作提供参考。
关键词:植物糖基转移酶,分类,别离鉴定,生物学功能糖基转移酶〔Glycosyltransferases,GT,〕是一类催化糖基转移的酶,通过产生糖苷键将供体糖分子或相关基团转移至特异的受体上。
糖基转移酶几乎存在于所有的生物体中,其所催化的糖基化反应是最重要的生物学反应之一,直接参与二糖、单糖苷、聚糖苷等的生物合成。
糖基供体分子包括双糖、多糖、1-磷酸糖、尿苷二磷酸葡萄糖醛酸,植物中最常见的供体为UDP-Glc。
受体可以是糖类、脂类、蛋白质、抗生素和核酸。
糖基转移酶催化供体-受体形成α、β两种糖苷键,产物为多糖、糖蛋白、糖脂以及糖苷化合物等。
全基因组测序发现真核生物中约1%的基因编码糖基转酶。
1糖基转移酶的分类目前,对糖基转移酶的分类主要根据Campbell等提出的GT Family 分类系统〔数据收录在CAZy数据库中〕。
糖基转移酶作为高度分歧的多源基因家族,根据蛋白氨基酸序列的一致性、催化特性以及保守序列对其进行分类。
因此,一特定的糖基转移酶既可以通过生物化学的方法鉴定其底物,也可以通过生物信息学方法研究其与已知酶基因或酶蛋白氨基酸序列的同源性对其进行分类。
目前,依据这种分类方法,糖基转移酶被分为94个家族。
根据其的折叠方式可将绝大多数酶分为两个超家族,GT-A超家族和GT-B超家族〔图1〕。
根据催化反应机制、产物的立体化学异构性,在这两个超家族中糖基转移酶又分为反向型和保留型两大类〔图2〕。