钢的化学热处理(20200924094717)
- 格式:pdf
- 大小:26.12 MB
- 文档页数:156
钢的化学热处理名词解释1.引言1.1 概述概述部分的内容可如下所示:热处理是一种通过加热和冷却的工艺,用于改善金属材料的特性和性能。
尤其在钢材的制造和加工过程中,热处理是至关重要的一步。
通过对钢材进行化学热处理,可以使其具有更高的强度、更好的耐腐蚀性、更优异的机械性能等一系列优点。
钢的化学热处理是指通过控制钢材的加热和冷却过程,改变其组织结构和性能。
在热处理过程中,钢材经历了加热、保温和冷却三个阶段。
加热阶段将钢材加热至一定温度,使其达到适宜的热处理温度。
保温阶段是使钢材在一定温度下保持一定时间,使其组织结构发生变化。
冷却阶段是将钢材迅速冷却,以固定其新形成的组织。
通过钢的化学热处理,可以实现钢材硬化、退火、淬火等不同的组织和性能调整。
例如,通过调整钢材的加热温度、保温时间和冷却速度,可以使钢材具有更高的强度和硬度,适用于制造高强度的机械零件和工具。
反之,如果需要提高钢材的韧性和可加工性,可以进行退火处理。
此外,钢的化学热处理还可以改善钢材的耐腐蚀性能,延长其使用寿命。
钢的化学热处理在工业领域具有广泛的应用。
它被广泛应用于汽车制造、航空航天、船舶制造、机械制造等行业。
通过热处理,可以使得钢材在各种恶劣的工作环境下具有更好的性能和耐久性。
此外,钢材通过不同的化学热处理方法,还可以实现特定的性能要求,如减轻内应力、消除残余应力等。
综上所述,钢的化学热处理是一项重要的工艺,通过加热和冷却过程的控制,可以改善钢材的性能和特性,满足不同领域对钢材性能的要求。
其广泛的应用和重要性使得研究和理解钢的化学热处理成为一个重要的课题。
1.2文章结构2. 正文2.1 热处理热处理是一种通过加热和冷却钢材来改变其物理和化学性质的工艺。
它是钢材加工过程中非常重要的一步,可以通过控制加热温度、冷却速率和持续时间等参数,使钢材具有所需的性能和组织结构。
在热处理过程中,钢材经历了一系列的相变和组织变化,从而达到特定的力学性能和耐用性。
钢的化学热处理基本过程有哪些咱来说说钢的化学热处理这档子事儿。
您知道不,钢的化学热处理那可是个相当重要的工艺。
就好比给钢来一场“魔法变身”,让它拥有更厉害的“本领”。
这化学热处理的基本过程,就像是一场精心编排的“舞蹈”。
第一步呢,是介质中活性原子的产生。
您就把这活性原子想象成一群活泼好动的小精灵,到处蹦跶,准备大显身手。
接下来是活性原子的吸收。
这就好比钢张开了“大嘴”,把那些小精灵一股脑儿地吸进去。
再然后,是活性原子在钢中的扩散。
这扩散啊,就像是把一勺糖放进一杯水里,慢慢地,甜味就均匀地布满了整杯水。
活性原子在钢里也是这样,一点点地扩散开来,让钢的每一个角落都发生变化。
这过程可不简单哟!您想想,如果吸收得不够多,那钢的变化能大吗?就像吃饭没吃饱,哪有力气干活呢?如果扩散不均匀,钢的性能能稳定吗?就像画画颜色涂得一块深一块浅,能好看吗?
在实际操作中,温度、时间、介质的成分,那可都得把握得恰到好处。
温度太高了,钢会不会“中暑”?温度太低了,活性原子会不会懒得动?时间太长,会不会浪费成本?时间太短,效果能好吗?
所以说啊,钢的化学热处理可真是个精细活儿,得像绣花一样,一针一线都不能马虎。
只有这样,才能让钢变得更强、更耐用,为咱们的各种工程、制造大显身手。
总之,钢的化学热处理这几个基本过程,每个环节都至关重要,缺了谁都不行!。
钢的化学热处理三个基本过程
钢的化学热处理包括三个基本过程:分解、吸收和扩散。
分解是指渗剂中生成能渗入钢表面的活性原子的化学反应,通常包括分解反应、置换反应和还原反应。
化学反应速度除取决于反应物的本性外,还与温度、压力、浓度、催化剂有关。
一般增加浓度和升高温度,能增加反应速度。
添加催化剂可以使反应速度剧增。
吸收是指一切固体都能或多或少地把周围介质中的分子、原子或离子吸附到自己的表面上来。
粗糙的表面比平滑的表面吸附作用强,晶界比晶内吸附作用强。
扩散是指活性原子从工件表层向内部的扩散,这是化学热处理过程中的重要环节。
扩散速度与温度和浓度梯度有关,通常温度越高,扩散越快。
以上三个过程是相互联系、相互影响的,必须同时进行,以保证化学热处理的顺利进行。
1/ 1。
钢的化学热处理化学热处理是将工件置入含有活性原子的特定介质中加热和保温,使介质中一种或几种元素(如C、N、Si、B、Al、Cr、W等)渗入工件表面,以改变表层的化学成分和组织,达到工件使用性能要求的热处理工艺。
其特点是既改变工件表面层的组织,又改变化学成分。
它可比表面淬火获得更高的硬度、耐磨性和疲劳强度,并可提高工件表层的耐蚀性和高温抗氧化性。
各种化学热处理都是由以下三个基本过程组成的。
1)分解由介质中分解出渗入元素的活性原子。
2)吸收工件表面对活性原子进行吸收。
吸收的方式有两种,即活性原子由钢的表面进入铁的晶格形成溶体,或与钢中的某种元素形成化合物。
3)扩散已被工件表面吸收的原子,在一定温度下,由表面往里迁移,形成一定厚度的扩散层。
1、渗碳:渗层组织:淬火后为碳化物、马氏体、残余奥氏体。
渗层厚度(mm),0.3~1.6,表面硬度,57~63HRC,作用与特点,提高表面硬度、耐磨性、疲劳强度,渗碳温度(930℃)较高,工件畸变较大;应用,常用于低碳钢、低碳合金钢、热作模具钢制作的齿轮、轴、活塞、销、链条。
渗碳件渗碳后,都要进行淬火、低温回火,回火温度一般为150~200℃。
经淬火和低温回火后,渗碳件表面为细小片状回火马氏体及少量渗碳体,硬度可达58~64HRC,耐磨性能很好。
心部组织决定于钢的淬透性。
普通低碳钢如15、20钢,心部组织为铁素体和珠光体,硬度为10~15HRC。
低碳合金钢如20CrMnTi 心部组织为回火低碳马氏体、铁素体及托氏体,硬度为35~45HRC,具有较高的强度、韧性及一定的塑性。
2.液体氮化也称软氮化,低温氰化,或者氮碳共渗,在渗氮过程中,碳原子也参与,因而比一般的单一气体渗氮具有更高的渗速,在渗层表面硬度相当的情况下,氮化层的脆性也比气体氮化小,软氮化因此得名。
氮化主要是往炉中加入纯氨,在200℃以上氨分解为活性氮原子,在500~580℃时,活性氮原子往钢件表面渗氮和扩散,得到0.3~0.5mm厚的高硬度、耐腐蚀、抗疲劳的氮化层。