数学北师大版七年级下册第六章概率回顾与思考
- 格式:docx
- 大小:102.35 KB
- 文档页数:2
第六章概率初步回顾与思考一、学生知识状况分析在本单元中,学生了解了不确定现象的特点,通过具体情境体会概率的意义,在丰富的实际问题中认识到概率是刻画不确定现象的数学模型,同时学习了一些计算概率的方法,并通过概率帮助自己作出合理的决策。
七年级学生具有求知欲较强的特点,学生间相互评价、小组间的竞争能够激起学生的好胜心,因此,参与本节课的热情应该是比较高的。
二、教学任务分析本节主要是复习本章内容,测试并总结学生的学习情况。
本节是从知识结构图入手,使学生进一步加深本章所学知识点。
组内,通过“生教生”的方法展开例题的学习,努力做到全员参与。
组间,通过竞赛的形式做到进一步的能力提升。
增强学生互帮互助精神,激发学习兴趣。
三、教学过程分析本节课设计了五个教学环节:知识回顾;复习思考;课堂小结;博弈竞技;课后作业。
第一环节:知识回顾内容:以“提问——补充”的方法复习本章内容。
目的:通过学生抢答,小组加分的活动,激发学生学习兴趣。
效果:激发了学生的求知欲,激起学生的学习兴趣。
第二环节:复习思考内容:组内互帮互助完成例题的学习,教师提问后统一答案。
例1 下列事件中,哪些是确定的?哪些是不确定的?请说明理由。
(1)随机开车经过某路口,遇到红灯;(2)两条线段可以组成一个三角形;(3)400人中有两人的生日在同一天;(4)掷一枚均匀的骰子,掷出的点数是质数。
例2 如图所示有9张卡片,分别写有1至9这九个数字。
将它们背面朝上洗匀后,任意抽出一张。
(1)P(抽到数字9)= ;(2)P (抽到两位数)= ;(3)P(抽到的数大于6)= ,P(抽到的数字小于6)= ;(4)P(抽到奇数)= ,P(抽到偶数)= 。
数字。
转动转盘,当转盘停止后,指针指向的数字即为转出的数字。
两人参与游戏:一人转动转盘,另一人猜数,若所猜数字与转出的数字相符,则猜数的人获胜,否则转动转盘的人获胜。
猜数的方法从下面三种中选一种:(1)猜“是奇数”或“是偶数”;(2)猜“是3的倍数”或“不是3的倍数”;(3)猜“是大于6的数”或“不是大于6的数”。
周次日期教学内容课时备注1 2.15---2.16 同底数幂的乘法 12 2.17---2.21 幂的乘方与积的乘方法—同底数幂的除 52015—2016 学年度第二学期教学进度任课教师:学科:数学年(班)级:3 2.24---2.28 整式的乘法—平方差公式 54 3.3—3.7 完全平方公式—回顾与思考 55 3.10---3.14 两条直线的位置关系—探索直线平 5行的条件6 3.17---3.21 探索直线平行的条件—平行线的性质 57 3.24—3.28 回顾与思考—认识三角形 58 3.31---4.4 图形的全等—探索三角形全等的条件 4 清明节9 4.7---4.11 探索三角形全等的条件—用尺规作三 5角形10 4.14---4.18 利用三角形全等测距离—回顾与思考 511 4.21—4.25 复习期中考试 312 4.28---5.2 用表格表示的变量间关系—用关系 4 劳动节式表示的变量间关系13 5.5---5.9 用图象表示的变量间关系—回顾与 5思考14 5.12---5.16 轴对称现象—探索轴对称的性质 515 5.19---5.23 简单的轴对称图形 516 5.26---5.30 利用轴对称进行设计—回顾与思考 517 6.2---6.6 感受可能性—概率的稳定性 518 6.9---6.13 等可能事件发生的概率—回顾与思考 519 6.16—6.20 总复习 520 6.23---6.27 期末考试 5本学期总目标:培养学生良好的学习习惯,提高他们学习数学的热情,力争取得一个比较优异的学习成绩教研组长签字:说明:此表一式两份,一份作为教案附件之一粘贴在教案本上,一份上交教务处。
1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。
过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。
学科探究性学习论文“摸到红球的概率”一节是义务教育课程标准实验教科书《数学》九年级上册第六章。
新的实验教材无论从形式上还是从内容上都有了较大的改变,具有很强的趣味性和现实性,而且在教材的设计上注重由学生自己观察、操作、想象、总结来体现数学的概念和意义。
第六章介绍的是简单的概率知识,概率是研究随机现象统计规律的一门数学分科,主要研究的是“随机现象”,也就是“不确定事件”。
在从15、16世纪意大利数学家讨论过的“两人赌博提前结束,如何分配赌金的问题”,到现在购买彩票中奖的可能性有多大的问题,都是概率研究的对象,具有很强的现实意义。
“摸到红球的概率”是本章的第3节,在本节课之前,学生已经学习了“确定事件”和“不确定事件”,并且知道了“不确定事件”发生的可能性有大有小,而概率表示的正是“不确定事件”发生的大小。
本节课从摸球实验入手,由学生自己动手操作,进一步体会不确定事件发生的可能性的大小,了解计算一类事件发生可能性的计算方法,进一步体会概率的意义。
并且能够根据简单的概率公式进行基本的计算,在此基础上按要求设计简单的游戏。
针对以上内容,采用引导发现与归纳推理的教学方法,通过精心设计的实验和游戏由学生自己总结得出本节课的主要内容,自然的接受这一部分知识。
同时培养学生的动手操作能力,逻辑思维能力和分析总结能力,使学生充分体会数学实验在研究问题,探索规律中的作用。
教学目标依据课程标准教学大纲和上述分析,并结合我校九年级学生已有的知识和能力,确定的三维目标是:1.知识与能力目标(1)通过摸球游戏,了解并掌握计算一类事件(古典概型)发生可能性的方法,体会概率的意义;(2)能设计符合要求的简单概率模型,体会概率是描述不确定现象的数学模型,进一步发展随机观念;(3)能联系生活实际,应用概率知识解决问题,体会数学与现实生活的紧密联系,发展“用数学”的意识和能力.2.过程与方法目标通过实验、思考、讨论、交流、“有奖竞答”、“走进生活”等一系列教学活动,让学生积累丰富的数学活动经验,增强合作意识,培养交流能力.3.情感与态度目标(1)在各种有趣的数学活动中,让学生体验到学习的乐趣,从而提高对数学的学习兴趣;(2)通过“走进生活”这一教学环节,渗透德育教育.内容体系:概率是根据新课标增添的教学内容,它与现实生活联系非常密切. 本章的内容是九年级上册《频率与概率》一章的螺旋上升和发展,也是今后进一步学习概率统计的必备知识. 本课通过对摸到红球的概率进行展开讨论,让学生初步学会定量刻画一类事件(简单古典概型)的方法,对简单事件发生的可能性大小从以前的感性认识上升到现在的定量分析.(二)学情分析在本章的学习中,学生已接触了必然事件、不可能事件和不确定事件,初步体会了不确定事件的特点及事件发生可能性的意义,知道事件发生的可能性有大有小. 在本章前一节的学习中,学生通过对大量掷硬币实验数据的统计分析,得到掷硬币实验中正面或反面朝上的1,了解了事件发生的等可能性及游戏规则的公平可能性相同,都是2性.九年级学生的思维正处于由具体形象思维向抽象思维转变的阶段. 他们对具体现象比较感兴趣,对抽象概念的理解及运用(如本课概率的计算方法的理解)有一定的困难. 但该年龄段学生爱问好动,求知欲强,想象力丰富,他们对实验、活动、游戏等形式多样的教学方式很感兴趣,参与非常主动,希望在课堂上得到充分的展示和表现.我们首先进行下面一组摸球实验:实验1:教师准备一个只有一面透明的空盒子(学生用不透明塑料袋代替),将两个完全一样的红球放入盒子中,从盒子中任意摸出一球.实验结果:师生都摸出了一个红球.教师提问:“从盒中任意摸出一球是红球”是什么事件?它发生的可能性是多少?实验2:向只剩下一个红球的盒子里放入1个白球(除颜色外与红球完全相同),并将其摇匀,然后从盒子中任意摸出一球.实验结果:全班大致有一半的同学摸出了红球,其余的同学摸出了白球.教师提问:“从盒中任意摸出一球是红球”是什么事件?“从盒中任意摸出一球是白球”是什么事件?二者发生的可能性相等吗?可能性是多少?该实验与我们以前的哪个游戏相仿呢?实验3:把刚才摸出的球放回盒中,再向盒中放入2个红球,这时盒中有3个红球,1个白球. 然后从盒中任意摸出一球.(摸球之前先让学生猜一猜会摸到哪种颜色的球.)实验结果:大多数同学摸出了红球,其余的同学摸出了白球.教师提问:上述实验中,“从盒中任意摸出一球是红球”与“从盒中任意摸出一球是白球”的可能性相等吗?如果不相等,哪件事发生的可能性大呢?这个可能性究竟是多少呢?能用一个准确的数值来表示吗?从实验引入,既有利于培养学生的动手实践能力,又有利于调动学生学习的积极性和参与热情.通过环环相扣的3个实验,在教师的提问引导下,学生在复习旧知的同时,很自然地带着问题进入新知的探究.为进一步引导学生,教师再提出如下问题:在实验3中,(1)如果将每个球都编上号码,分别记为1号球(红)、2号球 (红)、3号球(红)、4号球(白),那么摸到每个球的可能性一样吗?(2)任意摸出一球,可能出现的结果有几种?哪几种?(3)“摸到红球”可能出现的结果有几种?哪几种?(4)你认为“摸到红球”的可能性是多少呢?你是怎样得出的?与同伴进行交流.(这里是对概率意义理解的难点,教师可引导学生回顾上节课中,我们通过大量实验,借助频率折线统计图得出抛硬币实验中的规律——正面(或反面)朝上的可能性是两种等可能性中的一种,发生的可能性是21.有了这一基础,再引导学生通过理解这里的“21”中“1”、“2”的含义,进而对实验3的情形进行思考、讨论、交流,就容易理解了.)在学生独立思考的基础上,通过讨论交流得到:43==的结果数摸出一球所有可能出现果数摸出红球可能出现的结摸到红球的可能性 教师再进一步指出,人们通常用n m n m A A P ==所有可能出现的结果数可能出现的结果数事件)((其中m 、n 为整数,0≤m ≤n )来表示事件A 发生的可能性,也称为事件A 发生的概率(probability ).如,实验3中43=(摸到红球)P .你能表示实验3中“摸到白球” 的概率吗?接下来引导学生归纳:①1=(必然事件)P ; ②0=(不可能事件)P ; ③10<<(不确定事件)P . 在前期知识积累的基础上,通过教师层层设问引导,学生自主探究和讨论交流得出简单古典概型的概率计算方法。
北师大版数学七年级上册《回顾与思考》教学设计3一. 教材分析《回顾与思考》是北师大版数学七年级上册的一章,本章主要是让学生回顾前面所学知识,通过思考和练习提高学生的数学思维能力和解决问题的能力。
本章内容包括有理数的混合运算、平面图形的认识、数据的收集和处理等。
本节课是本章的第三节,主要内容是回顾和巩固有理数的混合运算。
二. 学情分析七年级的学生已经学习了有理数的基本概念和运算,对有理数的混合运算有一定的了解和掌握。
但是,学生在运算过程中可能会出现运算顺序错误、运算符号使用错误等问题。
因此,在教学过程中,教师需要引导学生正确掌握运算顺序和运算符号的使用,提高学生的运算准确性。
三. 教学目标1.回顾和巩固有理数的混合运算知识。
2.提高学生的数学思维能力和解决问题的能力。
3.培养学生的运算准确性和良好的运算习惯。
四. 教学重难点1.教学重点:有理数的混合运算顺序和运算符号的使用。
2.教学难点:解决实际问题中的混合运算。
五. 教学方法1.讲授法:教师通过讲解和举例,引导学生回顾和巩固有理数的混合运算知识。
2.练习法:教师设计不同难度的练习题,让学生进行练习,提高学生的运算能力。
3.讨论法:教师学生进行小组讨论,让学生分享自己的解题方法和经验,培养学生的合作意识和交流能力。
六. 教学准备1.教学PPT:教师制作包含有理数混合运算的知识点和练习题的PPT。
2.练习题:教师设计不同难度的练习题,用于课堂上学生的练习和巩固。
3.黑板和粉笔:用于板书和讲解。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数的混合运算顺序和运算符号的使用,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现本节课的内容,包括有理数的混合运算顺序和运算符号的使用。
教师进行讲解和举例,让学生理解和掌握相关知识。
3.操练(10分钟)教师设计不同难度的练习题,让学生进行练习。
教师巡回指导,及时发现和纠正学生的错误。
4.巩固(10分钟)教师学生进行小组讨论,让学生分享自己的解题方法和经验。
北师大版七年级下册数学教学设计:第六章《概率初步回顾与思考》一. 教材分析本节课为人教版七年级下册数学的第六章《概率初步回顾与思考》。
这一章节主要让学生回顾之前学习的概率知识,并通过实际问题引出概率的意义和应用。
内容主要包括事件的确定性和不确定性,以及如何利用概率来描述和解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固概率知识,提高解决问题的能力。
二. 学情分析学生在之前的学习中已经接触过概率的基本概念,对事件的确定性和不确定性有一定的了解。
然而,由于年龄和认知水平的限制,学生在理解概率的抽象概念和解决实际问题时仍存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,用生动具体的例子来帮助学生理解和掌握概率知识。
三. 教学目标1.知识与技能:让学生回顾和巩固概率的基本概念和方法,学会用概率来描述和解决实际问题。
2.过程与方法:通过小组合作、讨论等方式,培养学生的合作精神和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的思维能力和创新精神。
四. 教学重难点1.重点:回顾和巩固概率的基本概念和方法,学会用概率来描述和解决实际问题。
2.难点:理解概率的抽象概念,并将概率知识应用于解决实际问题。
五. 教学方法1.情境教学法:通过具体的生活实例,引导学生理解和掌握概率知识。
2.小组合作学习:引导学生分组讨论和解决问题,培养学生的合作精神和解决问题的能力。
3.激励评价法:在教学过程中,对学生的表现给予积极的评价,激发学生的学习兴趣和自信心。
六. 教学准备1.教具:电脑、投影仪、黑板、粉笔等。
2.教学资源:教材、PPT课件、练习题等。
3.教室环境:座位排列以小组合作学习的形式进行调整。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些与概率相关的生活实例,如抛硬币、抽奖等,引导学生回顾之前学习的概率知识。
同时,让学生思考:概率在实际生活中有什么作用?2.呈现(10分钟)利用PPT课件呈现本节课的主要内容,包括事件的确定性和不确定性,以及如何利用概率来描述和解决实际问题。
瓜坡镇中学七年级(下)数学科导学案
如图所示有9张卡片,分别写有1至9这九个数字。
将它们背面朝上洗匀后,任意抽出一张。
1)(1)P(抽到数字9)= ;
2)(2)P (抽到两位数)= ;
)(3)P(抽到的数大于6)= ,P(抽到的数字小于6)= ;
(4)P(抽到奇数)= ,P(抽到偶数)= 。
例 3 如图,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10这10个数字。
转动转盘,当转盘停止后,指针指向的数字即为转出的数字。
两人参与游戏:一人转动转盘,另一人猜数,若所猜数字与转出的数字相符,
则猜数的人获胜,否则转动转盘的人获胜。
猜数的方法从下面三种中选一种:
(1)猜“是奇数”或“是偶数”;
(2)猜“是3的倍数”或“不是3的倍
数”;
(3)猜“是大于6的数”或“不是大于6
的数”。
如果轮到你猜数,那么为了尽可能获胜,
你将选择哪一种猜数方法?怎样猜?。