虚拟存储器
- 格式:ppt
- 大小:444.50 KB
- 文档页数:22
实习五虚拟存储器实验报告一、实验目的本次虚拟存储器实验旨在深入理解计算机系统中虚拟存储器的工作原理和机制,通过实际操作和观察,掌握虚拟存储器的相关概念和技术,包括页式存储管理、地址转换、页面置换算法等。
同时,培养我们的实践能力和问题解决能力,为今后学习和工作中涉及到的计算机系统相关知识打下坚实的基础。
二、实验环境本次实验使用的操作系统为 Windows 10,开发工具为 Visual Studio 2019,编程语言为 C++。
三、实验原理1、虚拟存储器的概念虚拟存储器是一种利用硬盘等辅助存储器来扩充主存容量的技术。
它将程序和数据按照一定的页面大小划分,并在需要时将页面从硬盘调入主存,从而实现了使用有限的主存空间运行较大规模的程序。
2、页式存储管理页式存储管理将主存和辅存空间都划分为固定大小的页面。
程序的地址空间被分成若干页,主存也被分成相同大小的页框。
通过页表来记录页面和页框的对应关系,实现地址转换。
3、地址转换当 CPU 执行指令时,给出的是逻辑地址。
通过页表将逻辑地址转换为物理地址,才能在主存中访问相应的数据。
4、页面置换算法当主存空间不足时,需要选择一个页面换出到硬盘,以腾出空间调入新的页面。
常见的页面置换算法有先进先出(FIFO)算法、最近最少使用(LRU)算法等。
四、实验内容与步骤1、设计并实现一个简单的页式存储管理系统定义页面大小和主存、辅存的容量。
实现页表的数据结构,用于记录页面和页框的对应关系。
编写地址转换函数,将逻辑地址转换为物理地址。
2、实现页面置换算法分别实现 FIFO 和 LRU 页面置换算法。
在页面调入和调出时,根据相应的算法选择置换的页面。
3、测试和分析实验结果生成一系列的访问序列,模拟程序的运行。
统计不同页面置换算法下的缺页次数和命中率。
分析实验结果,比较不同算法的性能。
五、实验过程与结果1、页式存储管理系统的实现我们将页面大小设置为 4KB,主存容量为 16MB,辅存容量为 1GB。
虚拟存储器的基本构成虚拟存储器是计算机系统中的一个重要组成部分,它扩展了计算机的存储容量,提高了系统的性能和可用性。
虚拟存储器由主存储器和辅助存储器两部分组成,通过一系列的管理机制,使得程序能够以透明的方式访问较大容量的存储空间。
1. 主存储器主存储器是虚拟存储器的核心组成部分,也是计算机系统中最快的存储器。
它通常由DRAM(动态随机存取存储器)构成,用于存储当前正在执行的程序和数据。
主存储器通过地址总线和数据总线与CPU直接连接,可以快速地读写数据。
虚拟存储器通过将主存储器的地址空间划分为若干固定大小的页面(page)来管理主存储器的使用。
2. 辅助存储器辅助存储器是虚拟存储器的扩展部分,它通常由硬盘、固态硬盘(SSD)等设备构成。
辅助存储器的容量远大于主存储器,用于存储不常用的程序和数据。
辅助存储器的读写速度较慢,但它具有持久性,数据不会因为断电而丢失。
虚拟存储器通过将辅助存储器的地址空间划分为若干固定大小的页面来管理辅助存储器的使用。
3. 页面表页面表是虚拟存储器管理的关键数据结构,用于记录主存储器和辅助存储器之间的映射关系。
每个页面表由多个页表项组成,每个页表项记录了一个页面在主存储器和辅助存储器中的对应位置。
当程序访问一个虚拟地址时,操作系统会通过页面表查找对应的物理地址,并将数据从主存储器或辅助存储器中读取出来。
4. 页面置换算法由于主存储器的容量有限,当主存储器中的页面不足以存放所有正在运行的程序和数据时,就需要使用页面置换算法将部分页面从主存储器中换出到辅助存储器中。
常用的页面置换算法有最佳(OPT)、先进先出(FIFO)、最近未使用(LRU)等。
这些算法根据页面的访问模式和重要性来决定换出哪些页面,以保证系统的性能和可用性。
5. 页面调度算法页面调度算法用于确定哪些页面应该被加载到主存储器中。
常用的页面调度算法有最低频率优先(LFU)、先进先出(FIFO)、最近最久未使用(LRU)等。
虚拟存储器的都有哪些种类什么是虚拟存储器虚拟存储器是一种实现了虚拟地址空间与物理地址空间的转换与管理的技术。
实际上,计算机的硬件只能直接寻址有限的物理内存,而虚拟存储器技术可以将一个进程所使用的虚拟地址空间映射到实际物理内存上,从而实现了进程间内存的隔离、进程对内存的高效管理等目标。
虚拟存储器的种类虚拟存储器可以按照其实现方式的不同,分为以下几类:分页式虚拟存储器分页式虚拟存储器是将进程的虚拟地址空间划分为大小相同的若干个页,与此对应的,物理内存也被分成大小相等的若干页帧。
当进程需要访问某个虚拟地址时,虚拟内存管理单元根据该地址的高位部分确定所在的页目录项及页表项,从而得到该虚拟地址对应的物理页帧地址,然后利用物理地址访问实际的内存单元。
分页式虚拟存储器的优点是地址空间的划分更为灵活,页的大小可以根据不同的需求进行调整;而且相对于分段式虚拟存储器,分页式虚拟存储器更为适合大规模的系统,因为页表项存储需要的空间相对较少。
分段式虚拟存储器分段式虚拟存储器是将进程的虚拟地址空间划分为若干个大小不同的段,每个段以开始地址为基址,形成虚拟地址。
与此对应的,物理内存也被分成大小不等的若干段,每个段映射一个虚拟段,从而实现了虚拟地址空间到物理地址空间的映射。
分段式虚拟存储器让不同进程间可以使用相同的地址空间,从而简化了应用程序开发,提升了代码的重用性。
但是,分段式虚拟存储器需要维护大量的段描述信息以及段与页之间的映射关系,这使得在线管理开销很大,因此更适合于小型系统。
段页式虚拟存储器段页式虚拟存储器是分页式和分段式虚拟存储器的结合体,它将进程的虚拟地址空间划分为若干个段,每个段又被划分成大小相等的若干页。
段页式虚拟存储器既保留了分段式虚拟存储器的优点,也继承了分页式虚拟存储器的灵活性。
段页式虚拟存储器中,虚拟地址空间与物理地址空间之间的转换通过段页表来实现,段页表的每一项都包含了该页在物理地址空间中对应的页框地址以及该页在虚拟地址空间中的地址。
虚拟存储器工作原理
虚拟存储器是计算机系统中的一种技术,它通过将磁盘的部分空间用作与主存储器(RAM)交换数据的扩展,以提供更大的可用存储空间。
虚拟存储器工作原理如下:
1. 虚拟存储器将主存储器划分为固定大小的页面(也称为页框),通常是4KB或8KB等大小。
2. 当一个程序被加载到主存储器时,操作系统将其分为固定大小的块,称为页面。
3. 当程序需要访问某个页面时,操作系统会检查该页面是否已存在于主存储器中。
4. 如果所需页面已存在于主存储器中,则程序可以直接访问该页面,无需进行磁盘读取操作。
这是最理想的情况,因为主存储器的访问速度要比磁盘快得多。
5. 然而,如果所需页面不在主存储器中,操作系统会将主存储器中的某个页面(通常是最近最少使用的页面)替换成需要的页面。
替换页面的过程称为页面置换。
6. 被替换出的页面会被写回到磁盘上的一个空闲页面中,以便在后续需要时可以重新加载到主存储器中。
7. 在访问磁盘上的页面并将其加载到主存储器之前,操作系统会通过磁盘存储器管理单元(MMU)进行地址转换,以确保正确访问到磁盘上的页面。
通过使用虚拟存储器,计算机系统可以充分利用磁盘空间来扩展主存储器的大小。
这样,即使计算机系统的物理内存有限,也可以运行更大的程序或处理更多的数据,而不会出现严重的
内存不足问题。
虚拟存储器的工作原理可以使计算机系统在物理内存有限的情况下更加灵活和高效地管理内存资源。
虚拟存储器原理1. 概述虚拟存储器是一种操作系统提供的抽象概念,它将计算机的物理内存和磁盘空间结合起来,为应用程序提供了一个比实际物理内存更大的地址空间。
虚拟存储器的基本原理是通过将部分数据从内存转移到磁盘上,实现了对物理内存的扩展,并能够在需要时将数据重新调入内存。
虚拟存储器的出现解决了两个主要问题:一是应用程序通常需要比物理内存更大的地址空间,而物理内存受限;二是为了提高系统性能,操作系统可以将不常用的数据置换到磁盘上,以便为常用数据腾出更多的内存空间。
2. 分页机制虚拟存储器使用了分页机制来管理内存和磁盘空间。
在分页机制下,应用程序被划分为大小固定的页面(Page),同样大小的物理内存也被划分为页框(Page Frame)。
每个页面都有一个唯一的标识符,称为页号(Page Number),而每个页框也有一个唯一的标识符,称为页框号(Frame Number)。
当应用程序访问某个页面时,操作系统会通过页表(Page Table)将该页面映射到一个物理地址。
页表是一个数据结构,记录了每个页面对应的物理地址或磁盘上的位置。
当应用程序需要访问某个页面时,操作系统首先查找页表,如果该页面已经在物理内存中,则直接将对应的物理地址返回给应用程序;如果该页面不在物理内存中,则操作系统会将其从磁盘上调入内存,并更新页表。
分页机制的优点是简单、灵活且高效。
它可以将内存和磁盘空间划分为固定大小的块,从而方便管理和调度。
同时,由于每个页面的大小相同,使得操作系统可以更加高效地进行内存分配和回收。
3. 页面置换算法虚拟存储器中最重要的问题之一是如何选择哪些数据被置换到磁盘上。
一般来说,操作系统会根据一定的策略选择最适合置换的页面。
常见的页面置换算法有以下几种:3.1 先进先出(FIFO)先进先出算法是最简单和最直观的置换算法之一。
它按照页面进入内存的顺序进行置换,即最早进入内存的页面被置换出去。
这种算法的缺点是没有考虑页面的访问频率,可能会导致常用的页面被频繁置换出去。
虚拟存储器名词解释
虚拟存储器是一种新兴的计算机技术,它可以将大量的计算机数据储存在一个很小的虚拟存储器中,可以大大提高计算机的存储容量。
虚拟存储器是在一个物理内存中利用一系列技术建立一个虚拟存储器。
由于虚拟存储容量可以大大超过物理存储容量,因此虚拟存储器被认为是一种新兴技术,可以提供计算机比此前更大的存储能力。
虚拟存储器可以被分为两个主要类型,即软件虚拟存储器和硬件虚拟存储器。
软件虚拟存储器是指使用特定的软件来创建和管理物理存储器的过程,它不需要额外的硬件,可以利用已有的物理存储设备,例如磁盘或内存来创建虚拟存储器。
硬件虚拟存储器是一种计算机硬件的技术,它可以利用集成芯片组来模拟一个虚拟存储器,它能够很好地模拟真实的物理存储空间,并且大大提高计算机的存储效率。
虚拟存储器有许多优点,可以有效地提高计算机的性能。
它可以增强计算机的容量,因为它可以大大超过物理存储器的容量,可以使计算机的存储能力更高,同时也可以减少计算机的延迟。
此外,虚拟存储器可以提高程序执行的性能,因为虚拟存储器可以减少计算机操作系统中的信息传输时间,这有助于程序执行的速度。
虚拟存储器也有一些缺点,其中最明显的是,它由于虚拟化而损失了一些性能,这可能会导致程序运行的速度变慢。
同时,虚拟存储器也会增加计算机系统的复杂性,需要更多的资源,从而导致更多的能耗。
总的来说,虚拟存储器是一种新兴的技术,它能够为计算机提供
更大的存储空间,可以提高程序的性能,但也会带来一些缺点。
因此,在使用虚拟存储器时,需要认真考虑其优缺点,以便正确使用虚拟存储器,提高存储效率。
操作系统虚拟存储器的概念操作系统虚拟存储器是一个允许程序在其看来有连续的地址空间的内存抽象。
通过虚拟存储器,操作系统可以将程序分配给物理内存的不连续位置,从而实现更高效的内存管理和更大规模的程序执行。
本文将从概念、原理、实现等角度详细介绍操作系统虚拟存储器。
概念:操作系统虚拟存储器是一种内存管理技术,将程序的连续地址空间抽象为虚拟的连续地址空间,使得程序可以使用比实际物理内存更大的地址空间。
虚拟存储器的目标是提供每个进程一个私有的地址空间,用于存储其代码、数据和堆栈等。
在虚拟存储器中,每个进程看到的地址空间称为虚拟地址空间,而实际在内存中的地址空间称为物理地址空间。
原理:虚拟存储器的实现依赖于虚拟地址转换技术。
当程序访问虚拟地址时,操作系统将其翻译成物理地址,并检查翻译后的地址是否合法。
虚拟地址转换通常涉及到以下几个步骤:1. 页表管理:操作系统使用页表来维护虚拟地址和物理地址之间的映射关系。
页表包括多个页表项,每个页表项对应一段连续的虚拟地址和物理地址,用于记录其映射关系。
2. 分页机制:操作系统将虚拟地址和物理地址划分为固定大小的页,通常是4KB 或者8KB。
分页的大小是操作系统所支持的最小单位,也是整个虚拟存储器的基本块。
3. 地址转换:当程序访问虚拟地址时,操作系统通过查找页表找到对应的页表项,获取物理地址的高位部分和低位部分。
高位部分表示该虚拟地址所在的页,低位部分表示页内偏移量。
操作系统将高位部分与页表项中的基地址相加,再加上低位部分,就得到了对应的物理地址。
4. 内存访问权限控制:操作系统可以在页表中设置权限位,用于控制对于虚拟地址的访问权限。
常用的权限包括读取、写入和执行等。
实现:虚拟存储器的实现需要操作系统的支持,在现代操作系统中通常采用以下几种技术来实现虚拟存储器:1. 分段式虚拟存储器:将程序分为若干段,每个段对应一块连续的虚拟内存空间,可以动态加载和卸载不同的程序段,提高内存的利用率。