上海大学代数系统练习题
- 格式:ppt
- 大小:83.50 KB
- 文档页数:9
高等代数考试题库及答案一、单项选择题(每题2分,共10题,共20分)1. 以下哪个选项是矩阵的秩?A. 矩阵中非零行的数量B. 矩阵中非零列的数量C. 矩阵中最大的线性无关行(或列)的数量D. 矩阵的行列式值答案:C2. 线性方程组有解的充分必要条件是什么?A. 系数矩阵的行列式非零B. 增广矩阵的行列式非零C. 系数矩阵与增广矩阵的秩相等D. 系数矩阵与增广矩阵的秩不相等答案:C3. 对于一个n阶方阵A,下列哪个选项是正确的?A. A的行列式为0,则A可逆B. A的行列式不为0,则A可逆C. A的行列式为0,则A不可逆D. A的行列式不为0,则A不可逆答案:C4. 矩阵A和B相乘,下列哪个选项是正确的?A. AB=BAB. AB=0当且仅当A=0或B=0C. AB=0当且仅当A和B中至少有一个为零矩阵D. AB=0当且仅当A和B的行列式都为0答案:C5. 向量组α1,α2,…,αn线性无关的充分必要条件是?A. 由这些向量构成的矩阵的行列式非零B. 由这些向量构成的矩阵的秩等于向量的个数C. 由这些向量构成的矩阵的行列式为0D. 由这些向量构成的矩阵的秩小于向量的个数答案:B6. 向量组α1,α2,…,αn线性相关的充分必要条件是?A. 由这些向量构成的矩阵的行列式非零B. 由这些向量构成的矩阵的秩小于向量的个数C. 由这些向量构成的矩阵的行列式为0D. 由这些向量构成的矩阵的秩等于向量的个数答案:B7. 矩阵A的特征值是指?A. 满足|A-λI|=0的λB. 满足|A+λI|=0的λC. 满足|A-λE|=0的λD. 满足|A+λE|=0的λ答案:A8. 矩阵A的特征向量是指?A. 满足Ax=0的非零向量xB. 满足Ax=λx的非零向量xC. 满足Ax=0的向量xD. 满足Ax=λx的向量x答案:B9. 矩阵A和B相似的充分必要条件是?A. A和B的行列式相等B. A和B的秩相等C. 存在一个可逆矩阵P,使得P^-1AP=BD. A和B的迹相等答案:C10. 矩阵A和B合同的充分必要条件是?A. A和B的行列式相等B. A和B的秩相等C. 存在一个可逆矩阵P,使得P^TAP=BD. A和B的迹相等答案:C二、填空题(每题2分,共5题,共10分)1. 若矩阵A的行列式为3,则矩阵A的逆矩阵的行列式为______。
上海大学数学试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项是正确的?A. \( \sqrt{2} \)是有理数B. \( \sqrt{2} \)是无理数C. \( \sqrt{2} \)是整数D. \( \sqrt{2} \)是复数答案:B2. 函数 \( f(x) = x^2 \) 在区间 \( (0, +\infty) \) 上是:A. 增函数B. 减函数C. 常函数D. 非单调函数答案:A3. 以下哪个数列是等差数列?A. \( 1, 2, 4, 8, \ldots \)B. \( 2, 4, 6, 8, \ldots \)C. \( 1, 1, 1, 1, \ldots \)D. \( 3, 5, 7, 9, \ldots \)答案:D4. 圆的面积公式是:A. \( \pi r^2 \)B. \( \frac{1}{2} \pi r^2 \)C. \( \pi r \)D. \( 2\pi r \)答案:A5. 以下哪个选项是矩阵?A. 一个二维数组B. 一个一维数组C. 一个三维数组D. 一个四维数组答案:A二、填空题(每题4分,共20分)1. 圆周率 \( \pi \) 的近似值是 ________。
答案:3.141592. 函数 \( y = \sin(x) \) 的周期是 ________。
答案:\( 2\pi \)3. 矩阵 \( A \) 和 \( B \) 的乘积记作 ________。
答案:\( AB \)4. 欧拉公式 \( e^{ix} = \cos(x) + i\sin(x) \) 中的 \( i \) 代表 ________。
答案:虚数单位5. 勾股定理表明在一个直角三角形中,斜边的平方等于两直角边的平方和,即 \( a^2 + b^2 = ________ \)。
答案:\( c^2 \)三、解答题(每题30分,共60分)1. 证明函数 \( f(x) = x^3 - 3x \) 在 \( x = 1 \) 处取得极值,并求出该极值。
习题71.有理数集Q 和Q 上定义的下列运算*是否构成一个代数系统。
(1)()1*2a b a b =+ (2)()2*a b a b =-(3)2*2a b b =+(4)*10a ba b +=解答:(1)是。
(2)否。
运算不封闭(3)否。
运算不封闭(4)是2.设集合{1,2,3,,10}A = ,判断下面定义的运算关于集合A 是否封闭。
(1)*max{,}x y x y = (2)*min{,}x y x y = (3)*gcd{,}x y x y =,即x y ,的最大公约数(4)*{,}x y lcm x y = ,即x y ,的最小公倍数解答:(1)封闭。
*运算满足交换律、结合律,单位元为10,零元为1。
(2)封闭。
*运算满足交换律、结合律,单位元为1,零元为10。
(3)封闭。
*运算满足交换律、结合律,单位元不存在,零元为1。
(4)不封闭。
3.设{1,2,3,4,6,12}A =,A 上的运算*定义为:*=a b a b - (1)写出二元运算*的运算表。
(2)A 和*能构成代数系统吗?为什么?解答:(1)运算表如下*12346121012351121012410321013943210286543206121110986(2)不能。
0,5,8,9,10,11不是A 中的元素,运算不封闭。
4.考虑有理数集Q ,设*是如下定义的Q 上的运算:*a b a b ab=+-(1)求3*4,2*(-5)和7*1/2。
(2)*在Q 上可结合吗?*在Q 上可交换吗?(3)求Q 上关于运算*的单位元。
(4)集合Q 上所有元素都有逆元吗?若有逆元,请求出。
解答:(1)3434125*=+-=-,2(5)25107*-=-+=,71271721*=+-=。
(2)()()a b c a b ab c a b c ab ac bc abc**=+-*=++---+()()a b c a b c bc a b c ab ac bc abc **=*+-=++---+即()()a b c a b c **=**。
近世代数期末考试模拟试卷及答案班别_________ 姓名___________ 成绩_____________要求:1、本卷考试形式为闭卷,考试时间为1.5小时。
2、考生不得将装订成册的试卷拆散,不得将试卷或答题卡带出考场。
3、考生只允许在密封线以外答题,答在密封线以内的将不予评分。
4、考生答题时一律使用蓝色、黑色钢笔或圆珠笔(制图、制表等除外)。
5、考生禁止携带手机、耳麦等通讯器材。
否则,视为为作弊。
6、不可以使用普通计算器等计算工具。
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、6阶有限群的任何子群一定不是()。
A、2阶B、3 阶C、4 阶D、 6 阶2、设G是群,G有()个元素,则不能肯定G是交换群。
A、4个B、5个C、6个D、7个3、有限布尔代数的元素的个数一定等于()。
A、偶数B、奇数C、4的倍数D、2的正整数次幂4、下列哪个偏序集构成有界格()A、(N,≤)B、(Z,≥)C、({2,3,4,6,12},|(整除关系))D、 (P(A),⊆)5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有()A、(1),(123),(132)B、12),(13),(23)C、(1),(123)D、S3中的所有元素二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、群的单位元是--------的,每个元素的逆元素是--------的。
2、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1----------。
3、区间[1,2]上的运算},{min b a b a = 的单位元是-------。
4、可换群G 中|a|=6,|x|=8,则|ax|=——————————。
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。
4、a 的阶若是一个有限整数n ,那么G 与-------同构。
5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。
6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。
高等代数学习题集一、线性方程组1. 解下列线性方程组:(1)$3x+2y=7$$2x-3y=4$(2)$2x-y+z=4$$x+3y-2z=5$$2x-y+z=1$(3)$3x+y=5$$4x-y=8$2. 通过矩阵表示以下线性方程组,并求出其解:(1)$4x+2y=6$$-2x+y=3$(2)$x-2y+3z=1$$2x+y+3z=9$$3x+2y+4z=12$(3)$x+y+z=0$$x+2y+3z=1$$x-3y+2z=2$二、矩阵运算与性质1. 计算以下矩阵的乘积:$\begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$$\begin{bmatrix} 4 & 2 \\ -1 & 3 \end{bmatrix}$2. 求下列矩阵的逆矩阵:(1)$\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ -1 & 0 & 3 \end{bmatrix}$3. 判断下列矩阵是否可逆,并求其逆矩阵:(1)$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$(2)$\begin{bmatrix} 3 & -2 & 1 \\ 1 & -3 & 2 \\ 2 & -4 & 3 \end{bmatrix}$4. 求矩阵的转置:(1)$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$三、特征值与特征向量1. 求矩阵的特征值与特征向量:$\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$2. 计算以下矩阵的迹:(1)$\begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{bmatrix}$四、向量空间1. 判断向量组是否线性相关:(1)$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$(2)$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$2. 求以下向量组的一个极大线性无关组:(1)$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$(2)$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1\end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$五、线性变换1. 判断以下线性变换是否为一一映射:(1)$T\left(\begin{bmatrix} x \\ y\end{bmatrix}\right)=\begin{bmatrix} 2x+y \\ 3y \end{bmatrix}$(2)$T\left(\begin{bmatrix} x \\ y \\ z\end{bmatrix}\right)=\begin{bmatrix} x+y \\ y+z \\ x+z \end{bmatrix}$2. 求下列线性变换的矩阵表示:(1)$T\left(\begin{bmatrix} x \\ y\end{bmatrix}\right)=\begin{bmatrix} 2x-y \\ 3x+2y \end{bmatrix}$(2)$T\left(\begin{bmatrix} x \\ y \\ z\end{bmatrix}\right)=\begin{bmatrix} x+y+z \\ 2x+3y-z \\ 3x-2y+2z\end{bmatrix}$六、二次型1. 对以下二次型进行分类:(1)$f(x,y)=2x^2+3y^2-4xy$(2)$f(x,y,z)=x^2+y^2+z^2-2xy+4xz$2. 将以下二次型化为标准形:(1)$f(x,y,z)=3x^2+4y^2+2z^2+4xy+4xz-8yz$(2)$f(x,y,z)=x^2+2y^2+3z^2-2xy+6xz$以上为《高等代数学习题集》的内容,希望对你的学习有所帮助。
代数系统练习题答案1. 以下集合和运算是否构成代数系统?如果构成,说明该系统是否满足结合律、交换律?求出该运算的幺元、零元和所有可逆元素的逆元.1) P关于对称差运算⊕,其中P为幂集.构成代数系统;满足结合律、交换律;幺元φ;无零元;逆元为自身。
2) A={a,b,c},*运算如下表所示:构成代数系统;满足结合律、交换律;无幺元;无逆元;零元b.2. 设集合A={a,b},那么在A上可以定义多少不同的二元运算?在A上可以定义多少不同的具有交换律的二元运算?24个不同的二元运算;23个不同的具有交换律的二元运算3. 设A={1,2},B是A上的等价关系的集合.1) 列出B的元素.元集合上只有2种划分,因此只有2个等价关系,即B={IA,EA}2) 给出代数系统V=的运算表.3) 求出V的幺元、零元和所有可逆元素的逆元.幺元EA、零元IA;只有EA可逆,其逆元为EA.4) 说明V是否为半群、独异点和群?V是为半群、独异点,不是群4. 设A={a,b,c},构造A上的二元运算*,使得a*b=c,c*b=b,且*运算满足幂等律、交换律.1) 给出关于*运算的一个运算表.其中表中?位置可以是a、b、c。
2) *运算是否满足结合律,为什么?不满足结合律;a*=c ≠*b=b5. 设是一个代数系统。
*是R上的一个二元运算,使得对于R中的任意元素a,b都有a*b=a+b+a·b.证明:: 是独异点.6. 如果是半群,且*是可交换的.证明:如果S中有元素a,b,使得a*a=a和b*b=b,则*=a*b.*= a**b结合律= a**b 交换律= *= a*b.7. 设是一个群,则?a,b,c∈S。
试证明:群G中具有消去律,即成立: 如果a·b=a·c ,b·a=c·a 那么b=c.8. 设是群,a∈G .现定义一种新的二元运算⊙:x⊙y=x*a*y,?x,y∈G .证明:也是群 .证明:显然⊙是G上的一个二元运算。
《高等代数(上)》课程习题集一、填空题11. 若31x -整除()f x ,则(1)f =( )。
2. 如果方阵A 的行列式0=A ,则A 的行向量组线性( )关。
3. 设A 为3级方阵,*A 为A 的伴随矩阵,且31=A ,则=--1*A A ( )。
4. 若A 为方阵,则A 可逆的充要条件是——( )。
5. 已知1211A ⎡⎤=⎢⎥⎣⎦,1121B ⎡⎤=⎢⎥⎣⎦,且3AB C A B +=+,则矩阵C =( )。
6. 每一列元素之和为零的n 阶行列式D 的值等于( )。
7. 设行列式014900716=--k,则=k ( )8. 行列式22357425120403---的元素43a 的代数余子式的值为( )9. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,11k α⎛⎫⎪= ⎪ ⎪⎝⎭,若αA 与α线性相关,则=α( )10. 设A 为3阶矩阵,51=A ,则12--A =( ) 11. 已知:s ααα,,,21Λ是n 元齐次线性方程组0=Ax 的基础解系,则系数矩阵A 的秩=)(A R ( )12. 多项式)(),(x g x f 互素的充要条件是( ) 13. 多项式)(x f 没有重因式的充要条件是( )14. 若排列n j j j Λ21的逆序数为k ,则排列11j j j n n Λ-的逆序数为( )15. 当=a ( )时,线性方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 有零解。
16. 设A 为n n ⨯矩阵,线性方程组B AX =对任何B 都有解的充要( )17. 设00A X C ⎡⎤=⎢⎥⎣⎦,已知11,A C --存在,求1X -等于( ) 18. 如果齐次线性方程组0=AX 有非零解,则A 的列向量组线性( )关 19. )(x p 为不可约多项式,)(x f 为任意多项式,若1))(),((≠x f x p ,则( ) 20. 设A 为4级方阵,3-=A ,则=A 2( )21. 设m ααα,,,21Λ是一组n 维向量,如果n m >.,则这组向量线性( )关22. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,11k α⎛⎫⎪= ⎪ ⎪⎝⎭,若αA 与α线性相关,则k=( )。