向量的实际背景与基本概念
- 格式:pptx
- 大小:166.73 KB
- 文档页数:9
《平面向量的实际背景及基本概念》教案全面版一、教学目标:1. 了解平面向量的实际背景,理解向量的概念及物理意义。
2. 掌握平面向量的基本运算,包括加法、减法、数乘和共线定理。
3. 能够运用平面向量的知识解决实际问题。
二、教学内容:1. 平面向量的实际背景:引入向量的概念,解释向量在物理学、几何学等领域的应用。
2. 向量的概念:定义向量的基本属性,包括大小、方向和起点。
3. 向量的表示:介绍平面向量的几何表示法和坐标表示法。
4. 向量的加法:定义向量加法,讲解平行四边形法则和三角形法则。
5. 向量的减法:定义向量减法,转化为加法运算。
6. 向量的数乘:定义向量的数乘,讲解数乘对向量大小和方向的影响。
7. 向量共线定理:介绍共线定理及其应用。
三、教学方法:1. 采用问题驱动的教学方法,引导学生从实际问题中抽象出向量的概念。
2. 利用几何图形和物理情境,帮助学生直观地理解向量的运算。
3. 运用案例分析和练习题,巩固学生对向量知识的理解和应用。
四、教学评估:1. 通过课堂提问,检查学生对向量概念的理解。
2. 布置课后作业,检验学生掌握向量运算的能力。
3. 进行小组讨论和报告,评估学生对向量应用问题的解决能力。
五、教学资源:1. 教案、PPT课件。
2. 几何图形和物理情境的图片或视频。
3. 练习题和案例分析题。
4. 小组讨论和报告的评价标准。
六、教学重点与难点:1. 教学重点:向量的概念、表示方法、基本运算(加法、减法、数乘)及共线定理。
2. 教学难点:向量加法、减法的几何意义,数乘对向量的影响,共线定理的应用。
七、教学步骤:1. 引入向量的概念:通过实际问题,引导学生认识向量,理解向量表示物体运动和力的作用。
2. 向量的表示:讲解几何表示法和坐标表示法,让学生能用图形和坐标表示向量。
3. 向量加法:讲解平行四边形法则和三角形法则,让学生理解向量加法的几何意义。
4. 向量减法:转化为加法运算,让学生掌握减法与加法的联系。
2.1 平面向量的实际背景及基本概念向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量. 与长度相等方向相反的向量叫做的相反向量.课堂训练一、选择题1、下列物理量中, 不能称为向量的是 ( )A .距离B .加速度C .力D .位移2、下列四个命题正确的是 ( )A .两个单位向量一定相等B .若与不共线,则与都是非零向量C .共线的单位向量必相等D .两个相等的向量起点、方向、长度必须都相同3、下列说法错误的是 ( )A .向量OA 的长度与向量AO 的长度相等B .零向量与任意非零向量平行C .长度相等方向相反的向量共线D .方向相反的向量可能相等4、对于以下命题:(1)平行向量一定相等; (2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线。
其中真命题的个数是 ( )A .0个B .1个C .2个D .3个5、在△ABC 中,AB=AC ,D 、E 分别是AB 、AC 的中点,则 ( ) A. 与AC 共线 B. 与CB 共线 C. 与相等 D. 与相等6、两个向量共线是两个向量相等的 ( )A 、 充分不必要条件B 、必要不充分条件C 、充要条件D 、 既不充分也不必要条件二、填空题1、与非零向量平行的单位向量的个数是_______。
2、||||b a =是b a =的___ __条件。
3、已知B ,C 是线段AD 的两个三等分点,分别以图中各点为起点和终点最多可以写出___ __个互不相等的非零向量。
4、已知平面上不共线的四点满足=,则以下四个命题:(1)ABCD 是平行四边形;(2)ACBD 是平行四边形;(3)ADBC 是平行四边形;(4)ACDB 是平行四边形。
§2.1 平面向量的实际背景及基本概念学习目标:了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.学习重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.学习难点:平行向量、相等向量和共线向量的区别和联系.学习过程:一、复习引入 请同学想想哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:1.向量的概念:我们把____________________________________叫向量数量与向量的区别:_______________________________________2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ;.有向线段:____________线段就叫做有向线段,三个要素:______________- ④向量AB 的大小――长度称为向量的模,记作|AB |.3.零向量、单位向量概念:①_______________叫零向量,记作____ 的方向是任意的注意0 与0的区别②__________________________叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.4.平行向量定义:①__________________________叫平行向量;②我们规定_________与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a 、b 、c 平行,记作a ∥b ∥c .6、相等向量定义:___________________________________叫相等向量.A(起点) B (终点)a说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与.有向线段的起点无关..........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有..向线段的起点无关)..........说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.三:理解和巩固:例1 书本第75页例1.例2 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量.变式一:与向量长度相等的向量有多少个?变式二:是否存在与向量长度相等、方向相反的向量?变式三:与向量共线的向量有哪些?练习1.(1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的当且仅当什么?(7)共线向量一定在同一直线上吗?2.课本77页练习四小结:向量及向量的有关概念、表示方法,还知道有两个特殊向量,最后学了向量间的两种关系,即平行向量(共线向量)和相等向量课后作业:课本77页习题2.1A组第3、4、5题。
人教版高中必修4-2.1 平面向量的实际背景及基本概念课程设计引言平面向量是高中数学中的重要知识点。
学习平面向量,可以帮助学生深入了解向量的概念、性质及其应用;同时,平面向量也是很多高等数学和物理学领域的基础。
本文旨在分析平面向量在现实世界中的实际背景,同时设计一堂高中必修4-2.1平面向量课程。
一、平面向量的实际背景1. 科技领域平面向量在科技领域有着广泛的应用,尤其是在计算机图形学、游戏开发和机器学习等领域。
例如,在计算机游戏中,平面向量可以用来表示角色的位置、速度和方向等信息;在图像处理中,平面向量可以用来表示图像的亮度和颜色。
2. 工程领域在工程领域,平面向量通常用于描述力的大小和方向,例如,机械工程中的受力分析、土木工程中的结构设计、电气工程中的电流、电压描述等等。
3. 数学和物理学对于学习数学和物理学的学生来说,平面向量也是很重要的基础知识。
在数学中,平面向量可以用于求解代数方程组、行列式的计算和向量空间的理解等等。
在物理学中,平面向量可以用于描述物理运动,例如力的合成、速度和位移的计算等。
二、课程设计1. 教学目标本节课通过对平面向量的介绍,旨在帮助学生:1.了解平面向量的基本概念和性质。
2.能够进行向量的加减、数量乘法和点乘运算。
3.了解平面向量在科技和工程领域的应用。
4.能够解决平面向量的简单应用问题。
2. 教学内容本节课的教学内容包括:1.平面向量的基本概念和性质。
2.向量的加减、数量乘法和点乘运算。
3.平面向量的应用。
4.平面向量的简单应用问题。
3. 教学方法本节课主要采用讲授和练习相结合的方法。
具体来说,可以采用以下教学方法:1.讲解:通过PPT等资料,讲解平面向量的基本概念和性质。
2.示范:通过简单的例题演示平面向量的加减、数量乘法和点乘运算。
3.练习:让学生进行相关练习,加深对平面向量的理解和应用能力。
4.展示:让学生展示自己对平面向量的理解和应用能力。
4. 教学过程本节课的教学过程可以分为以下几个步骤:1.介绍向量的基本概念和性质。