模糊C均值聚类算法在图像分割中的应用
- 格式:doc
- 大小:16.50 KB
- 文档页数:5
图像分割技术的原理及应用图像分割至今尚无通用的自身理论。
随着各学科许多新理论和新方法的提出,出现了许多与一些特定理论、方法相结合的图像分割方法。
聚类分析特征空间聚类法进行图像分割是将图像空间中的像素用对应的特征空间点表示,根据它们在特征空间的聚集对特征空间进行分割,然后将它们映射回原图像空间,得到分割结果。
其中,K均值、模糊C均值聚类(FCM)算法是最常用的聚类算法。
K均值算法先选K个初始类均值,然后将每个像素归入均值离它最近的类并计算新的类均值。
迭代执行前面的步骤直到新旧类均值之差小于某一阈值。
模糊C均值算法是在模糊数学基础上对K均值算法的推广,是通过最优化一个模糊目标函数实现聚类,它不像K均值聚类那样认为每个点只能属于某一类,而是赋予每个点一个对各类的隶属度,用隶属度更好地描述边缘像素亦此亦彼的特点,适合处理事物内在的不确定性。
利用模糊C均值(FCM)非监督模糊聚类标定的特点进行图像分割,可以减少人为的干预,且较适合图像中存在不确定性和模糊性的特点。
FCM算法对初始参数极为敏感,有时需要人工干预参数的初始化以接近全局最优解,提高分割速度。
另外,传统FCM算法没有考虑空间信息,对噪声和灰度不均匀敏感。
模糊集理论模糊集理论具有描述事物不确定性的能力,适合于图像分割问题。
1998年以来,出现了许多模糊分割技术,在图像分割中的应用日益广泛。
模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
模糊阈值技术利用不同的S型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的S函数。
用该函数增强目标及属于该目标的像素之间的关系,这样得到的S型函数的交叉点为阈值分割需要的阈值,这种方法的困难在于隶属函数的选择。
基于模糊集合和逻辑的分割方法是以模糊数学为基础,利用隶属图像中由于信息不全面、不准确、含糊、矛盾等造成的不确定性问题。
模糊C均值(Fuzzy C-Means)聚类论文:模糊C均值(Fuzzy C-Means)聚类支持向量机(SVM) Laws纹理测同质性模型 Gabor滤波器【中文摘要】图像分割是图像处理的一个重要工具,一个有效的、前端的、复杂的算法。
它能够简化对图像的后续处理,并在视频和计算机视觉方面都有应用,如目标定位或识别、数据压缩、跟踪、图像检索等等。
虽然大量的图像分割算法已被广大研究者提出并改进,但是没有人提出一种完美的,适合于任何一种图像的分割算法,现有的方法都多少存在着方法或算法上的不足。
因此到目前为止,图像分割作为一个重要工具的同时,仍然是图像处理领域的一个具有挑战性的难题。
当前,对基于像素级、多特征、多种分割算法相结合的分割方法的研究,已经成为图像分割领域的热点。
通过认真总结,本文对模糊聚类算法和优于传统机器学习的支持向量机方法,从理论和实验结果等方面都进行了全面系统的比较和分析。
通过像素颜色,纹理等特征来描述图像的具体信息,并结合模糊C均值聚类(FCM,Fuzzy C-Means)算法和支持向量机(SVM)的方法展开实验,主要任务如下:1.本文对模糊聚类算法特别是模糊C均值聚类(FCM,Fuzzy C-Means)分割算法进行细致深入的研究探讨,并认真研究了模糊聚类图像分割算法中初始聚类类别数确定、初始聚类中心和隶属度函数的选择。
2.以模糊C均值聚类(FCM,Fuzzy C-Means)理论为基础,提出了一种结合laws纹理测度与自适应阈值的FCM聚类算法对图像进行分割。
通过大量实验对比表明,该算法与人的视觉感知系统一致性好,对噪声有良好的抑制效果,节省实验过程中程序运行的时间,提高图像分割速度。
3.通过核函数类型、核参数、惩罚因子等因素,对采用支持向量机(SVM)进行图像分割的方法的可行性进行了分析、研究,提出了一种基于无监督的支持向量机分类算法,为使用支持向量机方法(SVM)进行图像分割提供了依据。
模糊C均值聚类算法实现与应用聚类算法是一种无监督学习方法,在数据挖掘、图像处理、自然语言处理等领域得到广泛应用。
C均值聚类算法是聚类算法中的一种经典方法,它将数据对象划分为若干个不相交的类,使得同一类中的对象相似度较高,不同类之间的对象相似度较低。
模糊C均值聚类算法是对C均值聚类的扩展,它不是将每个数据对象划分到唯一的类别中,而是给每个对象分配一个隶属度,表示该对象属于不同类的可能性大小。
本文主要介绍模糊C均值聚类算法的实现方法和应用。
一、模糊C均值聚类算法实现方法模糊C均值聚类算法可以分为以下几个步骤:1. 确定聚类数k与参数m聚类数k表示将数据分成的类别数目,参数m表示隶属度的度量。
一般地,k和m都需要手动设定。
2. 随机初始化隶属度矩阵U随机初始化一个k×n的隶属度矩阵U,其中n是数据对象数目,U[i][j]表示第j个对象隶属于第i个类别的程度。
3. 计算聚类中心计算每个类别的聚类中心,即u[i] = (Σ (u[i][j]^m)*x[j]) / Σ(u[i][j]^m),其中x[j]表示第j个对象的属性向量。
4. 更新隶属度对于每个对象,重新计算它对每个类别的隶属度,即u[i][j] = 1 / Σ (d(x[j],u[i])/d(x[j],u[k])^(2/(m-1))),其中d(x[j],u[i])表示第j个对象与第i个聚类中心的距离,k表示其他聚类中心。
5. 重复步骤3和4重复执行步骤3和4,直到满足停止条件,例如聚类中心不再变化或者隶属度矩阵的变化趋于稳定。
二、模糊C均值聚类算法应用模糊C均值聚类算法可以应用于多个领域,包括图像处理、文本挖掘、医学图像分析等。
下面以图像分割为例,介绍模糊C均值聚类算法的应用。
图像分割是图像处理中的一个重要应用,旨在将一幅图像分割成多个区域,使得同一区域内的像素具有相似度较高,不同区域之间的像素相似度较低。
常见的图像分割算法包括全局阈值法、区域生长法、边缘检测法等。
在Matlab中使用模糊C均值聚类进行图像分析的技巧在图像分析领域,模糊C均值聚类(FCM)是一种常用的工具,它可以帮助我们发现图像中隐藏的信息和模式。
通过使用Matlab中的模糊逻辑工具箱,我们可以轻松地实现FCM算法,并进行图像分析。
本文将介绍在Matlab中使用FCM进行图像分析的技巧。
首先,让我们简要了解一下FCM算法。
FCM是一种基于聚类的图像分割方法,它将图像的像素分为不同的聚类,每个聚类代表一类像素。
与传统的C均值聚类算法不同,FCM允许像素属于多个聚类,因此能够更好地处理图像中的模糊边界。
在Matlab中使用FCM进行图像分析的第一步是加载图像。
可以使用imread函数将图像加载到Matlab的工作区中。
例如,我们可以加载一张名为“image.jpg”的图像:```matlabimage = imread('image.jpg');```加载图像后,可以使用imshow函数显示图像。
这可以帮助我们对图像有一个直观的了解:```matlabimshow(image);```接下来,我们需要将图像转换为灰度图像。
这是因为FCM算法通常用于灰度图像分析。
可以使用rgb2gray函数将彩色图像转换为灰度图像:```matlabgrayImage = rgb2gray(image);```在使用FCM算法之前,我们需要对图像进行预处理。
预处理的目的是消除图像中的噪声和不必要的细节,从而更好地提取图像中的特征。
常用的图像预处理方法包括平滑、锐化和边缘检测等。
Matlab中提供了许多图像预处理函数。
例如,可以使用imnoise函数向图像中添加高斯噪声:```matlabnoisyImage = imnoise(grayImage, 'gaussian', 0, 0.01);```还可以使用imfilter函数对图像进行平滑处理。
常见的平滑方法包括均值滤波和高斯滤波:```matlabsmoothImage = imfilter(noisyImage, fspecial('average', 3));```一旦完成预处理步骤,我们就可以使用模糊逻辑工具箱中的fcm函数执行FCM算法。
基于模糊聚类的SAR图像分割算法研究摘要:本文针对合成孔径雷达(SAR)图像分割问题,提出了一种新的基于模糊聚类的图像分割算法。
首先,通过对SAR图像进行预处理,提取出SAR图像的特征向量;其次,利用模糊聚类算法对特征向量进行聚类,得到不同的图像区域;最后,根据聚类结果,对原始SAR图像进行分割。
在仿真实验中,本算法在分割准确率和分割速度方面均比传统算法有较大的提升,具有良好的应用前景。
关键词:SAR图像;图像分割;模糊聚类;特征向量;分割准确率;分割速度1. 引言SAR图像具有极高的分辨率和时空特性,因此在军事、遥感等领域得到了广泛应用。
其中,SAR图像分割是SAR图像处理中的重要问题,其目的是将SAR图像划分为不同的区域,进而对图像进行进一步分析和处理。
传统的SAR图像分割算法主要基于阈值、边缘和区域生长等方法,但这些方法往往受到图像噪声、复杂背景和弱边缘等问题的影响,导致分割结果不够准确。
因此,提出一种高效、精确的SAR图像分割算法具有重要的理论与实际意义。
2. 模糊聚类算法模糊聚类算法是一种常用的图像分割方法,其基本思想是将图像像素划分为不同的类别。
与传统的聚类算法不同,模糊聚类算法允许像素属于多个类别,从而能够更灵活地适应图像的复杂性。
本文采用了基于模糊C均值(FCM)算法的图像分割方法,其主要流程如下:1)初始化隶属度矩阵U和聚类中心矩阵C;2)通过更新隶属度矩阵U和聚类中心矩阵C,得到新的聚类结果;3)根据聚类结果计算目标函数值,若满足停止条件,则输出最终聚类结果;否则返回第二步。
3. 基于模糊聚类的SAR图像分割算法本文提出的基于模糊聚类的SAR图像分割算法主要包括以下步骤:1) SAR图像预处理。
在本算法中,采用小波变换对SAR图像进行去噪处理和图像增强,得到具有更好特征的SAR图像。
2)特征向量提取。
将预处理后的SAR图像划分为若干个大小相同的区域,然后提取每个区域的特征向量作为聚类的输入。
模糊 c 均值聚类算法概述模糊 c 均值聚类算法是一种基于模糊逻辑的聚类算法,其通过将每个数据点分配到不同的聚类中心来实现数据的分组。
与传统的 k-means 算法相比,模糊 c 均值聚类算法在处理数据集特征模糊和噪声干扰方面表现更好。
本文将详细介绍模糊 c 均值聚类算法的原理、优点和缺点,以及其在实际应用中的一些场景和方法。
原理模糊 c 均值聚类算法基于模糊集合理论,将每个数据点分配到不同的聚类中心,而不是像 k-means 算法一样将数据点硬性地分配到最近的聚类中心。
算法的核心是定义每个数据点属于每个聚类中心的权重,即模糊度。
具体而言,模糊 c 均值聚类算法的步骤如下:1.初始化聚类中心。
从输入数据中随机选择一些数据作为初始聚类中心。
2.计算每个数据点到每个聚类中心的距离。
可以使用欧氏距离或其他距离度量方法。
3.根据距离计算每个数据点属于每个聚类的模糊度。
模糊度是一个介于 0 和1 之间的值,表示某个数据点属于某个聚类的程度。
4.更新聚类中心。
根据数据点的模糊度重新计算每个聚类的中心位置。
5.重复步骤 2、3 和 4,直到聚类中心的位置不再发生明显变化或达到预定的迭代次数。
优点模糊 c 均值聚类算法相比传统的 k-means 算法具有以下优点:1.模糊度。
模糊 c 均值聚类算法可以为每个数据点分配一个模糊度值,这样可以更好地应对数据集中的噪声和模糊性。
而 k-means 算法仅将数据点硬性分配到最近的聚类中心。
2.灵活性。
模糊 c 均值聚类算法中的模糊度可以解释某个数据点同时属于多个聚类的情况,这在一些实际应用中可能是具有意义的。
3.鲁棒性。
模糊 c 均值聚类算法对初始聚类中心的选择相对不敏感,因此在大多数情况下能够获得较好的聚类结果。
缺点虽然模糊 c 均值聚类算法具有许多优点,但也存在一些缺点:1.计算复杂度。
模糊 c 均值聚类算法需要在每个迭代步骤中计算每个数据点与每个聚类中心的距离,这导致算法的计算复杂度较高。
加权模糊C均值算法在图像分割中的应用摘要:基于模糊C均值聚类的图像分割法是图像分割领域中广泛应用的一种算法,特别适合解决灰度图像中存在的模糊和不确定性的问题。
但是由于噪声等干扰因素的影响,使得利用传统的聚类方法进行图像分割得不到满意的结果,鉴于此,本文提出了基于二维直方图加权的塔形模糊c均值聚类算法和基于统计检验指导的WFCM算法。
论文关键词:图像分割,聚类分析,FCM,WFCM,塔形分解图像分割是数字图像处理中的关键技术之一,图像分割的好坏直接影响对计算机视觉中的图像理解。
在众多的图像分割算法中,基于聚类分析的图像分割方法是图像分割领域中一类极其重要和应用相当广泛的算法。
传统的聚类分析是一种硬划分,它把每个待辨识的对象严格地划分到某个类中,具有非此即彼的性质,因此这种分类的类别界限是分明的。
而实际上大多数对象并没有严格的属性,它们在性态和类属方面存在着中介性,适合进行软划分。
Zadeh提出的模糊集理论为这种软划分提供了有力的分析工具,人们开始用模糊的方法来处理聚类问题,并称之为模糊聚类分析,将模糊聚类分析引入图像分割之中,便形成了模糊聚类图像分割技术。
基于模糊C均值聚类的图像分割方法是图像分割领域中广泛应用的算法。
FCM算法的本质上是一种局部搜索寻优技术,它是通过极小化目标函数来求得最优解。
基于模糊C均值聚类的图像分割方法适合解决灰度图像中存在的模糊和不确定性的问题。
但是,在实际的图像中,由于噪声等干扰因素的影响,使得利用传统的聚类方法进行图像分割得不到满意的结果。
鉴于此,本文提出了一种基于二维直方图加权的塔形模糊c均值聚类算法。
二、加权FCM算法模糊C均值聚类算法(FCM),是用隶属度确定每个数据点属于某个聚类的程度的一种聚类算法。
它早期作为硬均值聚类(HCM)算法的一种改进,在1973年,由Bezdek提出。
FCM算法可如下描述:初始化:给定聚类别数c,2≤c≤n,n是数据个数,设定迭代停止阈值,初始化聚类中心,设置迭代计数器b=0。
非局部模糊C均值聚类图像分割【摘要】改进的广义模糊C均值聚类分割算法(GIFP_FCM)是一种新型的模糊聚类算法。
然而,GIFP_FCM对噪声很敏感,这是因为该算法忽略了图像的空间信息。
为了解决这一问题,本文提出一种新算法,即非局部自适应空间约束聚类算法(FCA_NLASC)。
在该方法中,一种新的非局部自适应空间信息被引入到改进的GIFP_FCM的目标函数。
该算法的特点是控制每个像素在非局部空间信息图像中的噪声。
对于合成图像和真实图像,与GIFP_FCM算法比较,实验结果表明,FCA_NLASC算法能够较好地保持图像细节特征,并且对噪声具有较强的鲁棒性。
【关键词】图像分割;模糊C均值;模糊聚类;K均值;空间信息图像分割是计算机视觉和图像处理中最重要的研究课题之一。
图像分割的任务是将图像分成若干非重叠的均匀特征区域,如强度,颜色,质地等。
在过去的几十年中,许多细分算法已经被开发。
模糊聚类是图像分割算法中最广泛使用的方法。
由于引入每个图像的模糊性,模糊聚类可以保留更多的信息。
模糊聚类的一个主要缺点是对图像中的噪声较敏感。
为了解决这个问题,本文将图像中获得的局部空间信息结合到模糊聚类算法中。
改进模糊分区的广义模糊C均值聚类算法(GIFP_FCM)是一种新型的模糊聚类算法。
在GIFP_FCM算法中,一个新的隶属度约束条件被引入到目标函数中以得到更清晰的分区。
引入一个参数,它可以控制GIFP_FCM算法的收敛速度,而且比FCM算法收敛地更快。
当GIFP_FCM算法用于正常灰度级图像时,对噪声很敏感。
但事实上,将局部空间信息引入GIFP_FCM算法中即可克服其对噪声的灵敏度。
然而,当图像中的噪声为高电平时,一个像素的相邻像素可能含有异常特征。
因此,含局部空间信息的GIFP_FCM算法得不到满意的分割效果。
在本文中,首先定义了一种新的非局部自适应空间条件,它由图像恢复中的非局部均值方法获得。
然后,将该约束条件引入GIFP_FCM的目标函数,并提出了一种新的模糊聚类算法,称为非局部自适应空间约束模糊聚类算法(FCA_NLASC),用以解决在灰度图像中GIFP_FCM算法对噪声的敏感度。
基于模糊C均值聚类算法的图像分割研究随着科学技术的迅速发展,图像处理和分析技术在各个领域得到了广泛应用。
图像分割作为图像处理中的重要环节,对于提取图像中的对象、边缘、轮廓等特征起着至关重要的作用,成为图像处理和分析领域的热点问题。
本文将介绍一种基于模糊C均值聚类算法的图像分割方法,该方法在图像处理和分析领域的应用具有广泛的前景。
一、图像分割技术基本原理图像分割是将图像中的像素划分成若干个具有独立形态、颜色、纹理等特征的区域,也就是到达一个将图像语义上的像素类别转化为离散数值上的过程。
图像分割技术主要分为基于阈值、区域生长、边缘检测、基于特征的方法和聚类分析等。
其中,聚类分析是一种重要的无监督图像分割方法,其基本思想是根据像素之间的相似度将所有图像像素划分为若干个聚类。
聚类分析中常用的聚类算法包括K均值聚类、模糊C均值聚类等,而模糊C均值聚类算法是一种比较常用且有效的聚类算法。
二、模糊C均值聚类算法基本原理模糊C均值聚类算法是一种基于多元统计分析、模糊集合理论和聚类分析的无监督聚类算法。
该算法可以克服K均值聚类算法对噪声和异常值的敏感性,得到更为准确的聚类结果。
具体地说,模糊C均值聚类算法的基本思路是将每个像素作为一个数据点,将图像中所有像素点分成K个类,每个像素点属于某一类的概率是模糊的。
模糊C均值聚类算法的目标是最小化聚类误差平方和,即最小化如下式子:其中,m是模糊度系数,用于描述每个像素点属于某一类别的程度。
当m趋近于1时,模糊C均值聚类算法退化为K均值聚类算法;而当m趋近于无穷大时,模糊C均值聚类算法收敛于直方图均衡化操作。
基于此,模糊C均值聚类算法通过不断迭代优化模糊度系数和聚类中心,直到达到用户指定的收敛条件为止。
三、基于模糊C均值聚类算法的图像分割方法基于模糊C均值聚类算法的图像分割方法可以分为以下步骤:(1)图像预处理:对图像进行去噪、灰度化等预处理,提高图像的质量和稳定性。
(2)像素聚类:将图像中的像素点作为数据点,采用模糊C均值聚类算法将所有像素点分成K个类别。
Matlab中的模糊聚类分析方法探究一、引言近年来,随着数据科学和机器学习的迅速发展,模糊聚类分析成为了处理模糊和不确定性数据的一种重要方法。
而在众多的模糊聚类算法中,Matlab中提供的模糊C-均值聚类算法(Fuzzy C-Means clustering)无疑是其中最受瞩目的。
本文旨在探究Matlab中的模糊聚类分析方法,并对其应用进行深入剖析。
二、模糊聚类分析方法概述模糊聚类分析是一种基于模糊数学的聚类方法。
与传统的硬聚类方法不同,模糊聚类允许数据点属于多个聚类中心,以概率形式给出。
这种灵活性使得模糊聚类能够更好地处理存在模糊性和不确定性的数据。
模糊C-均值算法是模糊聚类中的一种经典算法,也是Matlab中常用的模糊聚类算法。
该算法的基本思想是:通过迭代地分配数据点到聚类中心,并更新聚类中心,不断优化聚类结果。
具体而言,算法的步骤包括初始化聚类中心、计算数据点与聚类中心的距离、根据距离更新模糊划分矩阵和聚类中心等。
三、Matlab中的模糊聚类分析方法在Matlab中,模糊C-均值算法可以通过fuzzy方法或fcm方法进行实现。
这两个方法均提供了一系列参数和选项,以满足不同应用场景的需求。
1. fuzzy方法fuzzy方法是Matlab中的基于模糊理论的聚类方法。
通过设置模糊聚类的目标函数和约束条件,可以实现不同的聚类分析。
该方法对应的函数为fcm函数。
在调用fcm函数时,需要指定数据集、聚类数、迭代次数等参数。
同时,还可以通过设置模糊度指数和终止条件等参数控制聚类的具体过程。
值得一提的是,该方法还支持自动确定聚类数的操作,为聚类分析提供了更大的灵活性。
2. fcm方法fcm方法也是Matlab中的模糊C-均值算法的一种实现方式。
与fuzzy方法相比,fcm方法更加灵活,并且在处理大规模数据时速度更快。
该方法对应的函数为fcm函数。
在使用fcm函数时,需要设置与fuzzy方法类似的参数,例如数据集、聚类数和迭代次数等。
模糊C均值聚类算法的优化与应用研究近年来,随着大数据和人工智能技术在各行业的广泛应用,聚类算法作为一种重要的无监督学习方法,被广泛应用于数据挖掘、图像识别、模式识别等领域。
在众多聚类算法中,模糊C均值聚类算法(FCM)因其简单易实现、适用范围广等特点而备受关注。
然而,FCM算法在处理较大数据量、较高维度数据时,聚类结果模糊度高、计算复杂度大等问题也日益凸显。
本文将从模糊C均值聚类算法的原理入手,探讨了几种优化方法并进行实验验证,分析其在实际应用中的效果。
一、模糊C均值聚类算法原理模糊C均值聚类算法是基于向量量化(Vector Quantization)原理的一种聚类算法。
旨在给定数据集将其中的数据分成k个不同的簇。
其主要思想是通过计算数据点到各簇中心的距离,来确定一个数据点可能属于各个簇的概率值,从而获得各数据点所属簇的隶属度矩阵,以此反复迭代更新簇中心和隶属度矩阵,最终达到聚类的目的。
具体来说,设原始数据集为$X=\{x_1,x_2,……,x_n\}$,要将其分成k个簇,每个簇的质心为$V=\{v_1,v_2,……,v_k\}$。
根据数据点x到簇质心$V_j$的距离,定义出数据点x属于簇j的隶属度$U_{ij}$: $$U_{ij}=\frac{1}{\sum_{k=1}^k(\frac{||x_i−v_j||}{||x_i−v_k||})^{\frac {2}{m−1}}}$$其中,m为模糊指数,$||·||$表示欧式距离。
在U矩阵和V矩阵确定之后,对于一个新的数据点x,将其划分到隶属度最大的簇中。
反复迭代更新U矩阵和V矩阵,直到收敛为止。
二、模糊C均值聚类算法的问题尽管模糊C均值聚类算法的原理较为简单,但其在实际应用中仍存在一些问题。
本节将主要讨论FCM算法可能遇到的两大问题:聚类结果模糊度高和计算复杂度大。
1.聚类结果模糊度高FCM算法的隶属度矩阵U的值为[0,1]之间的实数,因此一个数据点不属于任何一个簇的概率不为0.这就导致FCM算法的聚类结果模糊度高,无法唯一确定每个数据点的簇归属。
目录摘要 (III)Abstract (V)第一章 绪论 (1)1.1 研究背景 (1)1.2 国内外研究现状 (3)1.3 本文的主要工作 (4)1.3.1研究目标 (4)1.3.2研究内容 (5)1.3.3本文结构 (6)第二章 聚类分析及模糊聚类算法 (7)2.1 聚类分析 (7)2.2 常见的聚类算法 (9)2.2.1K-means算法 (9)2.2.2K-medoids算法 (10)2.2.3BIRCH算法 (12)2.2.4DBSCAN算法 (13)2.2.5STING算法 (14)2.3 模糊C-均值聚类 (15)第三章 模糊C-均值聚类算法的改进 (17)3.1 FCM算法有效性判别 (17)3.2 基于粒子群的FCM算法(PSO-FCM) (19)3.2.1粒子群算法(PSO) (19)3.2.2基于粒子群的FCM算法(PSO-FCM) (21)3.3 模拟退火粒子群算法(SA-PSO) (22)3.3.1模拟退火算法 (22)3.3.2模拟退火粒子群算法(SA-PSO) (26)3.4 基于SA-PSO的FCM聚类 (27)3.5 实验结果 (28)第四章 图像分割算法 (29)4.1 图像分割算法 (29)4.1.1阈值化分割方法 (30)4.1.2基于边缘检测的方法 (31)4.1.3基于区域的分割方法 (32)4.1.4其它基于特定理论工具的分割技术 (33)4.2 图像分割质量的评价方法 (33)4.3 基于模糊聚类算法的图像分割算法研究现状 (34)第五章 基于模糊聚类算法的图像分割 (37)5.1 基于FCM聚类算法的图像分割 (37)5.2 基于改进的FCM聚类算法的图像分割 (38)- I -5.2.1基于PSO的模糊C-均值聚类图像分割算法 (38)5.2.2基于SA-PSO的模糊C-均值聚类图像分割算法 (39)5.3 实验结果 (41)第六章 总结与展望 (45)6.1 本文总结 (45)6.2 研究展望 (45)参考文献 (47)攻读硕士学位期间发表的学术论文及参与的项目 (51)致谢 (53)II模糊C-均值聚类算法及其在图像分割中的应用摘要聚类分析作为一种非监督学习方法,是机器学习领域中的一个重要的研究方向。
一种快速模糊C均值聚类算法的颅脑图像的分割摘要:颅脑图像分割的准确性对医生判断病变并作出正确的诊断至关重要。
本文利用图像分割技术,采用一种快速模糊C均值聚类算法,实现了颅脑图像白质、灰质、脊髓液以及背景的自动分割。
该算法在Visual C++2008软件开发平台上编程实现并与其他方法做了比较。
实验表明该算法对于具有多峰直方图和边缘模糊的颅脑图像具有良好的实时性和分割效果,为接下来的颅脑的病变诊断等其他工作奠定了良好的基础。
关键词:模糊C均值聚类;颅脑图像;自动分割;边缘模糊;中图法分类号:TP391.4 文献标识码:JAbstract:Using the technology of image segmentation,introduced a fast fuzzy c-means(FFCM)algorithm,with which the background,the white matter area,gray matter area and cerebrospinal fluid area could be divided automatically. On the Visual C++ 2008 software development platform,the algorithm was completed and compared with other algoithms.The results indicated that the algorithm was of goog real-time capacity and accuracy in segmentation of craniocerebral image that had multi-peaks histogram and edge blur .This work would lay the foundation a better pathological changes diagnosis.Key words:Fuzzy c-means ;Craniocerebral ;Automatic threshold ;Edge blur0引言医学图像分割是医学图像处理领域里的一个经典难题,也是影响医学图像在临床上广泛应用的一个瓶颈问题,如三维重构、定量分析和可视化等[ 1]。
模糊C均值聚类算法在图像分割中的应用【摘要】由于在大多数图像分割场合,不可能清楚知道图像中的各个物体位置,因此在一定意义上图像分割可以作为一个聚类问题来解决。
并且由于图像具有的模糊和不均匀性,因而模糊C均值聚类技术在图像分割中得到成功的应用。
本文对标准模糊C均值聚类分割算法进行了简单的介绍,采用了一种结合空间信息的快速模糊C均值聚类分割算法。
关键词:图像分割,模糊聚类算法,模糊C均值聚类算法1、模糊聚类算法传统的聚类方法在划分对象时是硬性的,对象归属哪一类是明确的,不能同时属于两个或者多个类别。
换句话说,每一个对象与最终的类别是一一对应的,不会出现一个元素分属多个类的情况,类与类之间有着严格的界限。
自然世界中的事物都存在模糊性,没有“非此即彼”的严格界限,一个事物与多个类别都相关的情况是十分正常的。
因此,要精确地表示这种复杂的关系就需要对这种“亦此亦彼”的性质进行描述。
与硬性的聚类划分相比,模糊聚类将模糊集合理论引入到聚类算法中,利用模糊数学对处理事物之间模糊关系的精确描述,能更好地解决了现实世界中的实际问题。
模糊聚类算法用数学的方法描述了对象与不同类别之间的隶属关系,打破了严格的类别界限,建立起样本对于类别的不确定性的描述,实现了聚类问题的软划分。
隶属度是样本类属模糊性的度量,隶属度的大小用来区分对象隶属于不同类别的差异程度。
使用模糊聚类算法来对数据对象集合进行划分需要构造模糊分类矩阵。
模糊聚类算法多种多样,随着对模糊聚类的研究,模糊聚类算法不断发展和改进。
其中,基于模糊关系和目标函数是最常见的两类,前者出现较早,对对象集合的大小有局限性,后者以其简便、通用性高、容易实现等优势逐渐成为各个领域最流行的模糊聚类方法。
神经网络的发展也为模糊聚类分析注入了新的活力,尤其是提高了方法的效率,因此这类方法受到了各国研究者的重视。
2.模糊C均值聚类算法在图像分割中的应用模糊C 均值聚类算法(Fuzzy C-means,FCM)是一种经典的模糊聚类算法,它是从硬C 均值聚类算法(Hard C-means,HCM)改进优化而来的。
图像与多媒体技术• Image & Multimedia Technology【关键词】医学图像分割 医学图像应用 阈值 模糊c-均值 活动轮廓模型 人工神经网络1 引言医学图像分割是医学图像处理和分析中的重要步骤,其最终目标是使用一系列特征(如图像灰度、纹理、颜色以及局部统计特征等)将图像中“感兴趣区域”提取出来,辅助医生诊断、制定治疗计划和进行临床研究。
然而,成像过程中噪音、场偏移效应等因素使获得的图像模糊、不均匀,加上医学图像本身对比度低、组织与病灶之间边界模糊,分割算法的结果受到很大影响。
现存的分割算法都存在一定的针对性和适用性,在临床治疗中,需要针对具体应用领域选择适当的分割方法。
2 常用医学图像分割方法2.1 阈值法阈值法是最常见、应用最广泛的一种分割技术。
阈值法基于图像中目标物体与背景像素灰度的差异性,把图像分为灰度值不同的目标和背景区域展现在直方图中,直方图中,不同的目标和背景呈现出不同的峰,选取一个或多个阈值对图像进行分割,如图1所示。
对待分割图像的灰度直方图阈值的选取是整个分割过程中至关重要的一步,可通过直方图灰度分布、双峰法、迭代法、大津法等进行阈值的选取,很多学者对该问题进行了研究,申铉京等人[1]提出了三维直方图重建和降维的Otsu 阈值分割算法,该算法具有更强的抗噪性,分割效果较为理想,时间复杂度远低于三维Otsu 法。
邸秋艳[2]提出了基于Tsallis 熵的阈值图像分割方法,在阈值的选择过程中,利用Tsallis 熵的非延广性提高了分割的准确性。
尽管阈值法处理直观,计算量小,但在具体使用中存在如下问题:(1)选取合适的阈值相对困难,不当的医学图像分割方法文/潘晓航阈值选取难以得到准确的分割结果。
(2)对灰度差异不明显或物体灰度值大量聚集在某一范围的图像分割效果较差。
2.2 模糊c-均值聚类算法从生物学成像设备得到的图像数据具有不确定性(即模糊性),模糊分割算法能保留更多的原始信息,这使得模糊技术在图像分割中得到广泛应用。
模糊C均值聚类算法在图像分割中的应用
【摘要】由于在大多数图像分割场合,不可能清楚知道图像中的各个物体位置,因此在一定意义上图像分割可以作为一个聚类问题来解决。
并且由于图像具有的模糊和不均匀性,因而模糊C均值聚类技术在图像分割中得到成功的应用。
本文对标准模糊C均值聚类分割算法进行了简单的介绍,采用了一种结合空间信息的快速模糊C均值聚类分割算法。
关键词:图像分割,模糊聚类算法,模糊C均值聚类算法
1、模糊聚类算法
传统的聚类方法在划分对象时是硬性的,对象归属哪一类是明确的,不能同时属于两个或者多个类别。
换句话说,每一个对象与最终的类别是一一对应的,不会出现一个元素分属多个类的情况,类与类之间有着严格的界限。
自然世界中的事物都存在模糊性,没有“非此即彼”的严格界限,一个事物与多个类别都相关的情况是十分正常的。
因此,要精确地表示这种复杂的关系就需要对这种“亦此亦彼”的性质进行描述。
与硬性的聚类划分相比,模糊聚类将模糊集合理论引入到聚类算法中,利用模糊数学对处理事物之间模糊关系的精确描述,能更好地解决了现实世界中的实际问题。
模糊聚类算法用数学的方法描述了对象与不同类别之间的隶属关系,打破了严格的类别界限,建立起样本对于类别的不确
定性的描述,实现了聚类问题的软划分。
隶属度是样本类属模糊性的度量,隶属度的大小用来区分对象隶属于不同类别的差异程度。
使用模糊聚类算法来对数据对象集合进行划分需要构造模糊分类矩阵。
模糊聚类算法多种多样,随着对模糊聚类的研究,模糊聚类算法不断发展和改进。
其中,基于模糊关系和目标函数是最常见的两类,前者出现较早,对对象集合的大小有局限性,后者以其简便、通用性高、容易实现等优势逐渐成为各个领域最流行的模糊聚类方法。
神经网络的发展也为模糊聚类分析注入了新的活力,尤其是提高了方法的效率,因此这类方法受到了各国研究者的重视。
2.模糊C均值聚类算法在图像分割中的应用
模糊C 均值聚类算法(Fuzzy C-means,FCM)是一种经典的模糊聚类算法,它是从硬C 均值聚类算法(Hard C-means,HCM)改进优化而来的。
模糊集合理论出后,1969 年RusPini在自己的文章中阐述了模糊划分这一概念,并给出了硬聚类算法的原理,Dunn 提出了模糊聚类算法,此后各国的研究者利用这一概念,通过对目标函数进行优化提出了多种聚类方法。
Bezdek通过改进模糊聚类算法提出了模糊C 均值聚类理论。
模糊C 均值聚类算法属于基于目标函数的模糊聚类算法的范畴,即基于目标函数的非线性迭代最优化方法,依据最小二乘原理,通过计算目标函数的均方差,得出每个数据点对类中心的隶属程度和目标函数的最
小值。
现在,模糊 C 均值聚类方法已经有较为完善的理论基础,成为图像分割领域的一个有效工具。
近年来,这一方法仍然被研究者不断地改进和优化,无论是理论还是应用都得到了迅猛的发展。
[1]
在诸多的图像分割算法中,基于模糊C均值(CFM)的分割算法是最常见的一种,一方面,该算法具有良好的局部收敛特性。
另一方面,它适合在高维特征空间中进行像素的分类。
模糊C均值聚类算法通过对目标函数的迭代优化实现集合划分,它可以表示出图像各个像素属于不同类别的程度。
[2]
3.模糊C均值聚类算法在图像分割中主要步骤
一是当分割精度没有达到需求和要求时,有必要进一步开展特征选择,即对以上三个部分进行重复。
二是根据已经明确的特征范围和特征标准,采用合理的分割技术来分割特征空间,同时以分割对象的特征标准度范围和标准度量值为依据来匹配中的各个区域以确定需要进行分割的区域。
三是对分割对象本身所具有的所有特性做出分析,为分割需要提供依据。
在图像分割过程中,选取这些特征的原则为更好、更容易的区分分割对象。
在此方面又包括以下几点内容:可靠性,属于同类对象的特征应当相似。
区别性,属于不同类别的识别对象所具有的特征值应当存在差异。
独立性,在分割过程中所使用的特征应当不存在紧密关联。
四是通过特征转换成为确定特征基础上的特征空间。
在此过
程中变换域方法、神经网络方法以及模糊理论等方法都可以作为变换方法。
4.模糊C均值聚类算法在图像分割中存在的问题和需要的改进
目前,图像分割还没有一种通用的、能使各种类型的图像达到最优分割质量的图像分割方法,所提出的各种图像分割方法都只是针对特定类型的图像而言。
较之相应的传统方,基于模糊理论的图像分割能取得更好的分割效果,因而具有很好的发展前景。
[3]
将模糊C均值聚类算法应用于图像分割,不论采用何种算法,首先都需要通过构造隶属函数来完成待分割图像到模糊矩阵的映射,不同的隶属函数会对算法的处理结果以及算法实现的难易程度产生不同的影响。
因此,隶属函数的设计是非常关键的。
这要求隶属函数必须能客观、准确地反映图像中存在的不确定性。
目前,还没有一个可遵循的一般性准则。
在对实际图像进行分割时,通常需要我们根据经验来确定合理的隶属函数。
因此,关于隶属函数的建立原则及方法的研究将是今后努力的方向之一。
目前有人尝试将模糊系统的处理方法引入到图像处理中,将图像分割的过程看作是一个模糊控制过程,首先选取合适的图像特征,然后建立起一套用于图像分割的模糊规则,最后按照模糊推理的方法推理出最后的分割结果。
该方法具有较好的通用性,并且分割的效果取决于模糊规则建立的好坏。
该方法是一种值得期待的研究方向。
参考文献
[1] 章毓晋.图像分割[M].北京:科学出版社,2001.
[2] 丁军娣.复杂结构的聚类学习及图像分割研究[D].南京航空航天大学,2008.
[3] 高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004.
作者简介
郑丽鸽(1989.02-),女,河南许昌县人,硕士,五邑大学,研究方向:图像分割,联系地址:广东省江门市蓬江区东城村22号五邑大学,邮编529000。