鲁棒稳定性理论robustfourth
- 格式:pdf
- 大小:332.73 KB
- 文档页数:39
鲁棒控制理论第六章本章将介绍鲁棒控制理论的基本概念和重要性。
鲁棒控制是一种能够在面对各种不确定性和扰动时保持系统稳定性和性能的控制方法。
在实际工程中,由于各种外部因素的存在,系统常常会面临不确定性和扰动,这导致传统控制方法的性能下降或失效。
鲁棒控制理论的提出旨在解决这些问题,使得控制系统能够在不确定环境下保持稳定并具备良好的性能。
鲁棒控制理论的基本概念包括:鲁棒稳定性和鲁棒性能。
鲁棒稳定性指的是控制系统在面对各种不确定性时能够保持稳定,即使系统参数发生变化或外部干扰存在,仍能使受控系统收敛到期望状态。
鲁棒性能则是指控制系统在鲁棒稳定的前提下,仍能保持良好的控制性能,如快速响应、抑制干扰等。
___控制在工程领域具有广泛的应用价值。
它能够有效应对各种不确定性因素,如参数变化、外部扰动、测量误差等,保证系统稳定和性能优良。
鲁棒控制不仅能够应用于传统的电气和机械系统中,还可以应用于复杂的多变量和非线性系统中,如控制网络、飞行器、汽车等。
因此,掌握鲁棒控制理论对于工程领域的研究和实践具有重要意义。
在接下来的章节中,我们将进一步探讨___控制理论的原理和方法,以及其在实际工程中的应用案例。
通过深入了解和研究鲁棒控制理论,我们将能够更好地设计和实现稳定可靠的控制系统,提高工程领域的控制技术水平。
鲁棒控制理论是一种应用于控制系统设计的理论框架,旨在解决系统不确定性和外部干扰对系统性能造成的影响。
该理论的主要目标是设计出对参数变化、模型不准确性和外部扰动具有强鲁棒性的控制器。
鲁棒控制理论的主要原理是通过在控制系统中引入设计参数的变化范围,并使用鲁棒性准则来评估控制系统的性能。
这样设计的控制器能够在不确定性条件下保持系统的稳定性和性能。
在鲁棒控制理论中,主要采用了一些常见的数学工具和方法,如线性矩阵不等式、H∞控制、μ合成等。
这些方法能够有效地处理系统不确定性和外部干扰,并提供了一种灵活且可行的控制系统设计方案。
总而言之,鲁棒控制理论是一种应对系统不确定性和外部干扰的有效工具。
第五章 系统的稳定性和鲁棒性能分析5.1 BIBO 稳定性对实际工程中的动态系统来讲,稳定性是最基本的要求。
一般的稳定性含义有两个。
一个是指无外部信号激励的情况下,系统的状态能够从任意的初始点回到自身所固有的平衡状态的特性。
另一种定义是指在有外部有界的信号激励下,系统的状态,或输出,响应能够停留在有界的范围内。
对于线性系统,这两个稳定性定义是等价的,但是对一般的非线性系统则不是等价的。
前者称为Lyapunov 稳定,而后者称为BIBO 稳定。
本小节我们先考虑BIBO 稳定性。
假设系统H 由如下状态方程来描述: (5.1.1)⎩⎨⎧==),(),(u x h y u x f xH &:如图5.1.1所示,是系统的内部状态,u 和分别是外部输入信号和输出信号。
设输入信号u 属于某一个可描述的函数空间U 。
那么,对于任意nR t x ∈)(y U u ∈,系统H 都有一个输出响应信号y 与之对应,为了简单起见,记其对应关系为(5.1.2)Hu y =显然,系统Σ对应于的输出响应信号的全体同样地构成一个空间,记为Y 。
因此,从数学的意义上讲,系统U u ∈H 实际上是输入函数空间U 到输出函数空间的一个映射或算子。
这也表明,我们可以更加严格地使用算子理论来研究系统Y H 的性质。
定义5.1.1 设为关于时间)(t u ),0[∞∈t 的函数,则的截断的定义为 )(t u )(t U T (5.1.3)⎩⎨⎧>≤≤=T t Tt t u t u T ,00),()(定义5.1.2 若算子H 满足(5.1.4) T T T Hu Hu )()(=则称算子H 是因果的。
而式(5.1.4)称为因果律。
因果算子的物理意义很明确,即T 时刻的输入并不影响))((T t t u >T 时刻以前的输出响应。
T Hu )(定义 5.1.3 设算子H 满足p T p T L u L HU ∈∀∈,)(。
鲁棒控制理论综述作者学号:摘要:本文首先介绍鲁棒控制理论涉及的两个基本概念(不确定性和鲁棒)和发展过程,然H控制理论,最后指出鲁棒控制研后叙述鲁棒控制理论中两种主要研究方法:μ理论、∞究的问题和扩展方向。
H控制理论关键词:鲁棒控制理论,μ理论,∞一、引言自从系统控制(Systems and Control)作为一门独立的学科出现,对于系统鲁棒性的研究也就出现了。
这是由这门学科的特色和研究对象决定的。
对于世界上的任何系统。
由于系统本身复杂性或是人们对其认识的不全面,在系统建立模型时,很难用数学语言完全描述刻画。
在这样的背景下,鲁棒性的研究也就自然而然地出现了。
二、不确定性与鲁棒1、不确定性谈到系统的鲁棒性,必然会涉及系统的不确定性。
由于控制系统的控制性能在很大程度上取决于所建立的系统模型的精确性,然而,由于种种原因实际被控对象与所建立的模型之间总存在着一定的差异,这种差异就是控制系统设计所面临的不确定性。
这种不确定性通常分为两类:系统内部的不确定性和系统外部的不确定性。
这样,就需要一种能克服不确定性影响的控制系统设计理论。
这就是鲁棒控制所要研究的课题。
2、鲁棒“鲁棒”一词来自英文单词“robust”的音译,其含义是“强壮”或“强健”。
所谓鲁棒性(robustness),是指一个反馈控制系统在某一特定的不确定性条件下具有使稳定性、渐近调节和动态特性这三方面保持不变的特性,即这一反馈控制系统具有承受这一类不确定性的能力。
具有鲁棒性的控制系统称为鲁棒控制系统。
在工程实际控制问题中,系统的不确定性一般是有界的,在鲁棒控制系统的设计中,先假定不确定性是在一个可能的范围内变化,然后在这个可能的变化范围内进行控制器设计。
鲁棒控制系统设计的思想是:在掌握不确定性变化范围的前提下,在这个界限范围内进行最坏情况下的控制系统设计。
因此,如果设计的控制系统在最坏的情况下具有鲁棒性,那么在其他情况下也具有鲁棒性。
三、发展历程鲁棒控制系统设计思想最早可以追溯到1927年Black针对具有摄动的精确系统的大增益反馈设计。
数学中的Robust Optimization在数学中,Robust Optimization(鲁棒优化)是指在处理不确定性和变动性问题时,寻求一种能够保证系统稳定性和最佳性能的优化方法。
在实际应用中,很多问题都存在不确定性和变动性,例如经济模型中的市场波动、工程设计中的材料变化、交通规划中的天气变化等等。
传统的优化方法往往无法有效处理这些问题,而鲁棒优化则能够更好地应对这些挑战。
1. 概念理解鲁棒优化的概念源于20世纪90年代,最初主要应用于控制理论和运筹学领域。
随着对不确定性建模和处理技术的不断完善,鲁棒优化逐渐成为了数学优化领域的热门研究方向。
其核心思想是在优化问题中引入不确定因素的范围,使得所得到的解对于一定范围内的不确定性都具有稳定的性能。
这一点对于实际问题的解决非常重要,因为现实世界中很多问题的输入数据都难以完全确定,甚至是随机变动的。
2. 鲁棒优化的应用领域鲁棒优化在实际应用中有着广泛的应用。
在工程领域,例如建筑结构设计中考虑到材料强度的波动、电力系统中考虑到负荷变动等都涉及到鲁棒优化;在金融领域,投资组合优化中考虑到市场波动、风险控制中考虑到利率变化等也需要运用鲁棒优化方法;在交通运输领域,交通流量预测中考虑到交通事故、天气影响等都需要鲁棒优化的技术支持。
鲁棒优化在各个领域都有着非常重要的应用和意义。
3. 个人观点个人认为,鲁棒优化的重要性在当今社会中日益凸显。
随着社会经济的发展和科技的进步,不确定性和变动性问题必然会越来越复杂和严重。
在这种背景下,如何合理地处理这些问题,有效地利用有限的资源,实现系统的稳定性和性能最优是当前亟待解决的问题。
鲁棒优化恰恰提供了一种有效的方法来解决这些问题,为实际问题的解决提供了新的途径和思路。
4. 总结回顾通过对鲁棒优化的学习和研究,我们不仅对于优化问题的理解更加深入,而且也为实际问题的解决提供了更多的选择和方法。
在未来的研究和实践中,我相信鲁棒优化一定会有着更广泛的应用和更深远的影响。
鲁棒性介绍鲁棒是Robust的音译,也就是健壮和强壮的意思。
它是在异常和危险情况下系统生存的关键。
比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。
所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。
根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。
以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。
1.溯源和背景鲁棒性原是统计学中的一个专门术语,20世纪70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。
在实际问题中,系统特性或参数的摄动常常是不可避免的。
产生摄动的原因主要有两个方面,一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。
因此,鲁棒性已成为控制理论中的一个重要的研究课题,也是一切类型的控制系统的设计中所必须考虑的一个基本问题。
对鲁棒性的研究主要限于线性定常控制系统,所涉及的领域包括稳定性、无静差性、适应控制等。
2.原理鲁棒性问题与控制系统的相对稳定性(频率域内表征控制系统稳定性裕量的一种性能指标)和不变性原理(自动控制理论中研究扼制和消除扰动对控制系统影响的理论)有着密切的联系,内模原理(把外部作用信号的动力学模型植入控制器来构成高精度反馈控制系统的一种设计原理)的建立则对鲁棒性问题的研究起了重要的推动作用。
当系统中存在模型摄动或随机干扰等不确定性因素时能保持其满意功能品质的控制理论和方法称为鲁棒控制。
早期的鲁棒控制主要研究单回路系统频率特性的某些特征,或基于小摄动分析上的灵敏度问题。
现代鲁棒控制则着重研究控制系统中非微有界摄动下的分析与设计的理论和方法。
控制系统的一个鲁棒性是指控制系统在某种类型的扰动作用下,包括自身模型的扰动下,系统某个性能指标保持不变的能力。
对于实际工程系统,人们最关心的问题是一个控制系统当其模型参数发生大幅度变化或其结构发生变化时能否仍保持渐近稳定,这叫稳定鲁棒性。
区间系统的鲁棒严格正实综合Robust Strictly Positive Real Synthesis for Interval Systems传递函数的严格正实性(Strictly Positive Realness, SPR)是系统的一种重要性能,在绝对稳定性与超稳定性理论[1][2]、无源性分析[3]、二次优化控制[4]及自适应系统理论[5]等领域中起着十分重要的作用。
因实际系统中总存在有不确定性,研究系统的鲁棒严格正实性尤为有意义。
二十世纪九十年代以来,受鲁棒稳定性分析中参数化方法的刺激 [6]-[8],系统鲁棒严格正实性的研究得到了广泛的关注和发展[9]-[25]。
早期得到的多数结果是属于鲁棒严格正实分析的,针对鲁棒严格正实综合的有价值的结果较少。
系统鲁棒严格正实分析方面的最好结果是由文[11]及[17]几乎同时独立得到的“八顶点检验定理”。
对鲁棒严格正实综合问题,通过正实引理[1]-[5][26],可以给出传递函数的基于矩阵方程或矩阵不等式的正实性条件[20][26],但用该方法进行鲁棒严格正实综合时,须引进较多的变元,得到的矩阵方程或矩阵不等式的阶次较高,并且所得条件是用矩阵方程或矩阵不等式的可解性来表述的,而这一点在理论上未有完整的结果[26]。
综合性问题较分析性问题一般在数学上要更为困难些,综合性问题往往要解决存在性问题与构造性问题,而分析性问题则可在已经假设存在性的前提下展开。
就工程应用来说,综合性问题则更具有实际意义。
首先给出相关的定义、记号及基本问题的描述。
由于严格正实性源于控制理论的多个领域,不同的文献采用了稍有不同的定义[20]。
为明确起见,采用如下的定义:R 表示实数域,记为阶实系数多项式集合,n P n n n H P ⊂是n 阶实系数Hurwitz 稳定多项式(仅具负实部的根)集合。
在下述定义中,()()()()(),,p m n b s P a s P s b s a s ∈∈= 是有理函数。
关于鲁棒控制理论的综述摘要:首先介绍了鲁棒控制的概念及鲁棒控制理论的发展过程,叙述鲁棒控制理论中的3种主要研究方法——Kharitonov区间理论、结构奇异值理论(μ理论) 和H控制理论,最后指出了鲁棒控制尚未解决的问题和研究热点.关键词:鲁棒控制,Kharitonov区间理论,Η∞控制理论,μ理论一、引言鲁棒控制(Robust Control)方面的研究始于20世纪50年代.在过去的20年中,鲁棒控制一直是国际自控界的研究热点.鲁棒性(robustness)就是系统的健壮性.它是在异常和危险情况下系统生存的关键,比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能不死机、不崩溃,就是该软件的鲁棒性.所谓“鲁棒性”,是指控制系统在一定(结构、大小)的参数摄动下,维持某些性能的特性.根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性.以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器.鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法.鲁棒性一般定义为在实际环境中为保证安全要求控制系统最小必须满足的要求.一旦设计好这个控制器,它的参数不能改变而且控制性能保证.一般鲁棒控制系统的设计是以一些最差的情况为基础,因此一般系统并不工作在最优状态,常用的设计方法有:INA方法,同时镇定,完整性控制器设计,鲁棒控制,鲁棒PID控制以及鲁棒极点配置,鲁棒观测器等.鲁棒控制方法,是对时间域或频率域来说,一般假设过程动态特性的信息和它的变化范围.一些算法不需要精确的过程模型但需要一些离线辨识.鲁棒控制方法适用于稳定性和可靠性作为首要目标的应用,同时过程的动态特性已知且不确定因素的变化范围可以预估.飞机和空间飞行器的控制是这类系统的例子.过程控制应用中,某些控制系统也可以用鲁棒控制方法设计,特别是对那些比较关键且(1)不确定因素变化范围大;(2)稳定裕度小的对象.但是,鲁棒控制系统的设计要由高级专家完成.一旦设计成功,就不需太多的人工干预.另一方面,如果要升级或作重大调整,系统就要重新设计.通常,系统的分析方法和控制器的设计大多是基于数学模型而建立的,而且各类方法已经趋于成熟和完善.然而,系统总是存在这样或那样的不确定性.在系统建模时,有时只考虑了工作点附近的情况,造成了数学模型的人为简化;另一方面,执行部件与控制元件存在制造容差,系统运行过程也存在老化、磨损以及环境和运行条件恶化等现象,使得大多数系统存在结构或者参数的不确定性。
不确定时滞关联系统的鲁棒稳定性分析随着近年来各行各业对系统性能的要求越来越高,时滞多输入多输出(TMDI)关联系统在不确定情况下,稳定性的要求也就愈发重要起来,而针对不同的系统,在这些不确定情况下,鲁棒稳定性的分析就显得尤为必要。
本文的主要内容为探讨并分析不确定时滞关联系统的鲁棒稳定性,并给出实现鲁棒稳定性的有效方案。
二、基础理论在分析不确定时滞关联系统的鲁棒稳定性时,首先需要理解TMDI 关联系统的概念。
TMDI关联系统是指系统中有多个输入与多个输出,而其中存在着时间滞后(time-delay),且滞后时间可能随着系统外部环境的变化而发生变化。
此外,对不确定时滞关联系统的稳定性,可由鲁棒控制(robust control)理论来进行分析。
鲁棒控制理论是一种有效分析和控制不确定系统的理论。
三、频域分析在分析不确定时滞关联系统的鲁棒稳定性时,频域分析通常是一种很有效的方法。
利用频域分析,可以有效地确定系统在一定频率范围内的稳定性,从而可以确定系统是否能够实现鲁棒稳定性。
四、抗跳跃性分析在不确定时滞关联系统的鲁棒稳定性分析中,抗跳跃性是一个很重要的因素。
跳跃和不确定情况会对系统的稳定性产生影响,因此,在针对不确定时滞关联系统的鲁棒稳定性分析中,对系统的抗跳跃性进行分析就显得尤为必要。
五、极限模型匹配方法利用极限模型匹配(LMF)方法,可以针对不确定时滞关联系统的鲁棒稳定性分析进行有效优化。
这种方法可以有效地将系统的模型拟合到系统的实际模型,从而有效地实现对系统的鲁棒稳定性分析。
六、鲁棒控制器设计针对不确定时滞关联系统的鲁棒稳定性分析,还需要设计鲁棒控制器以保证系统的稳定性。
一般来说,需要使用Robust PID控制器进行控制,在设计过程中,需要采用基于频率响应的鲁棒控制器设计方法,以保证控制器的有效性及系统的鲁棒稳定性。