NS方程的非结构化网格方法及其差分格式

  • 格式:pdf
  • 大小:176.51 KB
  • 文档页数:10

下载文档原格式

  / 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安交通大学学报

JOURNAL OF XI'AN JIAOTONG

UNIVERSITY

1999年 第33卷 第9期 Vol.33 No.9

 1999

NS方程的非结构化网格方法及其差分格式

张楚华, 谷传纲, 苗永淼

摘要: 采用同位非结构化网格上的有限体积法,对Navier-Stokes方程的SIMPLE算法及差分格式进行了研究.提出了适用于非结构化网格的不用求解单元顶点变量值的二阶混合差分格式.该格式的优点在于:1)减少了计算工作量;2)避免了普通混合差分格式因使用简单的一阶迎风差分格式所引起的网格界面方向相关性的问题.最后,采用三角形网格,利用提出的方法及差分格式,对方腔内的驱动层流及绕翼型湍流进行了数值计算,计算结果与基准解或实验值的符合程度优于普通混合差分格式.

关键词: 非结构化网格;差分格式;有限体积法

中国图书资料分类法分类号: O357

Unstructured Grid Method and Its Differential Schemes for NS Equations

Zhang Chuhua, Gu Chuangang, Miao Yongmiao

(Xi′an Jiaotong University, Xi′an 710049, China)Abstract: The SIMPLE algorithm and differential schemes are used for solving Navier-Stokes equations through finite volume method with collocated unstructured grid. A two order hybrid scheme without the necessity of computing the variables at elements vertices is presented. Compared with the ordinary hybrid scheme, the advantages are :1)computation is reduced; 2) grid dependency problem, which is resulted from one order upwind interpolation in ordinary hybrid scheme on unstructured grid, can be avoided. Finally, the proposed method and schemes are used to calculate laminar flow in a lid-driven cavity and turbulent flow around an airfoil. The numerical results fit benchmark solutions and experiments better than those calculated through ordinary hybrid scheme.

Keywords: unstructured grid;differential scheme;finite volume method

长期以来,人们一直认为有限差分法(包括有限体积法)对复杂形状流动问题的处理能力不如有限元法,近年来发展起来的非结构化网格方法[1,2]正逐步改变这一看法.在非结构化网格上利用有限体积法来求解流动方程, 既能提高有限体积法处理复杂形状流动问题的能力,又能保持离散方程的局部守恒特性,而后者对数值求解非线性偏微分方程的收敛过程有时是至关重要的.

在非结构化网格上采用有限体积法求解流场,是计算流体动力学中很有发展前途的研究方向.当然这一领域仍然有一些棘手的问题亟待解决和完善,其中主要包括:

1)高质量的非结构化网格生成问题;2)非结构化网格方法的计算工作量问题;3)非结构化网格上高精度差分格式的实现问题;4)快速稳定的非结构化代数方程组的求解问题;5)在高伸展比的非结构化网格单元上实现稳定性、经济性俱佳的计算格式;6)自适应问题.本文对2)、3)、4)的问题进行了研究,提出了一种适合于在非结构网格上计算的差分格式,并对驱动方腔内的流动及孤立翼型绕流进行了数值模拟,得到了满意的数值结果.

1 控制方程

本文研究的问题为二维、定常、不可压缩流动,控制方程可写成如下通用方程 (1)

其中: U m为沿着坐标方向x m的速度分量; Φ为求解变量; ΓΦ为广义扩散系数;

为广义源项.式(1)的具体形式见文献[3].

2 计算方法

2.1 通用方程的离散

利用Gauss定理,将控制方程(1)在任一边数为n的非结构化网格单元上离散为

(2)

其中: ΔV为网格单元的体积.式(2)左端的第1部分为对流部分

(ρVΦ.A)f=m fΦf (3)

式(2)左端的第2部分为扩散部分,文献[2,4]分别利用局部非正交坐标系及Gauss定理推导出的扩散部分的离散形式为

(4)

式(4)中的第1项为正交扩散项,第2项为非正交扩散项.式中出现了单元顶点处的变量值.其中下标f为界面;下标il、ir、ist、iend分别表示边f的左单元、右单元、起点、终点;σV为界面积分体积;n f为单位法向矢量; n i end为左、右单元连线的单位法向

矢量.

式(3)与(4)中的m f为通过界面f的质量流量,引入Peclet准则,PΔ=m f/D f,其中D f 为通过界面的扩导,,则PΔ数表示输运量Φ通过界面f的对流和扩散能力的相对大小.这与结构化网格上的研究结果是相同的,因此可以借用结构化网格的思想来进一步得出通用方程在非结构化网格上的离散形式.然而,它们之间也存在很大的差异,主要表现在:1)界面上Φf的计算;2)非正交扩散项的计算.这两项的计算方式对非结构化网格方法的精确性及计算工作量的影响都很大.

在计算Φf时,由于非结构化网格拓扑结构的无规律性,在较粗的非结构化网格上应用简单的一阶迎风格式容易出现网格相关性问题,而一些在结构化网格上行之有效的高阶差分格式,如高阶迎风格式、QUICK格式、MUSCL格式等很难在非结构化网格上实施.这是因为在采用这些格式确定界面上的对流项时,需要知道远上游结点处的变量值,而在非结构化网格拓扑结构中,远上游结点属于“游荡结点”[2],无法从网格的拓扑结构中直接确定这些点的位置,只能在流场计算中,根据局部流动方向计算出远上游结点的位置,这给非结构化网格方法进一步增加了计算负担.本文根据线性重组建梯度方法及限制因子方法,提出了适合于非结构化网格上计算的二阶混合差分格式,界面上的变量计算公式为

(5)

其中限制因子α根据文献[3]的方法计算,当α=0时,上式就退化为普通混合差分格式.

式(4)中,非正交扩散项出现单元顶点处的变量值,这些值一般由相邻单元中心处的变量值插值而来.常用的插值方法有面积加权插值、距离负幂次函数加权插值、最小二乘插值方法.前两种方法实现简单,计算速度快,但计算精度低;后一种方法具有二阶精度,但实现复杂,可能出现奇性问题,计算速度慢,数值计算表明,在每轮迭代计算中,约有一半时间花在利用最小二乘法插值各类变量在单元顶点值的计算上.本文利用界面梯度近似关系式(Φ)f=,其中表示线性插值运算,对式(4)中的非正交扩散项进行如下变换

(6)

这样在非正交扩散项中不再出现单元顶点处的变量值,从而极大地减少了计算工作