生物化学_三羧酸循环
- 格式:docx
- 大小:15.23 KB
- 文档页数:2
tca循环名词解释生物化学
TCA循环,也称为三羧酸循环或柠檬酸循环,是糖酵解后的产物各种酮糖体
在空气充足的条件下进行氧化分解的中间过程。
其过程在生物体内的线粒体体液
中进行,是有氧呼吸的重要环节之一。
TCA循环首先以柠檬酸为依赖,将乙酰-CoA与草酰酸转化为柠檬酸。
随后,
柠檬酸被氧化脱羧为天冬尿酸,在经过一系列的氧化、脱羧、水合、裂解等反应后,最后再次形成草酰酸。
由此可见,TCA循环是一个连续的循环过程,其目的是获
得能量,这一过程中会释放出大量的高能电子。
每一轮TCA循环,都会产生2个二氧化碳分子、3个NADH分子、一个
FADH2分子和一个ATP分子。
这些分子接着被送入令一个环节-电子传递链进行
氧化磷酸化,从而产生更多的ATP分子,为生物体的能量提供。
TCA循环是所有电子供体的来源杂化途径,也是相当数量的生物质能合成的
位置,能生成蛋白质、脂肪和糖的前体,因此在生物化学体内占有非常重要的地位。
总的来说,TCA循环作为生命活动的中心环节,对于维持生物体的正常运作
有着至关重要的作用。
这些显式和隐式的功能使得TCA循环在生物体内具有极高
的复杂性和多样性,亦是生物学研究的一个重要领域。
三羧酸循环三羧酸循环, 也称柠檬酸循环(CAC). 发生在线粒体基质中.柠檬酸循环的基本步骤1.由糖酵解来的乙酰CoA将碳单位转移到草酰乙酸上, 该步由柠檬酸合酶催化, 生成柠檬酸. 这是一步不可逆反应, 看来是一步高能降低能的反应i.不可逆反应总是调控位点. 对柠檬酸合酶的调控主要是别构调节. 细胞高能的指示剂如ATP, NADH, 琥珀酰CoA都可以做别构抑制剂. 而ADP作为别构激活剂. 柠檬酸本身也可以反馈抑制.2.柠檬酸异构为异柠檬酸, 由顺乌头酸酶催化, 该步可逆, 但由于下一步很快. 所以这一步也经常按正方向进行. 该步是必不可少的, 将底物变的更易氧化.(羟基从中间移至一侧)3.上述羟基被氧化, 异柠檬酸被氧化脱羧, 形成α-酮戊二酸, 由异柠檬酸脱氢酶催化. 该反应强烈放能, 也是不可逆反应.涉及氧化还原的反应往往有NAD+的参与. NAD+把异柠檬酸氧化.自己生成NADHi.植物对于它的调控有共价修饰. 动物中则多为别构调节. ATP是异柠檬酸脱氢酶的负别构效应物, 而ADP和钙离子是正别构效应物, 可能是因为钙离子代表了肌肉收缩的信号. NADH作为产物也可以竞争性反馈抑制.4.α-酮戊二酸氧化脱羧生成琥珀酰CoA, 由α-酮戊二酸脱氢酶系催化. 之后都不能再掉碳了. 同样涉及NAD+变为NADH, 这也是不可逆反应i.该酶系的调控是CAC的重要调控点,与丙酮酸脱氢酶系相似, 但少了共价修饰的调节. 它主要有别构调节和产物的竞争性反馈抑制. 钙离子和ADP可以别构激活, α酮戊二酸脱氢酶, 琥珀酰CoA和NADH分别作为产物竞争反馈抑制后两个酶.5.唯一一步底物水平磷酸化, 琥珀酰CoA推动GTP形成, 生成琥珀酸, 由琥珀酰CoA合酶催化. 该步可逆.6.琥珀酸脱氢生成延胡索酸, 由琥珀酸脱氢酶催化, 该酶在电子传递链中存在重要作用, 其就是复合体Ⅱ的主要成分(见电子传递链). 该步脱氢是用FAD做的.生成FADH27.延胡索酸生成苹果酸,由延胡索酸酶催化.8.苹果酸被氧化成草酰乙酸, 由苹果酸脱氢酶催化, 这个过程与苹果酸-天冬氨酸穿梭系统是一致的. NAD+变为NADH(见糖酵解)总的来说柠檬酸循环生成了3个线粒体的NADH, 1个FADH2, 1个GTP, 等同于10个ATP, 当然, 这只考虑了一个乙酰CoA, 而一个葡萄糖最后能形成两个乙酰CoA, 也就是等同于20个ATP.柠檬酸循环进来一个二碳单位, 同时途中掉过两次碳. 但这两个碳并不是进来的那个. CAC必须要有氧, 否则变化的NAD+, FAD无法再生.柠檬酸循环的回补反应CAC中的多种代谢产物可能被其他代谢通路用掉, 因此需要回补.1.草酰乙酸的回补.这是回补中最主要的途径, 由PEP被PEP羧化酶和生物素作用生成草酰乙酸, 或者由丙酮酸消耗1分子ATP被丙酮酸羧化酶和生物素反应, 生成草酰乙酸. 或者绕一圈, 由丙酮酸消耗NADPH, 变成苹果酸, 再生成一分子NADH 变成草酰乙酸. 这一步反应在后来的脂肪酸代谢也有重要的作用(见脂肪酸代谢)2.α-酮戊二酸的回补.谷丙转氨酶可以把谷氨酸转化成α-酮戊二酸.。
三羧酸循环名词解释三羧酸循环是一种重要的生物化学过程,也被称为柠檬酸循环或Krebs循环。
它是细胞内供能的主要路径之一,通过将有机物质在细胞的线粒体中氧化分解,产生能量和二氧化碳。
三羧酸循环是一系列化学反应的循环过程,将碳源转化为能量形式(ATP)和电子供体NADH和FADH2。
三羧酸循环的过程可以分为八个主要反应,每个反应都由特定的酶催化,并产生特定的中间产物。
以下是对三羧酸循环主要反应的简要解释:1. 乙酰辅酶A与草酰乙酸的反应:乙酰辅酶A(由脂肪酸或糖类代谢生成)与草酰乙酸结合,释放出辅酶A,形成柠檬酸。
2. 柠檬酸的异构化:柠檬酸脱水酶催化柠檬酸的异构化,生成庚二酸。
3. 庚二酸的氧化:庚二酸经庚二酸脱氢酶氧化为苹果酸。
4. 苹果酸的脱羧:苹果酸脱羧酶催化苹果酸的脱羧反应,生成酮戊二酸。
5. 酮戊二酸的脱羧:酮戊二酸脱羧酶催化酮戊二酸的脱羧反应,生成亚戊酸。
6. 亚戊酸的还原:亚戊酸经亚戊酸脱氢酶的反应还原为乙酰辅酶A。
通过以上六个反应,三羧酸循环已将一个乙酰辅酶A转化为产生三个分子的二氧化碳和同时得到一个分子的GTP(能量)、三个分子的NADH(电子供体)和一个分子的FADH2(电子供体)。
这些中间产物随后可以进入细胞呼吸链中的氧化磷酸化反应,最终产生更多的ATP和水。
三羧酸循环在维持细胞能量平衡、产生ATP的还具有其他重要的生理功能。
柠檬酸从三羧酸循环中分子构造的角度来看,可以作为生物合成的前体,参与合成脂肪酸、胆固醇等重要有机物质;还可以参与尿素循环代谢途径的产生,对于氨基酸代谢和解毒过程十分重要。
三羧酸循环是一种复杂而重要的生物化学代谢过程,通过将有机物质氧化分解,产生能量和二氧化碳。
它在维持细胞能量平衡和参与许多生理功能方面起着关键作用。
进一步了解三羧酸循环的机制和生理特性,有助于我们对生物体能量代谢和相关疾病的理解,以及为药物和治疗方法的研发提供基础。
一、三羧酸循环的重要性三羧酸循环是细胞内最重要的代谢途径之一,它对于维持细胞能量平衡和生命活动至关重要。
三羧酸循环总反应式三羧酸循环是一种生物化学过程,也被称为Krebs循环或柠檬酸循环。
它是细胞内能量代谢的重要组成部分,通过氧化有机物质来产生ATP。
三羧酸循环中的反应涉及多种酶和底物,总反应式如下:C6H12O6 + 6O2 → 6CO2 + 6H2O + ATP在这个总反应式中,葡萄糖(C6H12O6)和氧气(O2)作为底物进入三羧酸循环,并产生六个二氧化碳(CO2)、六个水(H2O)和ATP。
下面将对这个反应式进行详细的解释。
底物在三羧酸循环中,葡萄糖被分解成丙酮酸,并进入三羧酸循环。
氧气则作为电子受体参与细胞呼吸过程中的氧化还原反应。
反应1. 柠檬酸合成在三羧酸循环开始时,丙酮酸与乙酰辅酶A结合形成柠檬酸。
这个反应由柠檬酸合成酶催化,同时释放一些二氧化碳。
乙酰辅酶A + oxaloacetate → citrate + CoA2. 氧化还原反应在三羧酸循环的后续反应中,柠檬酸被氧化成丙酮酸,并释放出一些二氧化碳和电子。
这些电子被转移到NAD+或FAD上,形成NADH 或FADH2。
citrate → isocitrate → α-ketoglutarate → succinyl-CoA → succinate → fumarate → malate3. 磷酸化反应在三羧酸循环的最后一个步骤中,succinyl-CoA被转化为丙酮酸,并释放出一个分子ATP。
这个反应由磷酸肌酸转移酶催化。
succinyl-CoA + ADP + Pi → succinate + ATP + CoA产物在三羧酸循环中,底物葡萄糖和氧气被氧化分解成六个二氧化碳(CO2)和六个水(H2O)。
同时,通过磷酸化反应产生了一些ATP。
ATP是细胞内能量代谢的重要物质,可以用于细胞内各种生物化学反应。
总结三羧酸循环是一种复杂的生物化学过程,涉及多种底物、酶和反应。
总反应式为C6H12O6 + 6O2 → 6CO2 + 6H2O + ATP,说明在这个过程中底物被氧化分解成六个二氧化碳和六个水,并产生了一些ATP。
三羧酸循环的过程三羧酸循环,又称为克布斯循环或TCA循环(Tricarboxylic Acid Cycle),是生物体中发生的一种重要的生化过程。
三羧酸循环起源于糖酵解过程,在线粒子中进行。
该循环将糖类、脂肪和蛋白质代谢产物氧化为二氧化碳和能量,同时产生还原能力为进一步氧化合成ATP提供电子供体。
三羧酸循环的过程可以分为四个主要步骤:AcCoA与OAA结合形成柠檬酸;柠檬酸脱羧生成异柠檬酸;异柠檬酸再次脱羧生成橙酮戊二酸;橙酮戊二酸脱羧生成果酸,同时再生成OAA。
整个循环过程通过一系列的氧化还原反应和酶催化反应完成。
首先,醋酸辅酶A(AcCoA)与草酰乙酸(OAA)结合,经催化酶柠檬酸合酶反应生成柠檬酸。
这个反应是循环的起点,也是整个循环过程中唯一的偶一酸和四羧酸物质。
然后,柠檬酸发生脱羧反应,生成具有五个碳原子的异柠檬酸。
此过程通过酶催化,产生一分子的ATP和一分子的NADH。
异柠檬酸的产生是该循环中的重要步骤。
接下来,异柠檬酸在橙酮戊二酸合成酶的作用下,再次发生脱羧反应,生成橙酮戊二酸。
在该反应中,一分子的ATP和一个NADH被产生。
最后,橙酮戊二酸发生最后一次脱羧反应,生成果酸。
同时,该反应产生一个分子的ATP和一个分子的FADH2。
果酸和OAA重新结合,循环即可继续进行。
整个反应过程中总共产生三个分子的NADH和一个分子的FADH2,这些还原能力是在线粒子内进一步氧化合成ATP所需。
在三羧酸循环中,还必须考虑到由于氧化过程生成的高能电子(NADH和FADH2)的转运。
这些电子从三羧酸循环的反应产物中生产,随后通过无氧糖酵解和有氧呼吸链传递至电子接受体。
最终,作为能量的一部分,该电子将被动态地用于生物体内细胞呼吸的化学反应。
总结起来,三羧酸循环是一个重要的生物化学过程,它在细胞内发挥着能量转化和代谢物的合成的关键作用。
该循环通过有序的氧化还原反应和酶催化反应将有机物氧化为能量,并产生还原能力为进一步氧化合成ATP提供电子供体。
tca名词解释生物化学
TCA是三羧酸循环(Triose Carbonate Cycle)的缩写,也是生物化学中的一个关键概念。
TCA是指通过三个化学反应途径将葡萄糖、脂肪酸和氨基酸等有机分子转化为能量和二氧化碳的过程。
TCA过程由三个化学反应组成:氧化代谢途径(Metabolism)、柠檬酸代谢途径(柠檬酸循环)和脂肪酸代谢途径(Fatty Acid metabolism)。
这些过程在生物体内相互协调,共同维持细胞的生命活动。
氧化代谢途径是TCA过程的核心部分,它通过将葡萄糖、脂肪酸和氨基酸等有机分子转化为乙酰辅酶A(Acetyl-CoA)和二氧化碳。
乙酰辅酶A随后被转化为柠檬酸,进一步通过柠檬酸循环将柠檬酸转化为三羧酸循环中的脂酸和脱羧酸。
在这个过程中,释放出的能量被用于合成细胞所需的蛋白质、核酸和脂类等分子。
柠檬酸代谢途径则是氧化代谢途径的补充部分,它通过将柠檬酸转化为三羧酸循环中的脂酸,进一步将能量转化为细胞所需的能量和二氧化碳。
脂肪酸代谢途径则是TCA过程中的另一个重要部分,它通过将脂肪酸和甘油转化为乙酰辅酶A和脂肪酸,并将其运输到细胞内进行利用。
在这个过程中,也释放出能量和二氧化碳。
TCA过程是生物体内代谢过程中重要的一环,它通过将有机分子转化为能量和二氧化碳,维持了细胞的生命活动。
深入研究TCA过程,对于理解细胞代谢、疾病诊断和治疗等方面都有着重要的意义。
三羧酸循环编辑词条B 添加义项?三羧酸循环(tricarboxylic acid cycle)是需氧生物体内普遍存在的代谢途径,因为在这个循环中几个主要的中间代谢物是含有三个羧基的柠檬酸,所以叫做三羧酸循环,又称为柠檬酸循环;或者以发现者Hans Adolf Krebs([英]1953年获得诺贝尔生理学或医学奖)命名为Krebs循环。
三羧酸循环是三大营养素(糖类、脂类、氨基酸)的最终代谢通路,又是糖类、脂类、氨基酸代谢联系的枢纽。
10本词条正文缺少必要目录和内容, 欢迎各位编辑词条,额外获取10个积分。
基本信息中文名称三羧酸循环外文名称tricarboxylicacidcycle acid cycle别称TCA cycle目录1基本简介2主要特点3发现过程4化学反应5生理意义6其他资料1 基本简介2 主要特点3 发现过程4 化学反应5 生理意义6 其他资料6.1 循环过程6.2 循环总结6.3 生理意义6.4 调节功能回到顶部意见反馈基本简介折叠编辑本段三羧酸循环(tricarboxylicacidcycle acid cycle ,TAC cycle,TAC循环)是一个由一系列酶促反应构成的循环反应系统,在该反应过程中,首先由乙酰辅酶A与草酰乙酸缩合生成含有3个羧基的柠檬酸,经过4次脱氢,2次脱羧,生成四分子还原当量(NADH+H+和FADH2)和2分子CO2,重新生成草酰乙酸的这一循环反应过程成为三羧酸循环。
主要特点折叠编辑本段柠檬酸循环(tricarboxylicacidcycle):也称为三羧酸循环(tricarboxylicacidcycle,TCA),Krebs循环。
是用于将乙酰—CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。
在三羧酸循环中,反应物葡萄糖或者脂肪酸会变成乙酰辅酶A(cetyl-CoA)。
这种"活化醋酸"(一分子辅酶和一个乙酰相连),会在循环中分解生成最终产物二氧化碳并脱氢,质子将传递给辅酶--烟酰胺腺嘌呤二核苷酸(NAD+) 和黄素腺嘌呤(FAD),使之成为NADH + H+和FADH2。
生物化学 - 三羧酸循环三羧酸循环一、丙酮酸脱氢酶复合体(一)反应过程:4步,第一步前半部分不可逆。
1.脱羧,生成羟乙基TPP,由E1(丙酮酸脱氢酶组分)催化。
羟乙基被氧化成乙酰基,转移给硫辛酰胺。
由E2(二氢硫辛酰转乙酰基酶)催化。
2.形成乙酰辅酶A。
由E2催化。
3.还原型E2被氧化形成氧化型E2,由E3(二氢硫辛酰胺脱氢酶)催化,NAD+为氧化剂。
4.氧化硫辛酸,FAD变成FADH2。
氢原子转移给NAD+变成NADH & H+。
丙酮酸脱氢复合体有60条肽链组成,直径30nm,E1和E2各24个,E3有12个。
其中硫辛酰胺构成转动长臂,在电荷的推动下携带中间产物移动。
(二)砷化物对硫辛酰胺有毒害作用,与巯基共价结合使E2辅基改变失去催化作用。
(三)活性调控:此反应处于代谢途径的分支点,收到严密调控:1.产物抑制:乙酰辅酶A抑制E2,NADH抑制E3。
可被辅酶A和NAD+逆转。
2.核苷酸反馈调节:E1受GTP抑制,被AMP活化。
3.共价调节:E1上的特殊丝氨酸被磷酸化时无活性,水解后恢复活性。
丙酮酸抑制磷酸化作用,钙和胰岛素增加去磷酸化作用,ATP、乙酰辅酶A、NADH增加磷酸化作用。
二、三羧酸循环的途径8步。
曾经怀疑第一个组分是其他三羧酸,故名三羧酸循环。
也叫Krebs循环。
1.辅酶A与草酰乙酸缩合,生成柠檬酸由柠檬酸缩合酶催化,高能硫酯键水解推动反应进行。
受ATP、NADH、琥珀酰辅酶A和长链脂肪酰辅酶A抑制。
ATP可增加对乙酰辅酶A的Km。
氟乙酰辅酶A可形成氟柠檬酸,抑制下一步反应的酶,称为致死合成,可用于杀虫剂。
2.柠檬酸异构化,生成异柠檬酸由顺乌头酸酶催化,先脱水,再加水。
是含铁的非铁卟啉蛋白。
需铁及巯基化合物(谷胱甘肽或Cys等)维持其活性。
3.氧化脱羧,生成α-酮戊二酸第一次氧化,由异柠檬酸脱氢酶催化,生成NADH或NADPH。
中间物是草酰琥珀酸。
是第二个调节酶,能量高时抑制。
三羧酸循环
一、丙酮酸脱氢酶复合体
(一)反应过程:4步,第一步前半部分不可逆。
1.脱羧,生成羟乙基TPP,由E1(丙酮酸脱氢酶组分)催化。
羟乙基被氧化成乙酰基,转移给硫辛酰胺。
由E2(二氢硫辛酰转乙酰基酶)催化。
2.形成乙酰辅酶A。
由E2催化。
3.还原型E2被氧化形成氧化型E2,由E3(二氢硫辛酰胺脱氢酶)催化,NAD+为氧化剂。
4.氧化硫辛酸,FAD变成FADH2。
氢原子转移给NAD+变成NADH & H+。
丙酮酸脱氢复合体有60条肽链组成,直径30nm,E1和E2各24个,E3有12个。
其中硫辛酰胺构成转动长臂,在电荷的推动下携带中间产物移动。
(二)砷化物对硫辛酰胺有毒害作用,与巯基共价结合使E2辅基改变失去催化作用。
(三)活性调控:
此反应处于代谢途径的分支点,收到严密调控:
1.产物抑制:乙酰辅酶A抑制E2,NADH抑制E3。
可被辅酶A和NAD+逆转。
2.核苷酸反馈调节:E1受GTP抑制,被AMP活化。
3.共价调节:E1上的特殊丝氨酸被磷酸化时无活性,水解后恢复活性。
丙酮酸抑制磷酸化作用,钙和胰岛素增加去磷酸化作用,ATP、乙酰辅酶A、NADH增加磷酸化作用。
二、三羧酸循环的途径
8步。
曾经怀疑第一个组分是其他三羧酸,故名三羧酸循环。
也叫Krebs循环。
由柠檬酸缩合酶催化,高能硫酯键水解推动反应进行。
受ATP、NADH、琥珀酰辅酶A和长链脂肪酰辅酶A抑制。
ATP可增加对乙酰辅酶A的Km。
氟乙酰辅酶A可形成氟柠檬酸,抑制下一步反应的酶,称为致死合成,可用于杀虫剂。
由顺乌头酸酶催化,先脱水,再加水。
是含铁的非铁卟啉蛋白。
需铁及巯基化合物(谷胱甘肽或Cys等)维持其活性。
第一次氧化,由异柠檬酸脱氢酶催化,生成NADH或NADPH。
中间物是草酰琥珀酸。
是第二个调节酶,能量高时抑制。
生理条件下不可逆,是限速步骤。
细胞质中有另一种异柠檬酸脱氢酶,需NADPH,不是别构酶。
其反应可逆,与NADPH还原当量有关。
第二次氧化脱羧,由α-酮戊二酸脱氢酶体系催化,生成NADH。
其中E1为α-酮戊二酸脱氢酶,E2为琥珀酰转移酶,E3与丙酮酸脱氢酶体系相同。
机制类似,但无共价调节。
是唯一一个底物水平磷酸化,由琥珀酰辅酶A合成酶(琥珀酰硫激酶)催化。
GTP可用于蛋白质合成,也可生成ATP。
需镁离子。
第三步氧化还原反应,由琥珀酸脱氢酶催化,生成FADH2。
琥珀酸脱氢酶位于线粒体内膜,直接与呼吸链相连。
FADH2不与酶解离,电子直接转移到酶的铁原子上。
由延胡索酸酶催化,是反式加成,只形成L-苹果酸。
第四次氧化还原,由L-苹果酸脱氢酶催化,生成NADH。
反应在能量上不利,由于草酰乙酸的消耗而进行。
三、总结能量情况:每个循环产生3个NADH(3*2.5),1个FADH2(1.5),1个GTP(1),共10个ATP。
加上丙酮酸脱氢(2.5),共12.5个ATP。
每分子葡萄糖生成两分子丙酮酸(2*12.5),加上酵解(2+2+2.5),每个葡萄糖有氧氧化共产生32(31.5)个ATP。
四、回补反应
三羧酸循环的中间物是许多生物合成的前体,如草酰乙酸和α-酮戊二酸可用于合成天冬氨酸和谷氨酸,卟啉的碳原子来自琥珀酰辅酶A。
这样会降低草酰乙酸浓度,抑制三羧酸循环。
所以必需补充草酰乙酸。
ATP、水和CO2在丙酮酸羧化酶作用下生成草酰乙酸。
需要镁离子和生物素。
是调节酶,平时活性低,乙酰辅酶A可促进其活性。
草酰乙酸+GTP 由磷酸烯醇式丙酮酸羧化激酶催化,需Mn2+,在脑和心脏中有这个反应。
-酮戊二酸,异亮氨酸、缬氨酸、苏氨酸和甲硫氨酸生成琥珀酰辅酶A。
【许多植物和微生物可将脂肪转化为糖,是通过一个类似三羧酸循环的乙醛酸循环,将2个乙酰辅酶A合成一个琥珀酸。
此循环生成异柠檬酸后经异柠檬酸裂解酶催化,生成琥珀酸和乙醛酸,乙醛酸与另一个乙酰辅酶A缩合产生苹果酸,由苹果酸合成酶催化。
然后与三羧酸循环相同。
】。