PCB的阻抗控制与前端仿真(SI9000的应用)
- 格式:pdf
- 大小:2.03 MB
- 文档页数:11
Polar-SI9000专业计算阻抗软件一,首先给大家介绍一下Polar软件,Polar是专业计算阻抗的软件,其版本包括:Si6000,Si8000,及Si9000.二,其次给大家介绍常见的几种阻抗模型:特性阻抗,差分阻抗,共面性阻抗.' H6 j5 r+ g5 J' D8 q2 u( t" O5 \1.外层特性阻抗模型:2.内层特性阻抗模型:- Z. O5 [) D# _5 ]3 b, u2 p8 [3.外层差分阻抗模型:$ l% R% v7 J8 D/ V1 @# S& Y0 t' z9 L: m- m4.内层差分阻抗模型:: O7 E$ i& ? } [' S5 @5.共面性阻抗模型:包括(1)外层共面特性阻抗,(2)内层共面特性阻抗,(3)外层共面差分阻抗,(4)内层共面差分阻抗.三,再次给大家介绍一下芯板(即Core)及半固化片(即PP),/ j! a+ Z! y {8 Q 每个多层板都是由芯板和半固化片通过压合而成的,普通的FR-4板材一般有:生益,建滔,联茂等板材供应商.生益FR-4的芯板根据板厚来划分有:0.10MM ,0.15MM, 0.2MM , 0.25MM. 0.3MM, 0.4MM, 0.5MM等,包括有H/HOZ,1/1OZ,等这里有一点需要大家特别注意:含两位小数的板厚是指不含铜的厚度,只有一位小数指包括铜的总厚度,例如:0.10MM 1/1OZ的芯板,其0.10MM是指介质的厚度,其总厚度应为0.10MM+0.035+0.035MM=0.17MM,再如:0.15MM 1/1OZ的芯板,其总厚度是:0.15MM+0.035MM+0.035MM=0.22MM,而0.2MM 1/1OZ 的芯板,其总厚度就是0.2MM,它的介质厚度应为:0.2MM-0.035MM-0.035MM=0.13MM.半固化片(即PP),一般包括:106,1080,2116,7628等,其厚度为:106为0.04MM,1080为0.06MM,2116为0.11MM,7628为0.19MM.' f1 E! T: F6 M" ]$ c8 O当我们计算层叠结构时候通常需要把几张PP叠在一起,例如:2116+106,其厚度为0.15MM,即6MIL;1080*2+7628,其厚度为0.31MM,即12.2MIL等.但需注意以下几点:一、一般不允许张或4张以上PP叠放在一起,因为压合时容易产生滑板现象.二、7628的PP一般不允许放在外层,因为7628表面比较粗糙,会影响板子的外观.三、另外3张1080也不允许放在外层,因为压合时也容易产生滑板现象.后续我会把一些常用的芯板以及各种组合的PP厚度汇总给大家,以便学习用Polar软件计算阻抗及层叠结构时使用!四,怎样使用Polar Si9000软件计算阻抗:+ B+ M( R, n" @0 q7 L首先应知道是特性阻抗还是差分阻抗,具体阻抗线在哪些信号层上,阻抗线的参考面是哪些层?其次根据文件选择正确的阻抗模型来计算阻抗,最后通过调整各层间的介质厚度,或者调整阻抗线的线宽及间距来满足阻抗及板厚的要求!4五,举例说明怎样使用Polar Si9000计算阻抗及设计层叠结构:1.四层板板厚1.6MM,外层信号线要求控制50欧姆特性阻抗和100欧姆差分阻抗.其设计结构详见:4层板1.6MM阻抗设计.jpg,其中H1代表的是信号层与参考层之间的介质厚度,即L1与L2之间的厚度为3.2MIL,Er1为板材的介电常数,FR-4通常为4.2-4.6,W 称为下线宽,W2称为上线宽,一般认为W1=W+0.5MIL,W2=W-0.5MIL,S1(注意S1<2W)为两根差分线之间的间距(指线边缘与线边缘之间距离),T1信号层的成品铜厚,外层1OZ=1.4MIL,而内层考虑的蚀刻的因素,我们通常认为内层1OZ=1.2MIL,而0.5OZ=0.6MIL。
si9000 中间层差分阻抗计算si9000 中间层差分阻抗计算在现代电子通信和电子设备的设计中,中间层差分阻抗计算是一个非常重要的主题。
si9000 是一种常用的计算工具,用于帮助工程师计算和优化中间层差分阻抗。
本文将深入探讨 si9000 中间层差分阻抗计算的原理、方法和应用,并共享个人观点和理解。
一、si9000 中间层差分阻抗计算的重要性1. 中间层差分阻抗的定义中间层差分阻抗是指在多层印制电路板(PCB)中,两个相邻的导体层之间所形成的差分传输线的阻抗。
在高速信号传输和抗干扰能力方面,中间层差分阻抗的匹配和控制至关重要。
2. 信号完整性和性能稳定性在现代电子设备中,尤其是高频和高速通信设备中,信号完整性和性能稳定性是设计中最为关键的因素之一。
而中间层差分阻抗的合适性直接影响了信号的传输品质和抗干扰能力。
3. 设计和优化的需求设计师需要通过对中间层差分阻抗的准确计算和优化,来保证电子设备在高速信号传输和抗干扰能力方面的稳定表现。
si9000 作为一种专业工具,能够帮助工程师进行准确和可靠的中间层差分阻抗计算,从而满足设计和优化的需求。
二、si9000 中间层差分阻抗计算的原理和方法1. 差分传输线的定义和特点差分传输线是由两条相等而并列的导体线组成,它们之间的电压是相等的,但是电流方向相反。
差分传输线的主要特点是抗干扰能力强,传输速度快,适用于高速信号传输。
2. si9000 的工作原理si9000 是一种专业的中间层差分阻抗计算工具,其核心算法基于传输线理论和有限元方法。
通过建立中间层结构的几何模型、选择合适的介质材料参数和计算条件,si9000 能够进行精确的中间层差分阻抗计算。
3. si9000 的使用方法在进行中间层差分阻抗计算时,用户需要输入中间层结构的几何尺寸、介质材料参数和工作频率等信息。
si9000 会根据用户输入的参数进行计算,并给出相应的阻抗数值和波形图,以帮助用户对中间层差分阻抗进行评估和优化。
阻抗计算之SI9000Jerry Wang概述阻抗匹配在高速电路设计中非常重要,高速电路板设计的时候通常对于关键信号都需要进行阻抗控制。
SI9000是一款很好的计算软件,之前的版本有SI6000以及SI8000,本文试图简要介绍SI9000的使用并给出SI6000和SI9000的异同。
传输线阻抗的由来以及意义传输线阻抗是从电报方程推导出来(具体可以查询微波理论),如下图,其为平行双导线的分布参数等效电路:从此图可以推导出电报方程取传输线上的电压电流的正弦形式得到推出通解定义出特性阻抗无耗线下r=0,g=0则得到注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波阻抗定义)特性阻抗与波阻抗之间的关系可从LC=εμ此关系式推出。
理解特性阻抗理论上是怎么回事,再来看看实际的意义。
当电流电压在传输线传播的时候,如果特性阻抗不一致所求出来的电报方程的解不一致,就造成所谓的反射现象等等。
在信号完整性领域里,比如反射、串扰、电源平面切割等问题都可以归类为阻抗不连续问题,因为匹配的重要性在此展现出来。
叠层(Stackup)的定义下图是一种8层板常用的叠层,4层power/ground以及4层走线层,sggssggs,分别定义为L1、L2…L8,因此要计算的阻抗为L1、L4、L5和L8。
下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的Oz 的概念Oz 本来是重量的单位Oz(盎司 )=28.3 g(克),在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下这里需要注意的是,由于内层蚀刻表面层电镀,实际的厚度会有差别,比如内层一般的1Oz = 1.2 mil。
介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε"Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.传输线特性阻抗的计算首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有1 个参考地,而带状线有2个参考地,如下图所示对照上面常用的8 层主板,只有top 和bottom 走线层才是微带线类型,其他的走线层都是带状线类型。
SI9000PCB阻抗计算实例SI9000是一款用于计算PCB(Printed Circuit Board,印刷电路板)设计中的传输线阻抗的软件工具。
在PCB设计中,传输线的阻抗是一个重要的参数,它决定了信号在传输线上的传输质量和速度。
SI9000通过使用传输线的几何参数和材料特性,可以快速准确地计算出传输线的阻抗。
下面将通过一个实例来说明如何使用SI9000进行PCB阻抗计算。
假设我们有一个印刷电路板上的差分传输线,其几何参数如下:- 传输线宽度:4 mil- 信号线间距:6 mil- 传输线高度:1.6 mm- 传输线长度:10 cm-PCB基材介电常数:4.6-PCB基材损耗正切:0.02首先,我们需要创建一个新的SI9000项目,并将以上几何参数输入到软件中。
接下来,我们需要选择合适的电磁场求解器方法。
SI9000提供了多种求解器方法,包括静电场、静磁场、动态磁场以及全波求解器等。
在这个实例中,我们可以选择使用全波求解器。
然后,我们需要设置传输线的材料特性。
SI9000可以根据选择的基材介电常数和损耗正切来计算传输线的阻抗。
对于差分传输线来说,我们需要设置差分对之间的间距。
在这个实例中,信号线间距为6 mil。
完成参数设置后,我们可以运行SI9000进行计算,软件会根据输入的参数计算出传输线的阻抗。
计算完成后,SI9000会给出传输线的阻抗值。
在这个实例中,我们可以得到差分传输线的阻抗为100欧姆。
除了阻抗计算,SI9000还可以提供其他有用的信息,如传输线的电磁场分布图和传输线的延迟时间等。
总结起来,SI9000是一个用于计算PCB传输线阻抗的实用工具。
在进行PCB设计时,使用SI9000可以快速准确地计算出传输线的阻抗,从而确保信号的传输质量和速度。
详解怎样使用Polar Si9000软件计算阻抗及如何设计层叠构造.一,首先给大家介绍一下Polar软件,Polar是专业计算阻抗的软件,其版本包括:Si6000,Si8000,及Si9000.二,其次给大家介绍常见的几种阻抗模型:特性阻抗,差分阻抗,共面性阻抗.1.外层特性阻抗模型:2.层特性阻抗模型:3.外层差分阻抗模型:4.层差分阻抗模型:5.共面性阻抗模型:包括(1)外层共面特性阻抗,(2)层共面特性阻抗,(3)外层共面差分阻抗,(4)层共面差分阻抗.三,再次给大家介绍一下芯板(即Core)及半固化片(即PP), 每个多层板都是由芯板和半固化片通过压合而成的,普通的FR-4板材一般有:生益,建滔,联茂等板材供应商.生益FR-4的芯板根据板厚来划分有:0.10MM ,0.15MM,,0.2MM ,,0.25MM.0.3MM,0.4MM,0.5MM等,包括有H/HOZ,1/1OZ,等这里有一点需要大家特别注意:含两位小数的板厚是指不含铜的厚度,只有一位小数指包括铜的总厚度,例如:0.10MM 1/1OZ的芯板,其0.10MM是指介质的厚度,其总厚度应为0.10MM+0.035+0.035MM=0.17MM,再如:0.15MM 1/1OZ的芯板,其总厚度是:0.15MM+0.035MM+0.035MM=0.22MM,而0.2MM 1/1OZ的芯板,其总厚度就是0.2MM,它的介质厚度应为:0.2MM-0.035MM-0.035MM=0.13MM.半固化片(即PP),一般包括:106,1080,2116,7628等,其厚度为:106为0.04MM,1080为0.06MM,2116为0.11MM,7628为0.19MM.当我们计算层叠构造时候通常需要把几PP叠在一起,例如:2116+106,其厚度为0.15MM,即6MIL;1080*2+7628,其厚度为0.31MM,即12.2MIL等.但需注意以下几点:1,一般不允许4或4以上PP叠放在一起,因为压合时容易产生滑板现象.2,7628的PP一般不允许放在外层,因为7628外表比较粗糙,会影响板子的外观.3,另外31080也不允许放在外层,因为压合时也容易产生滑板现象.后续我会把一些常用的芯板以及各种组合的PP厚度汇总给大家,以便学习用Polar软件计算阻抗及层叠构造时使用!四,怎样使用Polar Si9000软件计算阻抗:首先应知道是特性阻抗还是差分阻抗,具体阻抗线在哪些信号层上,阻抗线的参考面是哪些层?其次根据文件选择正确的阻抗模型来计算阻抗,最后通过调整各层间的介质厚度,或者调整阻抗线的线宽及间距来满足阻抗及板厚的要求五,举例说明怎样使用Polar Si9000计算阻抗及设计层叠构造:1.四层板板厚1.6MM,外层信号线要求控制50欧姆特性阻抗和100欧姆差分阻抗.其设计构造详见:4层板1.6MM阻抗设计.jpg,其中H1代表的是信号层与参考层之间的介质厚度,即L1与L2之间的厚度为3.2MIL,Er1为板材的介电常数,FR-4通常为4.2-4.6,W1称为下线宽,W2称为上线宽,一般认为W1=W+0.5MIL,W2=W-0.5MIL,S1(注意S1<2W)为两根差分线之间的间距(指线边缘与线边缘之间距离),T1信号层的成品铜厚,外层1OZ=1.4MIL,而层考虑的蚀刻的因素,我们通常认为层1OZ=1.2MIL,而0.5OZ=0.6MIL。
阻抗匹配计算公式si9000概述本文档将介绍阻抗匹配计算公式s i9000的基本原理和使用方法。
阻抗匹配是电子电路设计中常用的技术,用于优化信号传输和减少反射。
什么是阻抗匹配阻抗匹配是一种通过调整电路中的阻抗,使其与信号源或负载的阻抗相匹配的技术。
当信号在电路中传输时,如果信号源和负载之间的阻抗不匹配,会导致信号的反射和损耗。
而通过阻抗匹配,可以最大限度地提高信号传输的效率和质量。
阻抗匹配原理阻抗匹配的基本原理是利用电路中的传输线特性以及一些补偿元件,调整输入和输出阻抗,使其与信号源或负载的阻抗相等。
这样可以使信号在电路中无反射地传输,并最大限度地传递能量。
常用的阻抗匹配方法包括使用传输线、补偿电容和电感元件等。
通过合理选择这些元件的数值和布局,可以实现阻抗匹配,并优化电路的性能。
阻抗匹配计算公式si9000s i9000是一种常用的阻抗匹配计算公式,可以用于计算阻抗匹配网络的参数。
以下是s i9000的计算公式:s i9000=(Z2-Z0)/(Z2+Z0)其中,s i9000表示阻抗匹配系数,Z2表示负载阻抗,Z0表示信号源的阻抗。
使用方法使用阻抗匹配计算公式s i9000,可以快速计算阻抗匹配网络的参数。
以下是使用s i9000的步骤:1.确定信号源的阻抗Z0和负载阻抗Z2的数值。
2.将上述数值代入si9000的计算公式中。
3.计算公式给出的si9000值即为阻抗匹配系数。
根据阻抗匹配系数,可以选择合适的补偿元件,并根据其数值和布局,调整电路的阻抗,以实现阻抗匹配。
注意事项在使用阻抗匹配计算公式si9000时,需要注意以下事项:1.确保输入的阻抗数值准确无误。
2.选择合适的补偿元件时,考虑其频率响应和功耗等因素。
3.进行阻抗匹配时,应综合考虑整个电路的性能和稳定性。
总结阻抗匹配计算公式si9000是一种实用工具,可用于优化电路的阻抗匹配。
通过合理选择补偿元件,可以实现阻抗的匹配并提高信号传输的效率。
原创看图快速学多层板叠层,阻抗计算,Si9000的使用
在多层板设计中我们经常遇到USB,HDMI,LVDS,DDR及各种天线等信号要做阻抗控制,从而保证机器稳定及各项指标测试合格率。
那么我们在设计时是怎么控制阻抗的呢?
1.用经验值,把以前做过的阻抗线记录,例如,线宽线距板厚记录下来,下次用时直接套用。
2.先按常规设计,把PCB需要做阻抗的线高亮,然后截图给PCB板厂,要板厂控制,板厂会按我们要求的阻抗对资料进行微调,比如调整线宽线距从而达到我们要求的阻抗。
3.在设计之初:我们按叠层参数,及要板厂提供相关资料(板材,介电常数,绿油,PP片厚度等),再结合Si9000软件进行阻抗计算,算出来的参数走阻抗线;最后出洗板资料给PCB板厂的同时截图,要板厂进行控制阻抗,这样的好处是,一般情况板厂不会动我们的资料,要动也是很微小的调整。
从上面可以看出,1与2点都不保险,第1点若PCB叠层参数变了,那么阻抗也会变,继续套用那天错了都不知道,第2.点截图要板厂控制,这个可是可以,但是也经常会遇到板厂工程人员打电话过来说,你的阻抗做不了,原因是你的设计的线宽线距相差太大,板上又没有足够的空间加宽线宽线距之类的。
显然第3点方案最保险,不会出
现板厂不能控制阻抗的现象发生。
好了,现在我们开始学习Si9000的使用,培训内容如下:
1.公司常用叠层模版说明
2.Shortcut to Si9000阻抗计算软件界面讲解。
3.常用阻抗计算模版说明。
4.阻抗计算正推反推教程
5.实列一讲解(单端阻抗包地计算)
6.实例二讲解(差分对阻抗包地讲算)。
一,首先给大家介绍一下Polar软件,Polar是专业计算阻抗的软件,其版本包括:Si6000,Si8000,及Si9000.二,其次给大家介绍常见的几种阻抗模型:特性阻抗,差分阻抗,共面性阻抗.1.外层特性阻抗模型:2.内层特性阻抗模型:3.外层差分阻抗模型:4.内层差分阻抗模型:5.共面性阻抗模型:包括(1)外层共面特性阻抗,(2)内层共面特性阻抗,(3)外层共面差分阻抗,(4)内层共面差分阻抗.三,再次给大家介绍一下芯板(即Core)及半固化片(即PP),每个多层板都是由芯板和半固化片通过压合而成的,普通的FR-4板材一般有:生益,建滔,联茂等板材供应商.生益FR-4的芯板根据板厚来划分有:0.10MM ,0.15MM, 0.2MM , 0.25MM. 0.3MM, 0.4MM, 0.5MM等,包括有H/HOZ,1/1OZ,等这里有一点需要大家特别注意:含两位小数的板厚是指不含铜的厚度,只有一位小数指包括铜的总厚度,例如:0.10MM 1/1OZ的芯板,其0.10MM是指介质的厚度,其总厚度应为0.10MM+0.035+0.035MM=0.17MM,再如:0.15MM 1/1OZ的芯板,其总厚度是:0.15MM+0.035MM+0.035MM=0.22MM,而0.2MM 1/1OZ的芯板,其总厚度就是0.2MM,它的介质厚度应为:0.2MM-0.035MM-0.035MM=0.13MM.半固化片(即PP),一般包括:106,1080,2116,7628等,其厚度为:106为0.04MM,1080为0.06MM,2116为0.11MM,7628为0.19MM.当我们计算层叠结构时候通常需要把几张PP叠在一起,例如:2116+106,其厚度为0.15MM,即6MIL;1080*2+7628,其厚度为0.31MM,即12.2MIL等.但需注意以下几点:一、一般不允许4张或4张以上PP叠放在一起,因为压合时容易产生滑板现象.二、7628的PP一般不允许放在外层,因为7628表面比较粗糙,会影响板子的外观.三、另外3张1080也不允许放在外层,因为压合时也容易产生滑板现象.后续我会把一些常用的芯板以及各种组合的PP厚度汇总给大家,以便学习用Polar软件计算阻抗及层叠结构时使用! 四,怎样使用Polar Si9000软件计算阻抗:首先应知道是特性阻抗还是差分阻抗,具体阻抗线在哪些信号层上,阻抗线的参考面是哪些层?其次根据文件选择正确的阻抗模型来计算阻抗,最后通过调整各层间的介质厚度,或者调整阻抗线的线宽及间距来满足阻抗及板厚的要求!4五,举例说明怎样使用Polar Si9000计算阻抗及设计层叠结构:1.四层板板厚1.6MM,外层信号线要求控制50欧姆特性阻抗和100欧姆差分阻抗.其设计结构详见:4层板1.6MM阻抗设计.jpg,其中H1代表的是信号层与参考层之间的介质厚度,即L1与L2之间的厚度为3.2MIL,Er1为板材的介电常数,FR-4通常为4.2-4.6,W1称为下线宽,W2称为上线宽,一般认为W1=W+0.5MIL,W2=W-0.5MIL,S1(注意S1<2W)为两根差分线之间的间距(指线边缘与线边缘之间距离),T1信号层的成品铜厚,外层1OZ=1.4MIL,而内层考虑的蚀刻的因素,我们通常认为内层1OZ=1.2MIL,而0.5OZ=0.6MIL。
SI9000常规阻抗计算常规信号分为微带线与带状线,微带线指该信号线只有一个参考平面(表底层),带状线指该信号线在两个参考平面之间(内层),故阻抗计算需要选择不同模型来完成。
一、外层(微带线)单端阻抗计算模型1、单端阻抗结构——>2、单端阻抗模型——>3、设置相应参数说明:介电常数与板材有关,常规FR4介电常数在4、2—4、5之间,常规半固化片介电常数106(3、9)、1080(4、2)、2116(4、2)、7628(4、5),罗杰斯板材RO4350B介电常数就是3、66,M6板材介电常数在3、3-3、5之间.二、外层(微带线)差分阻抗计算模型1、差分阻抗结构-—>2、差分阻抗模型——>3、设置相应参数说明:常规差分控制阻抗100ohm,USB控90ohm,Typec控90oh m以下就是1、6mm板厚常规八层板得层叠1、 3个信号层、2个地、一个电源2、射频隔层参考,线宽16mil3、关键信号在S1层,注意S2跨分割问题,适用于杂线多得情况A.根据微带线单端模型50ohm阻抗计算如下(线宽6):B。
根据微带线差分模型阻抗计算如下:1、单端阻抗结构-->2、单端阻抗模型—-〉3、设置相应参数1、差分阻抗结构-—>2、差分阻抗模型——>3、设置相应参数根据常规8层板层叠计算内层阻抗、A。
内层单端阻抗模型:S1:H1=16+1、2+4、3=21、5H2=1、2+4、3=5、5S1层50ohm:5mil(说明:阻抗允许误差正负10%,H1与H2数值)S1与S2参考层面厚度相差较小阻抗线宽一致(说明:如果H1与H2数值正确,H1与H2即使颠倒,阻抗变化很小)S2:H1=4、3ﻩ H2=1、2+16+1、2+4、3=22、7S2层50ohm:5milS3:H1=4、3H2=1、2+16=17、2S3层50ohm:5milB.内层差分阻抗模型(介质厚度与单端阻抗一致):S1:H1=16+1、2+4、3=21、5H2=1、2+4、3=5、5S2:H1=4、3ﻩ H2=1、2+16+1、2+4、3=22、7S3:H1=4、3H2=1、2+16=17、2S1、S2、S3:90ohmS1、S2、S3:100ohm同理计算,概不赘述.(关于射频线阻抗计算隔层参考,共面阻抗计算参考<SI9000隔层及共面模型计算>)阻抗说明:叠层厚度通常由单板实际情况决定,如果叠层确定,线宽变小,阻抗变大,差分阻抗线之间得间距变大,阻抗变大,差分100ohm计算时,可通过改变线宽与间距实现(注意:建议差分间距不要大于2倍线宽如4得线宽8得间距).单端阻抗主要依靠改变线宽实现。
SI9000PCB阻抗计算实例在设计PCB(Printed Circuit Board)时,阻抗计算是一个非常重要的步骤。
阻抗是信号在传输线上的电流和电压比值,对于高速信号传输至关重要。
本文将以SI9000为例,介绍如何使用SI9000进行PCB阻抗计算。
首先,在设计PCB之前,需要明确设计要求和规范,例如信号速率、信号的特性阻抗以及PCB材料等等。
这些信息将为后续的计算提供基础。
1.打开SI9000软件并创建新工程。
在工程中,可以设置PCB的厚度、导体的宽度和距离、以及绝缘材料等。
这些参数将影响PCB的阻抗。
2. 导入PCB的布局文件。
SI9000支持常见的布局文件格式,如Gerber文件、ODB++等。
将布局文件导入到SI9000中,软件将根据导入的布局文件自动建立布局。
3.在布局中选择需要计算阻抗的导线。
可以使用鼠标工具选择需要计算阻抗的线路。
SI9000会自动识别所选线路的宽度和距离。
4. 设置PCB的材料参数。
SI9000支持各种常见的PCB材料,例如FR4、Rogers等。
在设定材料参数时,需要输入相应的介电常数、损耗因子等信息。
5.进行阻抗计算。
点击计算按钮,SI9000会根据所选择的导线和材料参数进行阻抗计算。
结果以图表的形式显示,包括阻抗值和相位等信息。
6.调整PCB参数。
根据计算结果,可以对PCB的设计参数进行调整。
例如,如果阻抗值偏小,可以增加导线的宽度或者调整介电常数,以达到预期的阻抗值。
7.优化布局。
根据计算结果,可以根据布局的要求对布线进行调整。
例如,可以调整引脚和信号线的位置,以降低信号的串扰和干扰。
8.重新进行阻抗计算。
在调整和优化布局后,需要重新进行阻抗计算,确保电路板上每条信号线的阻抗都符合设计要求。
9.导出计算结果。
可以将计算结果导出为报告或记录,以备将来参考。
总之,SI9000是一款强大的PCB阻抗计算软件,能够帮助工程师准确快速地计算和调整PCB的阻抗。
使用SI9000进行PCB常规阻抗计算SI9000是一款用于高速电路设计的软件,可以帮助工程师进行PCB 常规阻抗计算。
本文将介绍使用SI9000进行PCB常规阻抗计算的步骤和一些注意事项。
步骤一:准备设计文件在进行PCB常规阻抗计算之前,需要准备好设计文件。
设计文件包括PCB的布局和线路连接等信息。
将设计文件导入SI9000软件中。
步骤二:定义材料参数在进行PCB常规阻抗计算之前,需要定义材料参数。
SI9000软件提供了常用的材料参数库,包括介电常数、损耗因子等。
根据实际情况选择合适的材料参数。
步骤三:定义层厚在PCB设计中,不同层之间的层厚可能不同。
因此,需要在SI9000软件中定义层厚。
层厚的定义将对后续的阻抗计算结果产生影响。
步骤四:定义线宽和线间距根据设计文件中的线宽和线间距,定义在SI9000软件中。
线宽和线间距的定义将用于阻抗计算。
步骤五:进行阻抗计算在SI9000软件中,选择进行阻抗计算的线路,点击“计算”按钮即可开始阻抗计算。
软件会在计算完成后给出阻抗计算结果。
步骤六:分析和优化根据阻抗计算的结果,可以分析线路的阻抗变化和不符合要求的地方。
根据需求进行相应的优化和调整,直到满足设计要求为止。
注意事项:1.在使用SI9000进行PCB常规阻抗计算时,要保证输入的材料参数、层厚、线宽等参数与实际设计一致,以确保计算结果准确。
2.在定义线宽和线间距时,应该考虑到PCB制造工艺的限制,避免出现制造上的困难。
3.在进行阻抗计算之前,要对设计文件进行合理的预处理,如去除不必要的线路、修复错误等,确保输入的设计文件是正确的。
4.在进行阻抗计算之后,还要对计算结果进行验证,可以通过快速原型制造进行样品制作,然后进行测试验证,以确保计算结果的准确性。
总结:SI9000能够帮助工程师进行PCB常规阻抗计算,通过合理的定义材料参数、层厚、线宽和线间距等参数,可以得到准确的阻抗计算结果。
在进行阻抗计算之前,应该对设计文件进行合理的预处理,并对计算结果进行验证,确保设计满足要求。
印制电路板常见结构以及PCB抄板PCB设计基础知识印制电路板(PCB)的常见结构可以分为单层板(single Layer PCB)、双层板(Double Layer PCB)和多层板(Multi Layer PCB)三种。
一、单层板single Layer PCB单层板(single Layer PCB)是只有一个面敷铜,另一面没有敷铜的电路板。
元器件一般情况是放置在没有敷铜的一面,敷铜的一面用于布线和元件焊接,如图所示。
二、双层板Double Layer PCB双层板(Double Layer PCB)是一种双面敷铜的电路板,两个敷铜层通常被称为顶层(Top Layer)和底层(Bottom Layer),两个敷铜面都可以布线,顶层一般为放置元件面,底层一般为元件焊接面,如图所示。
三、多层板Multi Layer PCB多层板(Multi Layer PCB)就是包括多个工作层面的电路板,除了有顶层(Top Layer)和底层(Bottom Layer)之外还有中间层,顶层和底层与双层面板一样,中间层可以是导线层、信号层、电源层或接地层,层与层之间是相互绝缘的,层与层之间的连接往往是通过孔来实现的。
以四层板为例,如图2 3 4 所示。
这个四层板除了具有顶层和底层之外,内部还具有一个地层和一个图2 3 4 四层板结构尽管Protel DXP支持72层板的设计,但在实际的应用中,一般六层板已经能够满足电路设计的要求,不必将电路板设计成更多层结构。
Prepreg&corePrepreg:半固化片,又称预浸材料,是用树脂浸渍并固化到中间程度(B 阶)的薄片材料。
半固化片可用作多层印制板的内层导电图形的黏结材料和层间绝缘。
在层压时,半固化片的环氧树脂融化、流动、凝固,将各层电路毅合在一起,并形成可靠的绝缘层。
core:芯板,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。
si9000计算阻抗
SI9000是一款专业的PCB设计软件,其中包含了一个用于计算阻抗的功能。
使用SI9000计算阻抗的方法如下:
1. 打开SI9000软件,选择对应的功能窗口。
在旧版本的软件中,下方有两个可供切换的功能窗口;在2011版本的SI9000中,新增了两个功能窗口。
2. 选择“Lossless Calculation”(无损计算)功能窗口。
这个窗口用于计算阻抗,是研发工程师们最关注的功能。
在此窗口中,可以计算传输线阻抗、评估层叠厚度、线宽、铜厚等参数。
3. 在“Lossless Calculation”窗口中,设置传输线的长度、传输线材料(通常为copper)、导体的电导率(默认为copper的电导率5.80E07)、板材的介质损耗角、信号的上升时间、最大最小频率等参数。
4. 设置完参数后,点击“Calculate”按钮进行计算。
软件将自动计算出相应的阻抗值。
5. 计算完成后,可以点击“More”按钮获取更多相关信息,如每英尺的传输延时、寄生电感、寄生电容等。
6. 除了计算阻抗,SI9000软件还提供了其他功能,如“Frequency Dependent Calculation”(受频率影响的参数计算)和“Sensitivity Analysis”(敏感性分析)。
这些功能可以用于评估传输线损耗、阻抗、寄生参数、趋肤效应等随频率变化的趋势,以及分析不同参数对阻抗的影响程度。
综上所述,SI9000软件提供了丰富的阻抗计算及相关功能,可以帮助工程师们在PCB设计过程中更好地满足高速信号的要求。
标题:深度解析si9000 中间层差分阻抗计算近年来,随着电子产品的不断发展和普及,高速数字信号传输技术已经成为了现代通信和计算机系统中不可或缺的一部分。
在这一领域,si9000 中间层差分阻抗计算作为一种关键技术,被广泛应用于 PCB 设计、高速电路布线等领域。
本文将从深度和广度的角度,全面解析si9000 中间层差分阻抗计算的原理、应用和未来发展趋势。
1. si9000 中间层差分阻抗计算概述si9000 中间层差分阻抗计算是一种基于传输线理论的计算方法,用于评估 PCB 中不同层间的差分阻抗。
通过对传输线结构、介质常数、线宽、线距等参数的精确计算,si9000 能够准确预测不同层间的差分阻抗数值,为高速数字信号传输的稳定性和可靠性提供重要保障。
2. si9000 中间层差分阻抗计算原理si9000 中间层差分阻抗计算的原理主要基于微带线、同轴线等传输线理论。
在传输线中,信号的传输受到介质常数、线宽、线距等因素的影响,而 si9000 则通过数值模拟和计算,准确地分析和预测不同层间的差分阻抗值。
这一计算原理为 PCB 设计和高速电路布线提供了重要的参考依据。
3. si9000 中间层差分阻抗计算的应用si9000 中间层差分阻抗计算在实际应用中具有广泛的应用价值。
它可以帮助工程师们在 PCB 设计阶段,准确评估和优化差分阻抗,提高信号传输的可靠性和抗干扰能力。
对于高速电路布线而言,si9000 可以帮助工程师们快速、准确地计算不同层间的差分阻抗,优化信号传输线路的设计。
4. si9000 中间层差分阻抗计算的未来发展趋势随着通信技术的不断发展和变革,si9000 中间层差分阻抗计算也在不断向着更高精度、更广泛应用的方向发展。
未来,si9000 有望在模拟仿真、高速信号仿真、电磁兼容性设计等领域发挥更加重要的作用,为高速数字信号传输领域的发展提供强有力的支持。
总结与回顾si9000 中间层差分阻抗计算作为一种关键的高速数字信号传输技术,其原理、应用和未来发展趋势都具有重要意义。
SI9000各阻抗计算说明SI9000是一种用于计算电磁场传输中各种阻抗的软件。
它是一种先进的电磁场仿真软件,可以用于设计和分析高速通信线路、平面电路板、射频传输线等。
SI9000可以根据用户给定的参数和电磁场条件,精确计算出各种阻抗,包括差模阻抗、共模阻抗、传输线阻抗等。
本文将介绍SI9000各阻抗计算的基本原理和步骤。
首先,SI9000可以计算差模阻抗。
差模阻抗是指在差模传输线中两个信号之间的电流和电压之比。
差模传输线是一种常用于高速通信线路中的传输线,由于信号差别较大,容易产生串扰,因此需要计算并控制差模阻抗。
SI9000可以计算差模传输线的电磁场分布,并根据电荷和电流分布计算出差模阻抗。
其次,SI9000可以计算共模阻抗。
共模阻抗是指在共模传输线中两个信号之间的电流和电压之比。
共模传输线是一种常用于抗干扰和抑制噪声的传输线。
SI9000可以根据共模传输线的电磁场分布,计算出共模阻抗。
共模阻抗的计算方法与差模阻抗类似,都是根据电荷和电流分布进行计算。
SI9000还可以计算传输线阻抗。
传输线阻抗是指传输线上电流和电压之比,决定了信号在传输线上的传输特性。
传输线阻抗的计算是电磁场仿真中的一项重要任务。
SI9000可以通过计算传输线上的电场和磁场分布,得到传输线的阻抗。
传输线阻抗的计算需要考虑电磁场的传播速度、传输线的几何结构、介质属性等因素。
SI9000的计算步骤主要包括几何建模、导体和介质特性定义、电磁场分布计算、阻抗计算等。
在几何建模中,用户可以通过导入CAD文件或手动绘制来创建所需的结构模型。
然后,用户需要定义导体和介质的特性,包括电导率、磁导率、介电常数等。
接下来,用户可以选择计算所需的阻抗类型,如差模阻抗、共模阻抗或传输线阻抗。
最后,SI9000会根据用户给定的参数和条件,进行电磁场分布的计算,并计算出所需的阻抗。
SI9000还具有一些其他功能和特点。
例如,它可以显示电磁场分布图、传输线网络图等直观的图形结果,方便用户进行结果分析和设计优化。
PCB的Si9000阻抗设计1、阻抗的定义:在某一频率下,电子器件传输信号线中,相对某一参考层,其高频信号或电磁波在传播过程中所受的阻力称之为特性阻抗,它是电阻抗,电感抗,电容抗……的一个矢量总和。
当信号在PCB导线中传输时,若导线的长度接近信号波长的1/7,此时的导线便成为信号传输线,一般信号传输线均需做阻抗控制。
PCB制作时,依客户要求决定是否需管控阻抗,若客户要求某一线宽需做阻抗控制,生产时则需管控该线宽的阻抗。
当信号在PCB上传输时,PCB板的特性阻抗必须与头尾元件的电子阻抗相匹配,一但阻抗值超出公差,所传出的信号能量将出现反射、散射、衰减或延误等现象,从而导致信号不完整、信号失真。
2、计算阻抗的工具:目前大部分人都用Polar软件:Polar Si8000、Si9000等。
常用的软件阻抗模型主要有三种: (1)特性阻抗,也叫单端阻抗;(2)差分阻抗,也叫差动阻抗;(3)共面阻抗,也叫共面波导阻抗,主要应用于双面板阻抗设计当中。
选择共面阻抗设计的原因是:双面板板厚决定了阻抗线距离,下面的参考面比较远,信号非常弱,必须选择距离较近的参考面,于是就产生了共面阻抗的设计。
3、安装软件Polar Si9000,然后打开Polar Si9000软件。
熟悉一下常用的几个阻抗模型:(1)下图是外层特性阻抗模型(也叫单端阻抗模型):(2)下图是外层差分阻抗模型:(3)内层差分阻抗模型常用以下三种:下面是共面的常用模型:(4)下图是外层共面单端阻抗模型:(5)下图是外层共面差分阻抗模型:4、怎样来计算阻抗?各种PP及其组合的厚度,介电常数详见PP规格表,铜厚规则按下图的要求。
阻焊的厚度,在金百泽公司统一按10um,即0.4mil;W1、W2的规则按上面要求;当基铜<=0.5OZ时,W2=W-0.5mil;当基铜=1OZ时,W2=W-1mil;W指原线宽。
下面讲一个12层板,板厚1.8MM的例子:这个板信号层比较多,但是3,5层和8,10是对称的。
PCB的阻抗控制与前端仿真(SI9000的应用)2010-01-28 / 4:44 PMPCB传输线简介:随着 PCB 信号切换速度不断增长,当今的 PCB 设计厂商需要理解和控制 PCB 迹线的阻抗。
相应于现代数字电路较短的信号传输时间和较高的时钟速率,PCB 迹线不再是简单的连接,而是传输线。
在实际情况中,需要在数字边际速度高于1ns 或模拟频率超过300MHz时控制迹线阻抗。
PCB 迹线的关键参数之一是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。
印制电路板上导线的特性阻抗是电路板设计的一个重要指标,特别是在高频电路的PCB设计中,必须考虑导线的特性阻抗和器件或信号所要求的特性阻抗是否一致,是否匹配。
这就涉及到两个概念:阻抗控制与阻抗匹配,本文重点讨论阻抗控制和叠层设计的问题。
阻抗控制阻抗控制(Impedance Controlling),线路板中的导体中会有各种信号的传递,为提高其传输速率而必须提高其频率,线路本身若因蚀刻,叠层厚度,导线宽度等不同因素,将会造成阻抗值得变化,使其信号失真。
故在高速线路板上的导体,其阻抗值应控制在某一范围之内,称为“阻抗控制”。
PCB 迹线的阻抗将由其感应和电容性电感、电阻和电导系数确定。
影响PCB走线的阻抗的因素主要有: 铜线的宽度、铜线的厚度、介质的介电常数、介质的厚度、焊盘的厚度、地线的路径、走线周边的走线等。
PCB 阻抗的范围是 25 至120 欧姆。
在实际情况下,PCB 传输线路通常由一个导线迹线、一个或多个参考层和绝缘材质组成。
迹线和板层构成了控制阻抗。
PCB 将常常采用多层结构,并且控制阻抗也可以采用各种方式来构建。
但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定:信号迹线的宽度和厚度迹线两侧的内核或预填材质的高度迹线和板层的配置内核和预填材质的绝缘常数PCB传输线主要有两种形式:微带线(Microstrip)与带状线(Stripline)。
微带线(Microstrip):微带线是一根带状导线,指只有一边存在参考平面的传输线,顶部和侧边都曝置于空气中(也可上敷涂覆层),位于绝缘常数 Er 线路板的表面之上,以电源或接地层为参考。
如下图所示:注意:在实际的PCB制造中,板厂通常会在PCB板的表面涂覆一层绿油,因此在实际的阻抗计算中,通常对于表面微带线采用下图所示的模型进行计算:带状线(Stripline):带状线是置于两个参考平面之间的带状导线,如下图所示,H1和H2代表的电介质的介电常数可以不同。
上述两个例子只是微带线和带状线的一个典型示范,具体的微带线和带状线有很多种,如覆膜微带线等,都是跟具体的PCB的叠层结构相关。
用于计算特性阻抗的等式需要复杂的数学计算,通常使用场求解方法,其中包括边界元素分析在内,因此使用专门的阻抗计算软件SI9000,我们所需做的就是控制特性阻抗的参数:绝缘层的介电常数Er、走线宽度W1、W2(梯形)、走线厚度T和绝缘层厚度H。
对于W1、W2的说明:此处的W=W1,W1=W2.规则:W1=W-AW—设计线宽A—Etch loss (见上表)走线上下宽度不一致的原因是:PCB板制造过程中是从上到下而腐蚀,因此腐蚀出来的线呈梯形。
走线厚度T与该层的铜厚有对应关系,具体如下:铜厚-- COPPER THICKNESSBase copper thk For inner layer For outer layerH OZ 0.6mil 1.8mil1 OZ 1.2MIL 2.5MIL2 OZ 2.4MIL 3.6MIL绿油厚度:*因绿油厚度对阻抗影响较小,故假定为定值0.5mil。
我们可以通过控制这几个参数来达到阻抗控制的目的,下面以安维的底板PCB为例说明阻抗控制的步骤和SI9000的使用:底板PCB的叠层为下图所示:第二层为地平面,第五层为电源平面,其余各层为信号层。
各层的层厚如下表所示:Layer Name Type Material Thinkness ClassSURFACE AIRTOP CONDUCTOR COPPER 0.5 OZ ROUTINGDIELECTRIC FR-4 3.800MILL2-INNER CONDUCTOR COPPER 1 OZ PLANEDIELECTRIC FR-4 5.910MILL3-INNER CONDUCTOR COPPER 1 OZ ROUTINGDIELECTRIC FR-4 33.O8MILL4-INNER CONDUCTOR COPPER 1 OZ ROUTINGDIELECTRIC FR-4 5.910MILL5-INNER CONDUCTOR COPPER 1 OZ PLANEDIELECTRIC FR-4 3.800MILBOTTOM CONDUCTOR COPPER 0.5 OZ ROUTINGSURFACE AIR说明:中间各层间的电介质为FR-4,其介电常数为 4.2;顶层和底层为裸层,直接与空气接触,空气的介电常数为1。
需要进行阻抗控制的信号为:DDR的数据线,单端阻抗为50欧姆,走线层为TOP和L2、L3层,走线宽度为5mil。
时钟信号CLK和USB数据线,差分阻抗控制在100欧姆,走线层为L2、L3层,走线宽度为6mil,走线间距为6mil。
对于计算精度的说明:1、对于单端阻抗控制,计算值等于客户要求值;2、对于其他特性阻抗控制:对于其它所有的阻抗设计(包括差别和特性阻抗)*计算值与名义值差别应小于的阻抗范围的10%:例如:客户要求:60+/-10%ohm阻抗范围=上限66-下限54=12ohms阻抗范围的10%=12X10%=1.2ohms计算值必须在红框范围内。
其余情况类推。
下面利用SI9000计算是否达到阻抗控制的要求:首先计算DDR数据线的单端阻抗控制:TOP层:铜厚为0.5OZ,走线宽度为5MIL,距参考平面的距离为 3.8MIL,介电常数为 4.2。
选择模型,代入参数,选择lossless calculation,如图所示:计算得到单端阻抗为Zo=55.08ohm,与要求相差5欧姆。
根据板厂的反馈,他们将走线宽度改为6MIL 以达到阻抗控制,经过验证,在宽度W2=6MIL,W1=7MIL的情况下,计算得到的单端阻抗为Zo=50.56欧姆,符合设计要求。
L2层:在L2层的走线模型如下图所示:代入参数进行计算得到如下图所示:计算得到单端阻抗为Zo=50.59欧姆,符合设计要求。
同理可以得到L3层的单端阻抗,在此不再赘述。
下面计算差分阻抗控制:由PCB设计可知,底板PCB中时钟走线在L3层,USB数据线在L2层,走线宽度均为6MIL,间距为6MIL。
时钟信号选择的模型如下所示:按照提供给板厂的数据计算得到的结果如下图所示:根据板厂的反馈,差分阻抗只能做到85欧姆,与计算结果接近(他们可以微调板层厚度,但不能调线)。
但是改变线间距为12MIL时,计算得到的差分阻抗为92.97欧姆,再将线宽调为5MIL时,差分阻抗为98.99欧姆,基本符合设计要求。
经验小结1、当差分走线在中间信号层走线时,差分阻抗的控制比较困难,因为精度不够,就是说改变介质层厚度对差分阻抗的影响不大,只有改变走线的间距才对差分阻抗影响较大。
但是当走线在顶层或底层时,差分阻抗就比较好控制,很容易达到设计要求,通过实际计算发现,重要的信号线最好走表层,容易进行阻抗控制,尤其是时钟信号差分对。
2、在PCB设计之前,首先必须通过阻抗计算,把PCB的叠层参数确定,如各层的铜厚,介质层的厚度等等,还有差分走线的宽度和间距都需要事先计算得出,这些就是PCB的前端仿真,保证重要的信号线的阻抗控制满足设计要求。
3、关于介电常数Er的问题:以我们使用最多的FR-4介质的材料板为例:实际多层板是芯板和压合树脂层堆叠而成,其芯板本身也是由半固化片组合而成。
常用的三种半固化片技术指标如下表 1 所示。
半固化片组合的介电常数不是简单的算术平均,甚至在构成微带线和带状线时的Er值也有所不同。
另一方面,FR-4的Er也随信号频率的变化有一定改变,不过在1GHz 以下一般认为FR-4 材料的Er 值约4.2。
通常计算时采用 4.2。
4、在实际的阻抗控制中,一般采用介质为FR-4,其Er约4.2,线条厚度t对阻抗影响较小,实际主要可以调整的是H和W,W(设计线宽)一般情况下是由设计人员决定的,但在设计时应充分考虑线宽对阻抗的配合性和实际加工精度。
当然,采用较小的W 值后线条厚度t 的影响就不容忽视了。
H(介质层厚度)对阻抗控制的影响最大,实际H 有两类情况:一种是芯板,材料供应商所提供的板材中H 的厚度也是由以上三种半固化片组合而成,但其在组合的过程中必然会考虑三种材料的特性,而绝非无条件的任意组合,因此板材的厚度就有了一定的规定,形成了一个相应的清单,同时H 也有了一定的限制。
如0.17mm 1/1的芯板为 2116 ×1,0.4mm 1/1的芯板为1080×2+7628×1等。
另一种是多层板中压合部分的厚度:其方法基本上与前相同但需注意铜层的损失。
如内电层间用半固化片进行填充,因在制作内层的过程中铜箔被蚀刻掉的部分很少,则半固化片中树脂对该区的填充亦很少,则半固化片的厚度损失可忽略。
反之,如信号层之间用半固化片进行填充,由于铜箔被蚀刻掉的部分较多,则半固化片的厚度损失会很大且难以估计。
因此,有人建议在内层的信号层要求铺铜以减少厚度损失。
(上述资料来源于:P C B 高速数字设计中的阻抗控制(西南电子电信技术研究所陈飞))5、特征阻抗与传输线的宽度是成反比的,宽度越宽,阻抗越低,反之则阻抗更高。
6、在有些板的设计要求中对板层厚度有限制时,此时要达到比较好的阻抗控制,采用好的叠层设计非常关键。
从实际的计算中可以得出以下结论:a. 每个信号层都要有参考平面相邻, 能保证其阻抗和信号质量;b. 每个电源层都要有完整的地平面相邻, 使得电源的性能得以较好的保证;7、关于差分走线的线宽和间距对阻抗控制的讨论:通过软件计算发现,改变差分对的间距对阻抗控制的影响较大,但是这里涉及到另一个问题,就是差分对的耦合问题。
差分对耦合的主要目的是增强对外界的抗干扰能力和抑止EMI。
耦合分为紧耦合方式( 即差分对线间距小于或等于线宽) 和松耦合方式。
如果能保证周围所有的走线离差分对较远(比如远远大于 3 倍的线宽),那么差分走线可以不用保证紧密的耦合,最关键的是保证走线长度相等即可。
(可以参见Johnson 的信号完整性网站上的关于差分走线的阐述,他就要求他的layout 工程师将差分线离得较远,这样可以方面绕线)。