灰色系统理论资料
- 格式:pdf
- 大小:2.51 MB
- 文档页数:18
灰色系统理论概述一、本文概述本文旨在对灰色系统理论进行全面的概述和探讨。
灰色系统理论,作为一种专门研究信息不完全、不明确、不确定系统的新兴学科,自其诞生以来,已经在众多领域,如经济管理、预测决策、生态环保等,展现出其独特的优势和强大的应用价值。
本文首先简要介绍了灰色系统理论的基本概念、发展历程和主要特点,然后详细阐述了灰色系统理论的核心内容,包括灰色预测、灰色决策、灰色关联分析等方面。
本文还将对灰色系统理论的应用领域和前景进行展望,以期能够为广大读者提供一个全面、深入的灰色系统理论概述,并激发更多学者和研究人员对该领域的兴趣和探索。
二、灰色系统理论的基本原理灰色系统理论是一种专门研究信息不完全、不明确的系统的理论。
它的基本原理主要包括灰色关联分析、灰色预测模型和灰色决策等。
这些原理的核心思想是利用已知信息,通过灰色理论的处理方法,挖掘系统的内在规律,从而实现对系统的有效描述和预测。
灰色关联分析是灰色系统理论中的一种重要方法。
它通过计算系统中各因素之间的关联度,揭示因素之间的内在联系和动态变化过程。
这种方法对于处理信息不完全、数据不规则的系统尤为有效,能够帮助我们更好地理解系统的结构和行为。
灰色预测模型是灰色系统理论的另一个核心原理。
它利用少量的、不完全的信息,通过建立灰色微分方程或灰色差分方程,实现对系统发展趋势的预测。
灰色预测模型具有预测精度高、计算简便等优点,广泛应用于经济、社会、工程等多个领域。
灰色决策是灰色系统理论在决策领域的应用。
它通过分析决策问题中的灰色信息,结合灰色关联分析和灰色预测模型等方法,为决策者提供科学、合理的决策依据。
灰色决策注重决策过程的系统性和整体性,有助于提高决策的科学性和准确性。
灰色系统理论的基本原理包括灰色关联分析、灰色预测模型和灰色决策等。
这些原理为我们提供了一种全新的视角和方法来理解和处理信息不完全、不明确的系统。
通过运用这些原理,我们可以更好地揭示系统的内在规律,实现对系统的有效描述和预测,为决策和实践提供有力支持。
灰色系统理论介绍1)两个概念:累加法生成数(AGO )和累减法生成数(IAGO )(1)累加法生成数1-AGO 指一次累加生成。
记原始序列为{}(0)(0)(0)(0)(1),(2),...,()X x x x n = 一次累加生成序列为 {}(1)(1)(1)(1)(1),(2),...,()X x x x n =其中, (1)(0)(1)(0)0()()(1)()k i x k x i x k x k ===-+∑(2)累减生成数(IAGO )是累加生成的逆运算。
记原始序列为{}(1)(1)(1)(1)(1),(2),...,()X x x x n = 一次累减生成序列为 {}(0)(0)(0)(0)(1),(2),...,()X x x x n = 其中, (0)(1)(1)()()(1)x k x k x k =--规定(1)(0)0x = 2)GM (1,1)模型符号的含义:表示一阶、一个变量的灰色系统模型。
令(0)X表示需要建模的序列,(1)X 为(0)X 的1-AGO 序列,则有(1)(0)0()()k i x k x i ==∑ 定义(1)Z 为(1)X 的紧邻均值(MEAN )生成序列:(1)(1)(1)()(1)()2x k x k z k +-=则可建立如下灰微分方程:(0)(1)()()x k az k b += 记(,)Ta b a ∧=,则灰微分方程的最小乘估计参数列满足下式:1()T T n B B B Y a∧-=其中,(1)(1)(1)(2)1(3)1()1z B z z n ⎛⎫- ⎪=- ⎪ ⎪-⎝⎭ (1)(1)(1)(2)(3)...(4)n x x Y x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 称(1)(1)dx ax b dt +=为微分方程(0)(1)()()x k az k b +=的白化方程,也称为影子方程。
综上所述,则有(1)白化方程(1)(1)dx ax bdt +=的解也称为时间响应函数:(1)(1)()((0))at b b t x e a a x ∧-=-+(2)GM (1,1)灰色微方程(0)(1)()()x k az k b +=的时间相应序列为(1)(1)(1)(0)ak b b k x e a a x ∧-⎡⎤+=-+⎢⎥⎣⎦,k=1,2,3…n (3)取(1)(0)(0)(1)x x =,则有 (1)(0)(1)(1)ak b b k x e a a x∧-⎡⎤+=-+⎢⎥⎣⎦,k=1,2,3…n (4)将值还原得到 (0)(1)(1)(1)(1)()k k k x x x ∧∧∧+=+- 上式即为预测方程。
灰色系統理論簡介一、什麼是灰色系統二、什麼是灰色系統理論三、灰色系統理論建立的歷史背景四、灰色系統理論的主要內容五、灰色系統理論的兩條基本原理六、灰色系統的應用範疇七、灰色系統的優點八、灰色系統的應用實例一、什麼是灰色系統(Grey System)灰色分析全名為灰色系統理論分析(Grey System Theory),是由中國鄧聚龍教授於1982年在國際經濟學會議上提出,該理論主要是針對系統模型之不明確性,資訊之不完整性之下,進行關於系統的關聯分析(Relational Analysis)、模型建構(Constructing A Model)、借由預測(Prediction)及決策(Decision)之方法來探討及瞭解系統。
自然界對人類社會來講不是白色的(全部都知道),也不是黑色的(一無所知),而是灰色的(半知半解)。
人類的思考、行為也是灰色的,人類其實是生存在一個高度的灰色信息關係空間之中,例如:人體系統、糧食生產系統等。
部分信息已知,部分信息未知的系統,稱為灰色系統。
控制論中主要以顏色命名,常以顏色之深淺表示研究者對內部信息(information)和對系統本身的了解及認識程度之多寡,黑色,表示信息缺乏;白色,表示信息充足;而介於白色(W)系統與黑色(B)系統之間,其信息部份已知,信息部分未知的這類系統便稱之為灰色(G)系統。
二、什麼是灰色系統理論灰色系統理論是研究灰色系統分析、建模、預測、決策和控制的理論。
它把一般系統論、信息論及控制論的觀點和方法延伸到社會、經濟和生態等抽象系統,並結合數學方法,發展出一套解決信息不完全系統(灰色系統)的理論和方法。
灰色系統理論分析具有溝通社會科學及自然科學的作用,可將抽象的系統加以實體化、量化、模型化及做最佳化。
三、灰色系統理論建立的歷史背景1948年,美國數學家申農提出『信息論』,學者維納(Weiner)發表『控制論』一書。
1951年,巴黎舉行了第一屆國際會議,確認了控制論是一們新興的學科。