高考全国乙卷数学2023理科真题及答案(清晰完整)
- 格式:doc
- 大小:13.83 KB
- 文档页数:2
2023年普通高等学校招生全国统一考试全国乙卷(理科数学)一、选择题1.设252i1i i z +=++,则z =()A.12i -B.12i+ C.2i- D.2i+【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+.故选:B.2.设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=()A.()U M N ðB.U N Mð C.()U M N ð D.U M N⋃ð【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确;{}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可。
【详解】如图所示,在长方体1111ABCD A B C D -中,2AB BC ==,13AA =点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,则,,,O L M N 为所在棱的中点则三视图所对应的几何体为长方体1111ABCD A B C D -去掉长方体11ONIC LMHB -之后所得的几何体:该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形其表面积为:()()()22242321130⨯⨯+⨯⨯-⨯⨯=.故选:D.4.已知e ()e 1xax x f x =-是偶函数,则=a ()A.2- B.1- C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x ---⎡⎤--⎣⎦--=-==---,又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.5.设O 为平面坐标系的坐标原点,在区域(){}22,14x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【答案】C 【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域(){}22,|14x y x y ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=,结合对称性可得所求概率π2142π4P ⨯==.故选:C.6.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A.32-B.12-C.12D.2【答案】D【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2w T ==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5π3sin 1232f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故选:D.7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.8.已知圆锥PO O 为底面圆心,P A ,PB 为圆锥的母线,120AOB ∠=︒,若PAB的面积等于)A.π B.C.3πD.【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在AOB 中,120AOB ∠=o ,而OA OB ==,取AC 中点C ,连接,OC PC ,有,OC AB PC AB ⊥⊥,如图,30ABO = ∠,3232OC AB BC ===,由PAB 的面积为934,得193324PC ⨯⨯=,解得332PC =,于是PO ==,所以圆锥的体积2211ππ33V OA PO =⨯⨯=⨯⨯.故选:B9.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D --为150︒,则直线CD 与平面ABC 所成角的正切值为()A.15B.5C.5D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接,CE DE ,因为ABC 是等腰直角三角形,且AB 为斜边,则有CE AB ⊥,又ABD △是等边三角形,则DE AB ⊥,从而CED ∠为二面角C AB D --的平面角,即150CED ∠= ,显然,,CE DE E CE DE ⋂=⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ⋂平面ABC CE =,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2AB =,则1,CE DE ==CDE 中,由余弦定理得:CD ===由正弦定理得sin sin DE CDDCE CED=∠∠,即sin DCE ∠==,显然DCE ∠是锐角,cosDCE ∠=所以直线CD 与平面ABC 所成的角的正切为5.故选:C 10.已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A.-1B.12-C.0D.12【答案】B 【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-,显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=,于是有2πcos cos(3θθ=+,即有2π(2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈,所以Z k ∈,2ππ4πππ1cos(πcos[(π)]cos(πcos πcos πcos 333332ab k k k k k =--+=--=--.故选:B11.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--【答案】D 【解析】【分析】根据点差法分析可得9AB k k ⋅=,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y yx x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1,9AB k k ==,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得92,2ABk k =-=-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()224544561445160∆=⨯-⨯⨯=-⨯⨯<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :94,4AB k k ==,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;故选:D.12.已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC的中点,若PO =PA PD ⋅的最大值为() A.122B.1222+C.1+D.2+【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA PD ⋅1sin 2224πα⎛⎫=-- ⎪⎝⎭,或PA PD ⋅1sin 2224πα⎛⎫=++ ⎪⎝⎭然后结合三角函数的性质即可确定PA PD ⋅的最大值.【详解】如图所示,1,OA OP ==:45APO ∠= ,由勾股定理可得1PA ==当点,A D 位于直线PO 异侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭ 12cos 4παα⎛⎫=+ ⎪⎝⎭22222ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-12sin 2224πα⎛⎫=-- ⎪⎝⎭04πα≤≤,则2444πππα-≤-≤∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭ 12cos 4παα⎛⎫=- ⎪⎝⎭22222ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+12sin 2224πα⎛⎫=++ ⎪⎝⎭04πα≤≤,则2442πππα≤+≤∴当242ππα+=时,PA PD ⋅ 有最大值122.综上可得,PA PD⋅ 的最大值为122+.故选:A.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.14.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.【详解】作出可行域如下图所示:2z x y =-,移项得2y x z =-,联立有3129x y x y -=-⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z -最小,则z 最大,代入得8z =,故答案为:8.15.已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.【答案】2-【解析】【分析】根据等比数列公式对24536a a a a a =化简得11a q =,联立9108a a =-求出32q =-,最后得55712a a q q q =⋅==-.【详解】设{}n a 的公比为()0q q ≠,则3252456a q a a q a a a a ==⋅,显然0n a ≠,则24a q =,即321a q q =,则11a q =,因为9108a a =-,则89118a q a q ⋅=-,则()()3315582q q ==-=-,则32q =-,则55712a a q q q =⋅==-,故答案为:2-.16.设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.【答案】51,12⎫-⎪⎪⎣⎭【解析】【分析】原问题等价于()()()ln 1ln 10xx f x a a a a '=+++≥恒成立,据此将所得的不等式进行恒等变形,可得()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得()()()ln 1ln 10xx f x a a a a '=+++≥在区间()0,∞+上恒成立,则()()1ln 1ln xxa a a a ++≥-,即()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭在区间()0,∞+上恒成立,故()01ln 1ln 1a a a a +⎛⎫=≥- ⎪+⎝⎭,而()11,2a +∈,故()ln 10a +>,故()ln 1ln 01a a a ⎧+≥-⎨<<⎩即()1101a a a ⎧+≥⎨<<⎩,故112a ≤<,结合题意可得实数a 的取值范围是1,12⎫-⎪⎪⎣⎭.故答案为:1,12⎫-⎪⎪⎣⎭.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,i y (1,2,10i =⋅⋅⋅),试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记(1,2,,10)i i i z x y i =-= ,记1z ,2z ,…,10z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出,x y ,再得到所有的i z 值,最后计算出方差即可;(2)根据公式计算出的值,和z 比较大小即可.【小问1详解】545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =-=-=,i i i z x y =-的值分别为:9,6,8,8,15,11,19,18,20,12-,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s -+-+-+--+-++-+-+-+-==【小问2详解】由(1)知:11z =,==,故有z ≥所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【答案】(1)2114;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC 的值为BC =,然后由余弦定理可得57cos 14B =,最后由同角三角函数基本关系可得sin 14B =;(2)由题意可得4ABD ACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积.【小问1详解】由余弦定理可得:22222cos BC a b c bc A ==+-41221cos1207=+-⨯⨯⨯= ,则BC =22257cos 214a c b B ac +-===,21sin 14B =.【小问2详解】由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则11121sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭ △△.19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行的判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=-+ ,12AO BA BC =-+,BF AO ⊥,则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=-+⋅-+=-+=-+= ,解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,, //EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .【小问2详解】由(1)可知//EF OD,则2AO DO ==,得2AD ==,因此222152OD AO AD +==,则OD AO ⊥,有EF AO ⊥,又,AO BF BF EF F ⊥= ,,BF EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面B EF .【小问3详解】过点O 作//OH BF 交AC 于点H ,设AD BE G = ,由AO BF ⊥,得HO AO ⊥,且13FH AH =,又由(2)知,OD AO ⊥,则DOH ∠为二面角D AO C --的平面角,因为,D E 分别为,PB PA 的中点,因此G 为PAB 的重心,即有11,33DG AD GE BE ==,又1 3FH AH =,即有32DH GF =,2315422cos 62ABD +-∠==PA =,同理得2BE =,于是2223BE EF BF +==,即有BE EF ⊥,则222153223GF ⎛⎛=⨯+= ⎝⎭⎝⎭,从而153GF =,31515232DH =⨯=,在DOH △中,13615,,2222OH BF OD DH ====,于是6315444cos 26322DOH +-∠=-,2sin 2DOH ∠==,所以二面角D AO C --的正弦值为2.20.已知椭圆C :()222210y x a b a b +=>>的离心率为3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)22194y x +=(2)证明见详解【解析】【分析】(1)根据题意列式求解,,a b c ,进而可得结果;(2)设直线PQ 的方程,进而可求点,M N 的坐标,结合韦达定理验证2M Ny y +为定值即可.【小问1详解】由题意可得222253b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.【小问2详解】由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段PQ 的中点是定点()0,3.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数1()ln(1)f x a x x ⎛⎫=++ ⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)是否存在a ,b ,使得曲线1y f x ⎛⎫= ⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若()f x 在()0,∞+存在极值,求a 的取值范围.【答案】(1)()ln 2ln 20x y +-=;(2)存在11,22a b ==-满足题意,理由见解析.(3)10,2⎛⎫ ⎪⎝⎭.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b 的值,进一步结合函数的对称性利用特殊值法可得关于实数a 的方程,解方程可得实数a 的值,最后检验所得的,a b 是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数()()()2=1ln 1g x ax x x x +-++,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论0a ≤,12a ≥和102a <<三中情况即可求得实数a 的取值范围.【小问1详解】当1a =-时,()()11ln 1f x x x ⎛⎫=-+⎪⎝⎭,则()()2111ln 111x f x x x x ⎛⎫'=-⨯++-⨯ ⎪+⎝⎭,据此可得()()10,1ln 2f f '==-,函数在()()1,1f 处的切线方程为()0ln 21y x -=--,即()ln 2ln 20x y +-=.【小问2详解】由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,-∞-⋃+∞,定义域关于直线12x =-对称,由题意可得12b =-,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫-+=--> ⎪ ⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =-,即()()11ln 22ln2a a +=-,则12a a +=-,解得12a =,经检验11,22a b ==-满足题意,故11,22a b ==-.即存在11,22a b ==-满足题意.【小问3详解】由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=-+'++ ⎪ ⎪+⎝⎭⎝⎭,由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点;令()2111ln 101x a x x x ⎛⎫⎛⎫-+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax -++++=,令()()()2=1ln 1g x ax x x x +-++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,21g x ax x g x a x '=''=-+-+当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意;当12a ≥,21a ≥时,由于111x <+,所以()()''0,g x g x >'在区间()0,∞+上单调递增,所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,所以()g x 在区间()0,∞+上无零点,不符合题意;当102a <<时,由()''1201g x a x =-=+可得1=12x a-,当10,12x a ⎛⎫∈- ⎪⎝⎭时,()0g x ''<,()g x '单调递减,当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫-=-+⎪⎝⎭',令()()1ln 01m x x x x =-+<<,则()10x m x x-+'=>,函数()m x 在定义域内单调递增,()()10m x m <=,据此可得1ln 0x x -+<恒成立,则1112ln 202g a a a ⎛⎫-=-+<⎪'⎝⎭,令()()2ln 0h x x x x x =-+>,则()221x x h x x-++'=,当()0,1x ∈时,()()0,h x h x '>单调递增,当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤-(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=-+>-+-+=-+⎣⎦',()()()()22122121210g a a a a a ⎡⎤->---+-=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '在区间()0,∞+上存在唯一零点0x .当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增,所以()()000g x g <=.令()11ln 2n x x x x ⎛⎫=-- ⎪⎝⎭,则()()22211111022x n x x x x--⎛⎫=-+=≤ ⎪⎝⎭',则()n x 单调递减,注意到()10n =,故当()1,x ∈+∞时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,从而有11ln 2x x x ⎛⎫<- ⎪⎝⎭,所以()()()2=1ln 1g x ax x x x +-++()()211>1121ax x x x x ⎡⎤+-+⨯+-⎢⎥+⎣⎦21122a x ⎛⎫=-+ ⎪⎝⎭,令211022a x ⎛⎫-+= ⎪⎝⎭得2x =,所以0g >,所以函数()g x 在区间()0,∞+上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【答案】(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意,x y 的取值范围;(2)根据曲线12,C C 的方程,结合图形通过平移直线y x m =+分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +-=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======-ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=-∈θθ,故()[][]221:11,0,1,1,2C x y x y +-=∈∈.【小问2详解】因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m -+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C 均没有公共点,则m >或0m <,即实数m 的取值范围()(),0-∞+∞ .【选修4-5】(10分)23.已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ≤⎧⎨+-≤⎩所确定的平面区域的面积.【答案】(1)[2,2]-;(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,32,2()2,0232,0x x f x x x x x ->⎧⎪=+≤≤⎨⎪-+<⎩,不等式()6f x x ≤-化为:2326x x x >⎧⎨-≤-⎩或0226x x x ≤≤⎧⎨+≤-⎩或0326x x x <⎧⎨-+≤-⎩,解2326x x x >⎧⎨-≤-⎩,得无解;解0226x x x ≤≤⎧⎨+≤-⎩,得02x ≤≤,解0326x x x <⎧⎨-+≤-⎩,得20x -≤<,因此22x -≤≤,所以原不等式的解集为:[2,2]-【小问2详解】作出不等式组()60f x y x y ≤⎧⎨+-≤⎩表示的平面区域,如图中阴影ABC,由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -,由26y x x y =+⎧⎨+=⎩,解得(2,4)C ,又(0,2),(0,6)B D ,所以ABC 的面积11|||62||2(2)|822ABC C A S BD x x =⨯-=-⨯--= .。
2023年普通高等学校招生全国统一考试(全国乙卷)理科数学一、选择题1. 设,则( )A B. C. D. 2. 设集合,集合,,则( )A. B. C. D. 3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 已知是偶函数,则( )A. B. C. 1D. 25. 设O 为平面坐标系的坐标原点,在区域内随机取一点,记该点为A ,则直线OA 的倾斜角不大于的概率为( )A.B.C.D.6. 已知函数在区间单调递增,直线和为函数的图像的两条对称轴,则( ).252i1i i z +=++z =12i-12i+2i-2i+U =R {}1M x x =<{}12N x x =-<<{}2x x ≥=()U M N ðU N M ð()U M N ðU M N⋃ðe ()e 1x ax x f x =-=a 2-1-(){}22,14x y xy ≤+≤π418161412()sin()f x x ωϕ=+π2π,63⎛⎫⎪⎝⎭π6x =2π3x =()y f x =5π12f ⎛⎫-= ⎪⎝⎭A. B. C.D.7. 甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A. 30种B. 60种C. 120种D. 240种8. 已知圆锥POO 为底面圆心,PA ,PB 为圆锥的母线,,若的面,则该圆锥的体积为( )A.B.C. D. 9.已知为等腰直角三角形,AB 为斜边,为等边三角形,若二面角为,则直线CD与平面ABC 所成角的正切值为( )A.B.C.D.10. 已知等差数列的公差为,集合,若,则( )A -1B. C. 0D.11. 设A ,B 为双曲线上两点,下列四个点中,可为线段AB 中点是( )A. B. C. D. 12. 已知的半径为1,直线PA 与相切于点A ,直线PB 与交于B ,C 两点,D 为BC 的中点,若的最大值为( )A.B.C. D. 二、填空题13. 已知点在抛物线C :上,则A 到C 的准线的距离为______.14. 若x ,y 满足约束条件,则最大值为______.15. 已知为等比数列,,,则______..的的12-12120AOB ∠=︒PAB π3πABC ABD △C AB D --150︒1525{}n a 23π{}*cos N n S a n =∈{},S a b =ab =12-122219y x -=()1,1()1,2-()1,3()1,4--O O O PO =PA PD ⋅12(A 22y px =312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩2z x y =-{}n a 24536a a a a a =9108a a =-7a =16. 设,若函数在上单调递增,则a 的取值范围是______.三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:试验序号12345678910伸缩率545533551522575544541568596548伸缩率536527543530560533522550576536记,记的样本平均数为,样本方差为.(1)求,;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)18. 在中,已知,,.(1)求;(2)若D 为BC 上一点,且,求的面积.19. 如图,在三棱锥中,,,BP ,AP ,BC的中点分别为D ,E ,O ,,点F 在AC 上,.(1)证明:平面;(2)证明:平面平面BEF ;()0,1a ∈()()1xx f x a a =++()0,∞+i x ()1,2,,10i y i =⋅⋅⋅i i x iy ()1,2,,10i i i z x y i =-=⋅⋅⋅1210,,,z z z ⋅⋅⋅z 2s z 2s z ≥ABC 120BAC ∠=︒2AB =1AC =sin ABC ∠90BAD ∠=︒ADC △-P ABC AB BC ⊥2AB =BC =PB PC ==AD =BF AO ⊥//EF ADO ADO ⊥(3)求二面角的正弦值.20. 已知椭圆,点在上.(1)求的方程;(2)过点直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.21. 已知函数.(1)当时,求曲线在点处的切线方程;(2)是否存在a ,b ,使得曲线关于直线对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若在存在极值,求a 的取值范围.四、选做题【选修4-4】(10分)22. 在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线:(为参数,).(1)写出的直角坐标方程;(2)若直线既与没有公共点,也与没有公共点,求的取值范围.【选修4-5】(10分)23. 已知.(1)求不等式的解集;(2)在直角坐标系中,求不等式组所确定的平面区域的面积.的D AO C --2222:1(0)C b b x a a y +>>=()2,0A -C C ()2,3-C ,P Q ,AP AQ y ,M N MN 1()ln(1)f x a x x ⎛⎫=++⎪⎝⎭1a =-()y f x =()()1,1f 1y f x ⎛⎫= ⎪⎝⎭x b =()f x ()0,∞+xOy O x 1C ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ2C 2cos 2sin x y αα=⎧⎨=⎩α2απ<<π1C y x m =+1C 2C m ()22f x x x =+-()6f x x ≤-xOy ()60f x yx y ≤⎧⎨+-≤⎩三人行教育资源。
2023年高考全国乙卷(数学)一、选择题(共12题,每题5分,共60分) 1、设z =2+i 1+i 2+i 5,则z̅=( ).2、设集合U =R ,集合M ={x|x <1},N ={x|−1<x <2},则{x |x ≥2}=( ). A.C U (M ∪N )B.N ∪C U MC.C U (M ∩N )D.M ∪C U N3、如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( ). A.24B.26C.28D.304、已知f(x)=xe xe ax−1是偶函数,则a=().A.−2B.−1C.1D.25、设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于π4的概率为().A.18B.16C.14D.126、已知函数f(x)=sin (ωx+φ)在区间(π6,2π3)单调递增,直线x=π6和x=2π3为函数y=f(x)的图象的两条对称轴,则f(−5π12)=().A.−√32B.−12C.12D.√327、甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有一种相同的选法共有().A.30种B.60种C.120种D.240种8、已知圆锥PO的底面半径为√3,O为底面圆心,PA,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√3,则该圆锥的体积为().4A.πB.√6πC.3πD.3√6π9、已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为().A.15B.√25C.√35D.2510、已知等差数列{a n}的公差为2π3,集合S={cos a n|n∈N∗},若S={a,b},则ab=().A.−1B.−12C.0 D.1211、设A,B为双曲线x2−y29=1上两点,下列四个点中,可为线段AB中点的是().A.(1,1)B.(−1,2)C.(1,3)D.(−1,−4)12、已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=√2,则PA⃗⃗⃗⃗⃗ ·PD⃗⃗⃗⃗⃗ 的最大值为().A.1+√22B.1+2√22C.1+√2D.2+√2二、填空题(共4题,每题5分,共20分)13、已知点A(1,√5)在抛物线C:y 2=2px 上,则A 到C 的准线的距离为 .14、若x,y 满足约束条件{x −3y ≤−1x +2y ≤93x +y ≥7,则z =2x −y 的最大值为 .15、已知{a n }为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=−8,则a 7= .16、设a ∈(0,1),若函数f (x )=a x +(1+a )x 在(0,+∞)上单调递增,则a 的取值范围是 .三、解答题(共5题,共60分)17、(12分)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对实验,每次配对实验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i,y i(i=1,2,…,10),实验结果如下:记z i=x i−y i(i=1,2,…,10),记z1,z2,…,z10的样本平均数为z,样本方差为δ2 .(1)求z,δ2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡有显著提高(如果z≥2√δ210胶产品的伸缩率有显著提高,否则不认为有显著提高).18、(12分)在△ABC中,已知∠BAC=120°,AB=2,AC=1.(1)求sin∠ABC;(2)若D为BC上一点,且∠BAD=90°,求△ADC的面积.2,BC=2√2,PB=PC=√6,BP,AP,BC的中点分别为D,E,O,AD=√5DO,点F在AC上,BF⊥AO .(1)证明:EF//平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D−AO−C的正弦值 .20、(12分)已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为√53,点A(−2,0)在C上.(1)求C的方程;(2)过点(−2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证明:线段MN的中点为定点 .21、(12分)已知函数f(x)=(1+a)ln (1+x).x(1)当a=−1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)是否存在a,b,使得曲线y=f(1)关于直线x=b对称,若存在,求a,b的值,若不存x在,说明理由;(3)若f(x)在(0,+∞)存在极值,求a的取值范围 .四、选做题(共2题,任选1题作答,共10分)22、(10分)在直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ=2sinθ(π4≤θ≤π2),曲线C2:{x=2cosαy=2sinα(α为参数,π2<α<π).(1)写出C1的直角坐标方程;(2)若直线y=x+m既与C1没有公共点,也与C2没有公共点,求m的取值范围.23、(10分)已知f(x)=2|x|+|x−2| .(1)求不等式f(x)≤6−x的解集;(2)在直角坐标系xOy中,求不等式组{f(x)≤yx+y−6≤0所确定的平面区域的面积 . 解:(1)因f(x)={−3x+2 ,x<0 x+2 ,0≤x≤2 3x−2 ,x>2作出y=f(x)和y=6−x图像:易知:当−2≤x≤2时,f(x)≤6−x故不等式f(x)≤6−x的解集为:x∈[−2,2].(2)由图像可知:{f(x)≤yx+y−6≤0所确定的区域图形为Rt△ABC,易知AC⊥BC所以,其确定的平面区域的面积为:S△ABC=12·|AC|·|BC|=12·4√2·2√2=8.。
2023全国乙卷高考数学试卷及答案一、选择题(每题5分,共40分)1. 已知集合A={x|1≤x<4},B={x|x≤2或x≥3},则A∩B=()A. {x|1≤x<3}B. {x|1≤x<4}C. {x|2≤x<4}D. {x|1≤x≤2}答案:A2. 若函数f(x)=2x^3-3x^2+x+1在x=1处的切线斜率为k,则k=()A. -1B. 0C. 1D. 3答案:D3. 已知函数f(x)=ln(x-1),则函数f(x)的单调递增区间为()A. (1, +∞)B. (-∞, 1)C. (0, +∞)D. (-∞, 0)答案:A4. 设等差数列{an}的前n项和为Sn,且S3=9,S6=27,则公差d=()A. 2B. 3C. 4D. 5答案:B5. 若函数y=f(x)的图像关于点(2, 3)对称,则f(3)+f(1)=()A. 6B. 9C. 12D. 15答案:B6. 已知函数f(x)=x^2+bx+c(b、c为常数)的图像上存在两个不同的点A、B,使得∠OAB=90°(O为坐标原点),则b的取值范围是()A. b>1B. b<-1C. b>0D. b<0答案:D7. 若平面直角坐标系xOy中,点A(2, 3)关于直线y=2x-1的对称点为B,则线段AB的中点坐标为()A. (1, 2)B. (2, 1)C. (3, 2)D. (2, 3)答案:A8. 若直线y=kx+1与函数y=x^3-3x的图像有两个不同的交点,则实数k的取值范围是()A. k>1B. k<-1C. -1<k<1D. k>0答案:C二、填空题(每题5分,共30分)9. 若函数y=2x^3-3x^2+x+1在x=2处的切线方程为y=5x+b,则b=________。
答案:-610. 已知等差数列{an}的前n项和为Sn,且S10=100,S20=400,则S30=________。
答案:70011. 若函数y=f(x)的图像关于点(1, -2)对称,则f(0)=________。
2023年全国统一高考数学试卷(理科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则=( )A.1﹣2i B.1+2i C.2﹣i D.2+i【答案】B【解答】解:∵i2=﹣1,i5=i,∴z===1﹣2i,∴=1+2i.故选:B.2.(5分)设集合U=R,集合M={x|x<1},N={x|﹣1<x<2},则{x|x≥2}=( )A.∁U(M∪N)B.N∪∁U M C.∁U(M∩N)D.M∪∁U N【答案】A【解答】解:由题意:M∪N={x|x<2},又U=R,∴∁U(M∪N)={x|x≥2}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.5.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.6.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.7.(5分)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种【答案】C【解答】解:根据题意可得满足题意的选法种数为:=120.故选:C.8.(5分)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,∠AOB =120°,若△PAB的面积等于,则该圆锥的体积为( )A.πB.πC.3πD.3π【答案】B【解答】解:根据题意,设该圆锥的高为h,即PO=h,取AB的中点E,连接PE、OE,由于圆锥PO的底面半径为,即OA=OB=,而∠AOB=120°,故AB===3,同时OE=OA×sin30°=,△PAB中,PA=PB,E为AB的中点,则有PE⊥AB,又由△PAB的面积等于,即PE•AB=,变形可得PE=,而PE=,则有h2+=,解可得h=,故该圆锥的体积V=π×()2h=π.故选:B.9.(5分)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C﹣AB﹣D为150°,则直线CD与平面ABC所成角的正切值为( )A.B.C.D.【答案】C【解答】解:如图,取AB的中点E,连接CE,DE,则根据题意易得AB⊥CE,AB⊥DE,∴二面角C﹣AB﹣D的平面角为∠CED=150°,∵AB⊥CE,AB⊥DE,且CE∩DE=E,∴AB⊥平面CED,又AB⊂平面ABC,∴平面CED⊥平面ABC,∴CD在平面ABC内的射影为CE,∴直线CD与平面ABC所成角为∠DCE,过D作DH垂直CE所在直线,垂足点为H,设等腰直角三角形ABC的斜边长为2,则可易得CE=1,DE=,又∠DEH=30°,∴DH=,EH=,∴CH=1+=,∴tan∠DCE===.故选:C.10.(5分)已知等差数列{a n}的公差为,集合S={cos a n|n∈N*},若S={a,b},则ab=( )A.﹣1B.﹣C.0D.【答案】B【解答】解:设等差数列{a n}的首项为a1,又公差为,∴,∴,其周期为=3,又根据题意可知S集合中仅有两个元素,∴可利用对称性,对a n取特值,如a1=0,,,•,或,,a3=π,•,代入集合S中计算易得:ab=.故选:B.11.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.12.(5分)已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=,则•的最大值为( )A.B.C.1+D.2+【答案】A【解答】解:如图,设∠OPC=α,则,根据题意可得:∠APO=45°,∴==cos2α﹣sinαcosα==,又,∴当,α=,cos()=1时,取得最大值.故选:A.二、填空题:本题共4小题,每小题5分,共20分。
2023年全国乙卷高考数学(理科)试题及完整答案2023年全国乙卷高考数学(理科)试题2023年全国乙卷高考数学(理科)答案高中数学有什么必背知识1、函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(—x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2、复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3、函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y —a,x+a)=0(或f(—y+a,—x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b —y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;4、函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a ︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5、方程k=f(x)有解k∈D(D为f(x)的值域);6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7、(1)(a0,a≠1,b0,n∈R+);(2)l og a N=(a0,a≠1,b0,b≠1);(3)l og a b的符号由口诀“同正异负”记忆;(4)a log a N= N(a0,a≠1,N0);高中数学的学习方法1.高中数学学习方法—听好课在课堂上集中注意力是想要学好一门科目的关键,高中数学课也不例外。
2023年高考全国乙卷数学(理)真题学校:___________姓名:___________班级:___________考号:___________ A.24B.264.已知e()e1xaxxf x=-是偶函数,则A.2-B.1-5.设O为平面坐标系的坐标原点,在区域为A,则直线OA的倾斜角不大于π4二、填空题三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用(1)证明://EF平面ADO;(2)证明:平面ADO⊥平面BEF(3)求二面角D AO C--的正弦值20.已知椭圆2222:1( Cbxaa y+=(1)求C的方程;参考答案:6.D【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入30ABO = ∠,3,232OC AB BC ===显然,,CE DE E CE DE ⋂=因此平面CDE ⊥平面ABC 直线CD ⊂平面CDE ,则直线从而DCE ∠为直线CD 与平面由余弦定理得:当点,A D 位于直线PO 同侧时,设则:PA PD ⋅ =||||cos PA PD α⎛⋅ ⎝12cos cos 4παα⎛⎫=⨯- ⎪⎝⎭22⎛⎫15.2-【分析】根据等比数列公式对24536a a a a a =化简得得55712a a q q q =⋅==-.【详解】设{}n a 的公比为()0q q ≠,则245a a a 则24a q =,即32a q q =,则11a q =,因为910a a=于是1//,,/2DE AB DE AB OF=平行四边形,//,EF DO EF DO=,又EF⊄所以//EF平面ADO.(2)法一:由(1)可知//EF(3)法一:过点O 作//OH BF 交由AO BF ⊥,得HO AO ⊥,且FH 又由(2)知,OD AO ⊥,则DOH ∠因为,D E 分别为,PB PA 的中点,因此即有11,33DG AD GE BE ==,又法二:平面ADO 的法向量为n平面ACO 的法向量为(30,0,1n = 所以131313cos ,1n n n n n n ⋅==+⋅因为[],0,πn n ∈ ,所以sin n【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.(1)()ln 2ln 2x y +-(2)存在11,22a b ==-满足题意,理由见解析1⎛⎫-;23.(1)[2,2](2)8.【分析】(1)分段去绝对值符号求解不等式作答(2)作出不等式组表示的平面区域,再求出面积作答3由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -所以ABC 的面积1|2ABC S =。
2023年普通高等学校招生全国统一考试理科数学一、选择题1 设252i1i i z,则z ( )A. 12iB. 12iC. 2iD. 2i2. 设集合U R ,集合 1M x x , 12N x x ,则2x x ( ) A. U M N ð B. U N M ð C U M N ðD. U M N ð3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 已知e ()e 1x ax x f x 是偶函数,则 a ( )A. 2B. 1C. 1D. 25. 设O 为平面坐标系的坐标原点,在区域22,14x y xy 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18 B.16C.14D.126. 已知函数()sin()f x x 在区间π2π,63单调递增,直线π6x 和2π3x 为函数 y f x 的图像的两条对称轴,则5π12f( ) ..A. 2B. 12C.12D.27. 甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A. 30种B. 60种C. 120种D. 240种8. 已知圆锥POO 为底面圆心,P A ,PB 为圆锥的母线,120AOB ,若PAB 的面,则该圆锥的体积为( ) A.B.C. 3D.9. 已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D 为150 ,则直线CD 与平面ABC 所成角的正切值为( ) A.15B.5C.5D.2510. 已知等差数列 n a 的公差为23,集合*cos N n S a n ,若 ,S a b ,则ab ( )A. -1B. 12C. 0D.1211. 设A ,B 为双曲线2219y x 上两点,下列四个点中,可为线段AB 中点的是( )A. 1,1B. ()2-C. 1,3D. 1,412. 已知O 的半径为1,直线P A 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC 的中点,若POPA PD的最大值为( )A.12B.12C. 1D. 2二、填空题13.已知点 A 在抛物线C :22y px 上,则A 到C 的准线的距离为______.14. 若x ,y 满足约束条件312937x y x y x y,则2z x y 的最大值为______.15. 已知 n a 为等比数列,24536a a a a a ,9108a a ,则7a ______.16. 设 0,1a ,若函数 1xx f x a a 在 0, 上单调递增,则a 取值范围是______.三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,i y (1,2,10i ),试验结果如下记(1,2,,10)i i i z x y i ,记1z ,2z ,…,10z 的样本平均数为z ,样本方差为2s , (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18. 在ABC 中,已知120BAC ,2AB ,1AC . (1)求sin ABC ;(2)若D 为BC 上一点,且90BAD ,求ADC △的面积.19. 如图,在三棱锥 P ABC 中,AB BC ,2AB ,BC PB PC BP ,AP ,BC的中点分别为D ,E ,O ,AD,点F 在AC 上,BF AO .(1)证明://EF 平面ADO ; (2)证明:平面ADO 平面BEF ; (3)求二面角D AO C 的正弦值.的的20. 已知椭圆C : 222210y x a b a b的离心率为3,点 2,0A 在C 上.(1)求C 的方程; (2)过点2,3 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN的中点为定点. 21. 已知函数1()ln(1)f x a x x. (1)当1a 时,求曲线 y f x 在点1,1f 处的切线方程; (2)是否存在a ,b ,使得曲线1y f x关于直线x b 对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若 f x 在 0, 存在极值,求a 的取值范围.四、选做题【选修4-4】(10分)22. 在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42 ,曲线2:2cos 2sin x y( 为参数,2 ).(1)写出1C 的直角坐标方程;(2)若直线y x m 既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23. 已知 22f x x x . (1)求不等式 6f x x 解集; (2)在直角坐标系xOy 中,求不等式组()60f x yx y所确定的平面区域的面积.的第5页/共5页。
1.(2023,乙,理10)数列{a n }是公差为2π3的等差数列,集合S={a n cos |n ∈N *},若S ={a ,b },2023年高考理科数学(乙卷)试题及解析则ab =A.12B .-12C .0D .1【答案】B【解析】a n cos =(2π3n +a 1-2π3)cos ,周期T =3,要使集合S 中只有两个元素,则可想到利用对称性取数,如a 1=-π3,a 2=π3,a 3=π⋯,或a 1=0,a 2=2π3,a 3=4π3,a 4=2π,⋯代入算得:ab =-12,故选B 2.(2023,乙,理11)已知A ,B 双曲线x 2-y 29=1上两点,则可以作为A ,B 中点的是A .(1,1)B .(-1,2)C .(1,3)D .(-1,-4)【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),AB 的中点为(x 0,y 0),则用点差法可得:k AB =y 2-y 1x 2-x 1=9×x 2+x 1y 2+y 1即,-3<9×x 0y 0<3⇒-13<x 0y 0<13,⇒y0x 0>3,或y 0x 0<-3,故选D .3.(2023,乙,理12)已知圆的半径为1,P A 与圆O 相切,切点为A ,过点P 的直线与圆交于,B ,C 两点,D 为BC 的中点,OP =2,则PA ∙PD的最大值为A .12+22B .1+22C .1+2D .2+2【答案】【解析】设∠OPC =α,-π4≤α≤π4则由题意:∠APO =45°,PA ∙PD=|PA |∙|PD |(α+π4)cos =1×2αcos (α+π4)cos =12+22(2α+π4)cos ∴当(2α+π4)cos =1,即:α=-π8时,PA ∙PD 最大,为12+22.4.(2023,乙,理16)已知a ∈(0,1),f (x )=a x +(1+a )x 在x ∈(0,+∞)为增函数,则a 的取值范围为.【答案】[5-12,1)【解析】f '(x )=a x ln a +(1+a )x ln (1+a )≥0在(0,+∞)上恒成立,⇒(1+a )x ln (1+a )≥-a x ln a ⇒(1+a a )x>1≥-aln (1+a )ln ⇒ln (1+a )≥ln 1a⇒1+a ≥1a⇒a 2+a -1≥0⇒a ≥5-12又0<a <1∴a 的取值范围为[5-12,1).AB COPDαr=125.(2023,乙,理17)在∆ABC 中,∠A =120°,AB =2,AC =1.(1)求∠ABC sin ;(2)若D 为BC 上一点,且∠BAD =90°,求∆BAD 的面积.【解析】(1)由余弦定理可知:BC 2=22+12-2×1×2×120°cos =7,故BC =7,∴∠ABC cos =7+4-12×7×2=5714,又∠ABC ∈(0,π)∴∠ABC sin =1-2∠ABC cos =1-2528=2114.(2)由(1)知:∠ABC cos =5714,∠ABC sin =2114,故∠ABC tan =35,∴AD 2=35,得:AD =235,∴S ∆BAD =12×2×235=235.6.(2023,乙,理19)三棱锥P -ABC 中,∠ABC =90°,AB =2,BC =22,PB =PC =6,AD =5DO ,BF ⏊AO ,O ,D ,E 分别为BC ,PB ,PA 的中点.(1)求证:EF ⎳平面ADO ;(2)求证:平面ADO ⏊平面BEF ;(3)求二面角D -AO -C 的大小.【解析】(1)连接DE ,OF ,(难点在证明F 为AC 中点)设AF =tAC ,则BF =BA +AF =(1-t )BA +tBC ;AO =-BA +12BC ,∵BF ⏊AO ,故BF ∙AO =[(1-t )BA +tBC ]∙(-BA +12BC )=(t -1)BA 2+12tBC 2=4(t -1)+4t =0,解得:t =12.故F 为AC 的中点。
高考全国乙卷数学2023理科真题及答案
(清晰完整)
高考全国乙卷数学2023理科真题及答案
提高数学成绩的技巧
数学中的基础题固然很重要,它是高分的基础,但要高分的关键则是综合性强,难度大的最后几道大题,而其往往趋向灵活,为适应这种种变化,不妨参阅一些专门研究考试的杂志,答卷时,对后面的题应抱着拿一分算一分的态度,切不可望而生畏,现在题目都是渐进式的,往往会分为几个小问题,因为每个小的独立得分,所以能解决算,拿到一道综合性强的数学题,首先应逐字通读一遍,仔细把它翻译成数学语言,弄清已知条件和待求问题,再找出二者之间的联系的桥梁,说起来也可算是“解剖麻雀法”采取各个击破,难点个扫除,一道题就能顺利解决。
高考数学考试技巧
1.关于选择题
大家都知道高二数学选择题共12题,5分一题即60分,比重很大,如何取得这60分?其实选择题主要是方法,做到“投机取巧”才是王道,不要正面去解题,用一些侧面的方法如代入法,即将答案逐一带入,选取正确值,还比如排除法、画图法、联想法等,找到每一题的解题方法,任何难题都会迎刃而解。
2.关于填空题
这个就有难度了,因为不能投机取巧,只能一点点演算,基本上前两道比较简单,后面几道就比较复杂了,建议有舍有得,不要恋战填空题。
3.关于大题
一般情况下高二学生都能做出一道题或者两道题,大题分很重,要能保证做一道对一道,对一道拿一道得满分,后面的几道压轴题也要看看,会一步写一步,争取做到写的就能得分,哪怕是不起眼的2分,也要尽力争取。
数学考试如何拿高分
一、对照法
如何正确理解和运用数学概念小学数学常用的方法就是对照法根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法
二、公式法
运用定律、公式、规则、法则来解决问题的方法它体现的是由一般到特殊的演绎思维公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法但一定要让学生对公式、定律、规则、法则有正确而深刻的理解,并能准确运用
三、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。