数学人教版九年级上册22.3实际问题与二次函数(第一课时)教学设计
- 格式:docx
- 大小:31.39 KB
- 文档页数:3
22.3 实质问题与二次函数第 1课时教课目标:1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y= ax2的关系式。
2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。
3.让学生体验二次函数的函数关系式的应用,提升学生用数学意识。
要点难点:要点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y= ax2、y= ax2+b x + c 的关系式是教课的要点。
难点:已知图象上三个点坐标求二次函数的关系式是教课的难点。
教课过程:一、创建问题情境如图,某建筑的屋顶设计成横截面为抛物线型( 曲线 AOB)的薄壳屋顶。
它的拱高AB 为4m,拱高 CO为 0.8m。
施工前要先制造建筑模板,如何画出模板的轮廓线呢?分析:为了画出吻合要求的模板,平时要先建立合适的直角坐标系,再写出函数关系式,而后依据这个关系式进行计算,放样画图。
以下列图,以AB的垂直均分线为y 轴,以过点 O 的 y 轴的垂线为 x 轴,建立直角坐标系。
这时,屋顶的横截面所成抛物线的极点在原点,对称轴是 y 轴,张口向下,所以可设它的函数关系式为:y = ax2 (a< 0) (1)AB因为 y 轴垂直均分AB,并交 AB于点 C,所以 CB2= 2(cm) ,又 CO= 0.8m,所以点 B =的坐标为 (2 ,- 0.8) 。
因为点 B 在抛物线上,将它的坐标代人(1) ,得-0.8=a×22所以a=-0.2所以,所求函数关系式是y=- 0.2x 2。
二、引申拓展问题 1:能不可以以A点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系 ?让学生认识建立直角坐标系的方法不是独一的,以 A 点为原点, AB所在的直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系也是可行的。
问题 2,若以 A 点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂直为y 轴,建立直角坐标系,你能求出其函数关系式吗?分析:按此方法建立直角坐标系,则 A 点坐标为 (0 , 0) ,B 点坐标为 (4 , 0),OC 所在直线为抛物线的对称轴,所以有AC=CB, AC=2m, O点坐标为 (2 ; 0. 8) 。
22.3 实际问题与二次函数 第1课时 几何图形的最大面积1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决图形中最大面积问题.一、情境导入孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.当x 为何值时,S 有最大值?并求出最大值.二、合作探究 探究点:最大面积问题 【类型一】利用二次函数求最大面积小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x ,则另一边长为60-2x2,从而表示出面积;(2)利用配方法求出顶点坐标.解:(1)根据题意,得S =60-2x 2·x =-x2+30x .自变量x 的取值范围是0<x <30.(2)S =-x 2+30x =-(x -15)2+225,∵a=-1<0,∴S 有最大值,即当x =15(米)时,S 最大值=225平方米.方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.【类型二】利用二次函数判断面积取值成立的条件(2014·江苏淮安)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)求出y 的最大值,与70比较大小,即可作出判断.解:(1)y =x (16-x )=-x 2+16x (0<x <16);(2)当y =60时,-x 2+16x =60,解得x 1=10,x 2=6.所以当x =10或6时,围成的养鸡场的面积为60平方米;(3)方法一:当y =70时,-x 2+16x =70,整理得:x 2-16x +70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:y =-x 2+16x =-(x -8)2+64,当x =8时,y 有最大值64,即能围成的养鸡场的最大面积为64平方米,所以不能围成70平方米的养鸡场.方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程.【类型三】最大面积方案设计施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图所示).(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数关系式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.解:(1)M (12,0),P (6,6).(2)设这条抛物线的函数关系式为y =a (x -6)2+6,因为抛物线过O (0,0),所以a (0-6)2+6=0,解得,a =-16,所以这条抛物线的函数关系式为:y =-16(x -6)2+6,即y =-16x2+2x .(3)设OB =m 米,则点A 的坐标为(m ,-16m2+2m ),所以AB =DC =-16m 2+2m .根据抛物线的轴对称,可得OB =CM =m ,所以BC =12-2m ,即AD =12-2m ,所以l =AB +AD +DC =-16m 2+2m +12-2m -16m 2+2m =-13m 2+2m +12=-13(m-3)2+15.所以当m =3,即OB =3米时,三根木杆长度之和l 的最大值为15米.三、板书设计教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况.。
22.3.2实际问题与二次函数一、教学目标(一)学习目标1.初步让学生学会用二次函数知识解决实际问题;2.能够理解生活中文字表达与数学语言之间的关系,建立数学模型,发展合情推理.3.能理解函数图象的顶点、端点与最值的关系,并能应用这些关系解决实际问题.(二)学习重点学会用二次函数知识解决实际问题, 把实际生活中的最值问题转化为二次函数的最值问题.(三)学习难点1.读懂题意,找出相关量的数量关系,正确构建数学模型.2.理解与应用函数图象顶点、端点与最值的关系.二、教学设计(一)课前设计预习任务二次函数y =ax2+bx +c(a≠0)的图象的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴是x= 2b a -;二次函数的图象是一条抛物线,当a >0时,图象开口向上,当a <0时,图象开口向下;2.抛物线2(0)y ax bx c a =++≠的最值问题:(1)若a>0,则当x=2b a -时,y 最小值=244ac b a -;(2)若a<0,则当x=2b a -时,y 最大值=244ac b a -.预习自测1.已知二次函数221y x x =-++,当x=______时,取得最_______值为_______; 【知识点】二次函数求最值【解题过程】配方,得2(1)2y x =--+,∴当x=1时,取得最大值为2.【思路点拨】将二次函数的一般式转化成顶点式来求二次函数最值【答案】1、大、2.2.已知二次函数221y x x =-++,2≤x≦5,则当x=______时,取得最大值为_______;x=______时,取得最小值为_______。
【知识点】二次函数区间求最值【解题过程】配方,得2)1(2+--=x y ,∵2≤x≤5 在对称轴的右边,且抛物线开口向下,∴当2≤x≤5时,y 随x 的增大而减小,∴当x=2时,取得最大值为1;当x=5时,取得最小值为-14.【思路点拨】将二次函数的一般式转化成顶点式,再根据x 的取值范围并结合图象,求二次函数的区间最值【答案】2,1;5,-14.3.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x )件.若使利润最大,每件售价应为____元.【知识点】二次函数的应用.【思路点拨】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【解题过程】解:设最大利润为w 元,则w=(x ﹣20)(30﹣x )=2x 2525+-(﹣), ∵20≤x≤30,∴当x=25时,二次函数有最大值25,【答案】254.某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x 元(x>50),每月销售这种篮球获利y 元.(1)求y 与x 之间的函数关系式;(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?【知识点】销售问题中的数量关系,二次函数求最值【解题过程】解:(1)y =-10x2+1400x -40000(50<x<100).(2)由题意得:-10x2+1400x -40000=8000,化简得x2-140x +4800=0,∴x1=60,x2=80.∵要吸引更多的顾客,∴售价应定为60元.【思路点拨】关键是先将实际问题抽象成数学问题,即先建立二次函数关系,然后再利用二次函数的图象及性质进行解答.(二)课堂设计1.知识回顾(1)营销问题的基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价. (2)抛物线2(0)y ax bx c a =++≠的最值问题:①若a>0,则当x=2b a -时,y 最小值=244ac b a -;②若a<0,则当x=2b a -时,y 最大值=244ac b a -.2.问题探究探究一 销售问题中的利润最大问题(★▲)●活动1 回顾旧知,回忆销售问题中常见概念和公式.师问:销售问题中一般都会涉及哪些名词?它们之间的数量关系是什么?学生抢答: 成本价;定价;售价;利润;销量;利润率;定价;利润=每件利润×销售量,每件利润=每件售价﹣每件进价.【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动2 整合旧知,探究利润最大问题创设情景,激发学生学习兴趣,引入新课.师问:在讲课之前,我对咱班的学生先做一个小小的调查。
22.3 实际问题与二次函数第1课时 实际问题与二次函数(1)※教学目标※【知识与技能】1.能够分析和表示实际问题中变量之间的二次函数关系.2.会运用二次函数的知识求出实际问题中的最大(小)值.【过程与方法】通过对“矩形面积”、“销售利润”等实际问题的探究,让学生经历数学建模的基本过程,体会建立数学模型的思想.【情感态度】体会二次函数是一类最优化问题的模型,感受数学的应用价值,增强数学的应用意识.【教学重点】通过解决问题,掌握如何应用二次函数来解决生活中的最值问题.【教学难点】分析现实问题中数量关系,从中构建出二次函数模型,达到解决实际问题的目的. ※教学过程※一、复习导入从地面竖直向上抛出一个小球,小球的上升高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是2305h t t =-(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是少?提问 (1)图中抛物线的顶点在哪里?(2)这条抛物线的顶点是否是小球预定的最高点?(3)小球运动至最高点的时间是什么时间?(4)通过前面的学习,你认为小球运行轨迹的顶点坐标是什么?二、探索新知探究1 用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?分析:先写出S 与l 的函数关系式,再求出使S 最大的l 值.矩形场地的周长是60m ,一边长为l m ,则另一边长为 ,场地的面积S= .化简得S= .当l= 时,S 有最大值 .探究2 某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?(1)设每件涨价x 元,则每星期售出商品的利润y 随之变化.我们先来确定y 随x 变化的函数解析式.涨价x 元时,每星期少卖10x 件,实际卖出()30010x -件,销售额为()60x +· ()30010x -元,买进商品需付()4030010x -元.因此,所得利润()()()60300104030010y x x x =+---,即2101006000y x x =-++,其中,0≤x ≤30.根据上面的函数,填空:当x= 时,y 最大,也就是说,在涨价的情况下,涨价 元,即定价 元时,利润最大,最大利润是 .(2)在降价的情况下,最大利润是多少?请你参考(1)的讨论,自己得出答案. 由(1)(2)的讨论及现在的销售状况,你知道如何定价能使利润最大了吗?三、巩固练习1.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米. (1)求S 与x 的函数关系式及自变量的取值范围;(2)当x 取何值时所围成的花圃面积最大,最大值是多少? 2.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x =60时 ,y =80;当x =50时,y =100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利W (元)与销售单价x (元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?答案:1.(1) ∵ AB 为x 米,篱笆长为24米,∴ 花圃宽为()244x -米.∴ ()()2244424?06?S x x x x x =+<<-=-.(2)当32b x a =-=时,有最大值24364ac b y a -==(平方米).2.(1)设y kx b =+ .根据题意,得8060,10050.k b k b +⎧⎨=+⎩=解得2,200.k b ∴2200y x =-+(30 ≤x ≤60).(2)23022004()()5022606450W x x x x =+=+-----.(3)()2? 2652000W x =+--.∵30 ≤x ≤60,∴当x =60时,W 有最大值为1950元.∴当销售单价为60元时,该公司日获利最大,为1950元.四、归纳小结通过这节课的学习,你有哪些收获和体会?有哪些地方需要特别注意?※布置作业※从教材习题22.3中选取.※教学反思※二次函数是描述现实世界变量之间关系的重要模型,也是某些单变量最优化的数学模 型,如最大利润、最大面积等实际问题,因此本课时主要结合这两类问题进行了一些探讨.生活中的最优化问题通过数学模型可抽象为二次函数的最值问题,由于学生对于这一转化过程较难理解,因此教学时教师可通过分步设问的方式让学生逐层深入、稳步推出,让学生自主建立数学模型,在这个过程中,教师可通过让学生画图探讨最值.总之,在本课时的教学过程中,要让学生经历数学建模的基本过程,体验探究知识的乐趣.。
人教版数学九年级上册22.3《实际问题与二次函数(1)》说课稿一. 教材分析人教版数学九年级上册22.3《实际问题与二次函数(1)》这一节主要讲述了二次函数在实际问题中的应用。
教材通过引入生活中的实例,让学生了解二次函数在实际问题中的应用,培养学生的数学应用能力。
教材内容安排合理,由浅入深,通过具体的实例引导学生掌握二次函数解决实际问题的方法。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题,因此在教学过程中,需要引导学生将实际问题与二次函数知识相结合。
三. 说教学目标1.让学生了解二次函数在实际问题中的应用,培养学生的数学应用意识。
2.引导学生学会将实际问题转化为二次函数问题,提高学生的数学思维能力。
3.通过解决实际问题,巩固学生对二次函数图像和性质的理解。
四. 说教学重难点1.教学重点:二次函数在实际问题中的应用,如何将实际问题转化为二次函数问题。
2.教学难点:引导学生理解实际问题与二次函数之间的联系,以及如何运用二次函数解决实际问题。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探索二次函数在实际问题中的应用。
2.利用多媒体课件,直观展示二次函数的图像,帮助学生更好地理解二次函数的性质。
3.通过小组讨论,培养学生的合作能力和解决问题的能力。
六. 说教学过程1.引入新课:通过生活中的实例,引导学生了解二次函数在实际问题中的应用。
2.讲解实例:分析实例中的问题,将其转化为二次函数问题,讲解如何运用二次函数解决实际问题。
3.巩固知识:通过练习题,让学生巩固对二次函数解决实际问题的方法。
4.小组讨论:让学生分组讨论如何将实际问题转化为二次函数问题,并分享讨论成果。
5.总结提升:总结本节课的重点内容,强调二次函数在实际问题中的应用。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
22.3 实际问题与二次函数(第1课时)一、【教材分析】教学目标知识目标1.经历探索实际问题中的最大高度、面积、利润等问题的过程,体会二次函数是一类最优化的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的顶点坐标求出实际问题的最大值(或最小值),发展解决问题的能力.能力目标经历实际问题中的最大高度、面积、利润等问题的探究过程,认识数学与人类生活的密切联系及对人类历史发展的作用,发展运用数学知识解决实际问题的能力.情感目标体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.教学重点探究利用二次函数的最大值(或最小值)解决实际问题的方法.教学难点1.二次函数解决实际问题的方法;2.二次函数与最值问题.二、【教学流程】教学环节教学问题设计师生活动二次备课情景创设【回顾】1. 二次函数y=2(x-3)2+5的对称轴是________________,顶点坐标是______________.当x=_______时y有_____值是_______. .2. 二次函数y=-3(x+4)2-1的对称轴是__________ ,顶点坐标是_________.当x=______ 时,函数有最___ 值,是________ .3.二次函数y=2x2-8x+9的对称轴是__________,顶点坐标是___.当x=____时,函数有最_____复习引入,为学习实际问题与二次函数作好铺垫学生独立完成并组内交流值,是________. .【问题】从地面竖直向上抛出一个小球,小球的上升高度h(单位m)与小球运动时间t(单位:s)的关系式是h=30t-5t2.小球运动的时间是多少时,小球最高?小球运动中的最大高度是少?【归纳】结合问题,拓展一般对于二次函数y=ax2+bx+c,如何求出它的最小(大)值呢?让学生先独立思考,若有困难,教师给予帮助分析理解.1.借助画函数图像解决问题2.发现抛物线的定点就是这个函数图像的最高点.3.求出抛物线的顶点坐标.学生说出解题思路,学生先写出证明过程.最后教师板书解题过程.学生根据前面问题的解决方法,总结出求二次函数最小(大)值的方法一般地,当a>0(a<0),抛物线y=ax2+bx+c的顶点是最低(高)点,也就是说,当x=-ab2时,二次函数y=ax2+bx+c有最小(大)值abac442.自主探究【探究1】用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?【探究2】某商品现在的售价为每分析:先写出s与l的关系式,再求出使s最大的l值。
22.3 第1课时 二次函数与图形面积01 教学目标1.会求二次函数y =ax 2+bx +c 的最小(大)值.2.能从实际问题中分析、找出变量之间的二次函数关系,并能利用二次函数及性质解决与面积有关的最小(大)值问题.02 预习反馈阅读教材P 49~50(探究1),完成下列问题.1.一般地,当a >0时,抛物线y =ax 2+bx +c 的顶点是最低点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最小值4ac -b 24a;当a <0时,抛物线y =ax 2+bx +c 的顶点是最高点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最大值4ac -b 24a.2.从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球的运动时间t(单位:s )之间的关系式是h =30t -5t 2(0≤t≤6),其图象如图所示.(1)小球运动的时间是3s 时,小球最高; (2)小球运动中的最大高度是45m .3.一个直角三角形的两条直角边长的和为20 cm ,其中一直角边长为x cm ,面积为y cm 2,则y 与x 的函数的关系式是y =12x(20-x),当x =10时,面积y 最大,为50cm 2.03 新课讲授例1 (教材P49探究)用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?【思路点拨】 先写出S 关于l 的函数解析式,再求出使S 最大的l 值.【解答】 ∵矩形场地的周长是60 m ,一边长为l m ,则另一边长为(602-l )m ,∴场地的面积S =l (602-l )=-l 2+30l (0<l <30).∴当l =-b 2a =-302×(-1)=15时,S 有最大值4ac -b 24a =-3024×(-1)=225.答:当l 是15 m 时,场地的面积S 最大.【点拨】 在实际问题中,求函数的解析式时,一定要标注自变量的取值范围,同时在求函数的最值时,一定要注意顶点的横坐标是否在自变量的取值范围内.【跟踪训练1】 (22.3第1课时习题)如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是(C)A .60 m 2B .63 m 2C .64 m 2D .66 m 2例2 (教材P49探究的变式)如图,用长为6 m 的铝合金条制成一个“日”字形窗框,已知窗框的宽为x m ,窗户的透光面积为y m 2(铝合金条的宽度不计).(1)求出y 与x 的函数关系式;【思路点拨】由题意可知,窗户的透光面积为长方形,根据长方形的面积公式即可得到y 和x 的函数关系式.【解答】 ∵大长方形的周长为6 m ,宽为x m , ∴长为6-3x2m.∴y =x ·(6-3x )2=-32x 2+3x (0<x <2).【点拨】 求y 与x 的函数关系式时,一定不能漏掉自变量的取值范围.(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积. 【思路点拨】 由(1)中的函数关系可知,y 和x 是二次函数关系,根据二次函数的性质即可得到最大面积.【解答】 由(1)可知,y 和x 是二次函数关系. ∵a =-32<0,∴函数有最大值.当x =-32×(-32)=1时,y 最大=32 m 2,此时6-3x2=1.5.答:窗框的长和宽分别为1.5 m 和1 m 时,才能使得窗户的透光面积最大,此时的最大面积为1.5 m 2.【点拨】 要考虑x =1是不是在自变量的取值范围内.【跟踪训练2】 如图,点C 是线段AB 上的一点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是(A )A .当C 是AB 的中点时,S 最小 B .当C 是AB 的中点时,S 最大 C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大04 巩固训练1.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m ,则池底的最大面积是(B )A .600 m 2B .625 m 2C .650 m 2D .675m 22.如图,利用一面墙(墙的长度不超过45 m ),用80 m 长的篱笆围成一个矩形场地,当AD =20m 时,矩形场地的面积最大,最大面积为800m 2.3.(22.3第1课时习题)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm ,菱形的面积S (单位:cm 2)随其中一条对角线的长x (单位:cm)的变化而变化.(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,菱形风筝面积S 最大?最大面积是多少? 解:(1)S =-12x 2+30x .(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大值为450.即当x 为30 cm 时,菱形风筝的面积最大,最大面积是450 cm 2.05 课堂小结1.主要学习了如何将实际问题转化为数学问题,特别是如何利用二次函数的有关性质解决实际问题的方法.2.利用二次函数解决实际问题时,根据面积公式等关系写出二次函数表达式是解决问题的关键.。
实际问题与二次函数教学目标:1.能根据实际问题列出函数关系式、2.使学生能根据问题的实际情况,确定函数自变量x 的取值范围。
3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。
重点:根据实际问题建立二次函数不同的数学模型,应用函数的性质解答数学问题 难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围, 教学过程: 一、复习旧知 导入新课(1)建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA 。
O 恰好在水面中心,布置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 任意平面上的抛物线如图(5)所示,建立直角坐标系(如图(6)),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y =-x 2+52x +32,请回答下列问题:(1)花形柱子OA 的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?(2).如图(7),一位篮球运动员跳起投篮,球沿抛物线y =-15x 2+3.5二、学习新知1、引导学生自学P24页例2(既探究2) 质疑 点评出示例3 P25 引导学生应用不同的方法去构建数学模型 重点讲解例32、练一练:(1).如图是抛物线拱桥,已知水位在AB 位置时,水面宽46米,水位上升3米就达到警戒线CD ,这时水面宽43米,若洪水到来时,水位以每小时0.25米速度上升,求水过警戒线后几小时淹到拱桥顶?三、小结:1.通过本节课的学习,你学到了什么知识?存在哪些困惑?2.谈谈你的收获和体会。
四、作业:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB =1.6m 时,涵洞顶点与水面的距离为2.4m 。
这时,离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?五、板书。
22.3 实际问题与二次函数教学设计
教学内容
22.3 实际问题与二次函数(第一课时).
教学目标
知识与技能
1.会求二次函数y =ax 2+bx +c 的最小(大)值.
2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最
小(大)值等实际问题.
过程与方法
学生会借助于二次函数的图象得到二次函数的最小(大)值的结论,掌握当
x =-a b 2时,二次函数y =ax 2+bx +c 有最小(大)值a
b a
c 442 . 情感态度、价值观
学生通过经历探索具体问题中数量关系和变化规律的过程,进一步体验如何
从实际问题中抽象出二次函数模型,结合实际问题研究二次函数,将二次函数的
最小(大)值的结论和已有知识综合运用来解决实际问题。
教学重点
求二次函数y =ax 2+bx +c 的最小(大)值.
教学难点
将实际问题转化成二次函数问题.
教学过程
一、复习导入
(1)知识复习
1.通过配方,写出下列函数图象的开口方向、对称轴和顶点坐标.
(1) y = 6x 2+12x ; (2) y = -4x 2+8x-10
2. 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的
最大值、最小值分别是多少.
3.二次函数y=ax 2+bx+c (a≠0),当a>0时,图象开口向 ,函数有最 值,等于 ;当a<0时,图象开口向 ,函数有最 值,等
于 .
(2)导入新课
在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如抛球、
围墙、拱桥跨度等,利用二次函数的有关知识研究和解决这些问题,具有很现实
的意义.从这节课开始,我们就共同解决这几个问题.
二、探究新知
问题1 从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的
运动时间t (单位:s )之间的关系式是h =30t -5t 2 (0≤t ≤6).小球运动的时间
是多少时,小球最高?小球运动中的最大高度是多少?
教师引导学生找出问题中的两个变量:小球的高度h (单位:m )与小球的
运动时间t (单位:s ).
然后让学生计算当t =1、t =2、t =3、t =4、t =5、t =6时,h 的值是多少?
再让学生根据算出的数据,画出函数h =30t -5t 2 (0≤t ≤6)的图象(可见教
材第49页图).
根据函数图象,观察出小球运动的时间是多少时,小球最高?小球运动中的
最大高度是多少?
学生结合图象回答:这个函数的图象是一条抛物线的一部分.这条抛物线的
顶点是这个函数的图象的最高点,也就是说,当t 取顶点的横坐标时,这个函数
有最大值.
教师引导学生求函数的顶点坐标,解决这个问题.
当t =-a b 2=-)5(230-⨯=3时,h 有最大值a b ac 442-=)
5(4302-⨯-=45. 答:小球运动的时间是3s 时,小球最高.小球运动中的最大高度是45m .
问题2 如何求出二次函数 y =ax 2+bx +c 的最小(大)值?
学生根据问题1归纳总结:当a >0(a <0),抛物线y =ax 2+bx +c 的顶点
是最低(高)点,也就是说,当x =-a
b 2时,二次函数y =ax 2+bx +
c 有最小(大)值a
b a
c 442
-. 探究1 用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的
变化而变化.当l 是多少米时,场地的面积S 最大?
教师引导学生参照问题1的解法,先找出两个变量,然后写出S 关于l 的函
数解析式,最后求出使S 最大的l 值.
解:矩形场地的周长是60 m ,一边长为l m ,所以另一边长(2
60-l ) m .场地的面积S =l (30-l ),即S =-l 2+30l (0<l <30).
因此,当l =-a b 2=-)1(230-⨯=15时,S 有最大值a b ac 442-=)
1(4302-⨯-=225.也就是说,当l 是15 m 时,场地的面积S 最大.
三.检测巩固
1.抛物线y=x 2-2的顶点坐标为 ( )
A.(2,0)
B.(-2,0)
C.(0,2)
D.(0,-2)
2.∠A=90°,AB=8 cm,AC=6 cm,点P 从点A 出发,沿AB 方向以2 cm/s 的速度向
点B 运动;同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,其中一个
动点到达终点,则另一个动点也停止运动,则△APQ 的最大面积是( )
A.8 cm 2
B.16 cm 2
C.24 cm 2
D.32 cm 2 3.小敏用一根长为8 cm 的细铁丝围成一个矩形,则矩形的最大面积是 cm 2.
四.课堂小结
1.利用二次函数解决实际问题要注意自变量的取值范围。
2.一般地,因为抛物线y=ax 2+bx+c 的顶点是最低(高)点,所以当 时, 二次函数y=ax 2+bx+c 有最小(大)值 。
五、布置作业
1. 习题2
2.3 第1,3,4题.
2. 《课堂点睛》课时配套习题。
a b x 2-=a
b a
c 442-。