组卷——动点问题及解析
- 格式:doc
- 大小:239.00 KB
- 文档页数:11
动点问题1. 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.2. 如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.3. 如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q 点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4. 如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A 开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒.(1)当t为何值时,四边形MNCD是平行四边形?(2)当t为何值时,四边形MNCD是等腰梯形?点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.6. 如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P 随之停止运动,设运动时间为t(s).(1)设△BPQ的面积为S,求S与t之间的函数关系;(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.7. 直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.○答○案1.分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.2.分析:(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.3.分析:(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ 就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答:解:(1)∵AQ=3-t∴CN=4-(3-t)=1+t在Rt△ABC中,AC2=AB2+BC2=32+42∴AC=5在Rt△MNC中,cos∠NCM= = ,CM= .(2)由于四边形PCDQ构成平行四边形∴PC=QD,即4-t=t解得t=2.(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB即:(1+t)+1+t= (3+4+5)解得:t= (5分)而MN= NC= (1+t)∴S△MNC= (1+t)2= (1+t)2当t= 时,S△MNC=(1+t)2= ≠ ×4×3∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.(4)①当MP=MC时(如图1)则有:NP=NC即PC=2NC∴4-t=2(1+t)解得:t=②当CM=CP时(如图2)则有:(1+t)=4-t解得:t=③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2而MN= NC= (1+t)PN=NC-PC=(1+t)-(4-t)=2t-3∴[ (1+t)]2+(2t-3)2=(4-t)2解得:t1= ,t2=-1(舍去)∴当t= ,t= ,t= 时,△PMC为等腰三角形4.分析:以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,由x2+2x=20,得x1= -1,x2=- -1(舍去).因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.所以x= -1符合题意.②当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2=25>20,不符合题意.故点Q与点M不能重合.所以所求x的值为-1.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.当x=4时四边形NQMP是平行四边形.所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x.解得x1=0(舍去),x2=4.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.5.解答:解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形6.分析:(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.解答:解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.∴PM=DC=12,∵QB=16-t,∴s= •QB•PM= (16-t)×12=96-6t(0≤t≤ ).(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得,t2=16(不合题意,舍去).综上所述,当或时,以B、P、Q为顶点的三角形是等腰三角形.7.分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.解答:解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是81=8(秒),∴点P的速度是6+108=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD⊥OA于点D,由PDBO=APAB,得PD= 48-6t5.∴S= 12OQ•PD=- 35t2+245t.(3)当S= 485时,∵485>12×3×6∴点P在AB上当S= 485时,- 35t2+245t= 485∴t=4∴PD= 48-6×45= 245,AD=16-2×4=8AD= 82-(245)2= 325∴OD=8- 325= 85∴P(85,245)M1(285,245),M2(- 125,245),M3(125,- 245)。
动点问题综合检测(一)(通用版)试卷简介:检测学生对于动点问题处理思路的掌握情况,从研究基本图形入手,分析运动过程,根据状态转折点确定分段,在框架下分析问题,同时要求学生具备挖掘几何特征的能力,根据几何特征建方程解题。
一、单选题(共8道,每道12分)1.已知:如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s.连接PQ,设运动的时间为t(s)(),解答下列问题:(1)当t=( )时,PQ∥BC.A. B.C. D.答案:C解题思路:如图,在Rt△ABC中,由勾股定理得,.由题意得,BP=t,AQ=2t,AP=5-t.若PQ∥BC,则△APQ∽△ABC,∴,∴,∴.∵,∴当时,PQ∥BC.试题难度:三颗星知识点:动点问题2.(上接第1题)(2)设△APQ的面积为,则y与t之间的函数关系式为( )A. B.C. D.答案:C解题思路:如图,过点P作PD⊥AC于点D.易证△APD∽△ABC,∴.由题意得,BC=3,BP=t,AP=5-t,∴,∴,∴.试题难度:三颗星知识点:三角形的面积3.(上接第1,2题)(3)是否存在某一时刻t,使线段PQ恰好把Rt△ABC的周长和面积同时平分?若存在,求出此时t的值;若不存在,直接说明即可.( )A.存在,t=1B.存在,C.存在,D.不存在答案:D解题思路:若PQ把△ABC的面积平分,则,即,∴.∵,∴.若PQ把△ABC的周长平分,则AP+AQ=BP+BC+CQ,即(5-t)+2t=t+3+(4-2t),∴t=1.∵,∴不存在某一时刻t,使线段PQ把Rt△ABC的周长和面积同时平分.试题难度:三颗星知识点:三角形的面积4.(上接第1,2,3题)(4)如图,连接PC,把△PQC沿QC翻折,得到四边形,是否存在某一时刻t,使四边形为菱形?若存在,求出此时t的值;若不存在,直接说明即可.( )A.存在,B.存在,C.存在,D.不存在答案:B解题思路:如图,过点P作PM⊥AC于点M,PN⊥BC于点N.则四边形PMCN为矩形,PN=MC.若四边形为菱形,则PQ=PC.∵PM⊥AC于点M,∴QM=MC.易证△PBN∽△ABC,∴,即,∴,∴.由AQ+QM+MC=AC得,,∴.∵,∴当时,四边形为菱形.试题难度:三颗星知识点:动点问题5.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D,E,F分别是边AB,BC,AC的中点,连接DE,DF.动点P,Q分别从点A,B同时出发,运动速度均为每秒1个单位长度,点P沿A→F→D的方向运动到点D停止;点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形PMQN与矩形FDEC重叠部分的面积为y(这里规定:线段是面积为0的几何图形),点P运动的时间为x(s).(1)当点P运动到点F时,CQ的长度为( )A.3B.4C.5D.6答案:C解题思路:△ABC是三边为6,8,10的直角三角形,点D,E,F分别为三边中点,则△BDE和△DAF是三边为3,4,5的直角三角形,且AF=DE=3,BE=DF=4.由于QM⊥BC,所以△BQM是三边之比为3:4:5的三角形.在点P从点A运动到点F的过程中,AP=BQ=x,当点P运动到点F时,x=3,∴BQ=3,∴CQ=BC-BQ=8-3=5.试题难度:三颗星知识点:动点问题6.(上接第5题)(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,此时BQ的长为( )A.4B.C.5D.答案:D解题思路:点P沿A→F→D的方向运动到点D停止,点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.根据线段长以及运动速度,画出他们运动状态的线段图,如图所示,∴x的取值范围是,显然点P是在从点F运动到点D的过程中(),落在MQ上,如图所示(此时构不成平行四边形PMQN),此时四边形QPFC为矩形,.∵,∴,即当时,点P落在MQ上,此时BQ的长度为.试题难度:三颗星知识点:动点问题7.(上接第5,6题)(3)若要求点P从点F运动到点D的过程中,y与x之间的函数关系式,根据表达的不同,时间x的分段应该是( )A. B.C. D.答案:B解题思路:要表达平行四边形PMQN与矩形FDEC重叠部分的面积,需要考虑不同的分段,上一题给出点P落在QM的情况(构不成平行四边形),所以x的分段依据:点Q从点B向点E运动;点Q从点E向点C运动,截止到点P落在QM上;点Q从点P落在QM上时,到运动停止.或者用图形碰撞来考虑分段,从PN(落在FC上)→MQ(落在DE上)→PN(与MQ重合)→PN (落在DE上),需要分三段,∴x的分段应该为.试题难度:三颗星知识点:动点问题8.(上接第5,6,7题)(4)点P从点F运动到点D的过程中,y与x之间的函数关系式为( )A. B.C. D.答案:D解题思路:根据上一题中时间x的分段,分别画出符合题意的图形,进行求解.①当时,如图所示,重叠部分图形为平行四边形,,,∴.②当时,如图所示,重叠部分为矩形,矩形的一边长为3,另一边长为,∴.③时,如图所示,重叠部分图形为矩形,矩形的一边长为3,另一边长为,∴.试题难度:三颗星知识点:动点问题第11页共11页。
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.三、应用求图形面积的方法建立函数关系式AEDCB 图2H M NG PO A B 图1 x yC例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.(二)线动问题AB C O 图8HABCDEOlA ′2,在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E.(1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F ,且AO =41AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.解决动态几何问题的常见方法有:一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O1和⊙O2内切于A ,⊙O1的半径为3,⊙O2的半径为2,点P 为⊙O1上的任一点(与点A不重合),直线PA 交⊙O2于点C ,PB 切⊙O2于点B ,则PC BP的值为 (A )2 (B )3 (C )23(D )26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O 中,C 为弧AB 的中点,D 为弧AC 上任一点(与A 、C 不重合),则(A )AC+CB=AD+DB (B) AC+CB<AD+DB(C) AC+CB>AD+DB (D) AC+CB 与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和CD 与大圆分别交于点B 、E ,则下列结论中正确的是( * )(A )AB DE = (B )AB DE >AB(C )AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为 .以圆为载体的动点问题例1. 在Rt ABC ∆中,AC =5,BC =12,∠ACB =90°,P 是AB 边上的动点(与点A 、B 不重合),Q 是BC 边上的动点(与点B 、C 不重合),当PQ 与AC 不平行时,△CPQ 可能为直角三角形吗?若有可能,请求出线段CQ 的长的取值范围;若不可能,请说明理由。
初中八年级下册数学动点问题试卷附详细
答案
第一题
某物体以每小时20公里的速度匀速直线行驶,一小时后改变
方向以每小时15公里的速度行驶,求这一运动的平均速度。
解答:
我们可以将该运动分为两个阶段进行计算。
* 第一阶段:以20公里/小时的速度行驶1小时,总共行驶20
公里。
* 第二阶段:以15公里/小时的速度行驶1小时,总共行驶15
公里。
所以,这一运动总共行驶了35公里,在2小时内完成。
因此,这一运动的平均速度为35公里/2小时,即17.5公里/小时。
第二题
在货车运输过程中,货车以30公里/小时的速度行驶。
从A地
到B地的直线距离为100公里。
如果在途中,货车停止了1小时,
然后以40公里/小时的速度行驶到达B地,求这一运输的平均速度。
解答:
同样地,我们可以将该运输过程分为两个阶段进行计算。
* 第一阶段:以30公里/小时的速度行驶到达B地前,总共行
驶100公里。
* 第二阶段:以40公里/小时的速度行驶到达B地,总共行驶100公里。
所以,这一运输总共行驶了200公里,在3小时内完成。
因此,这一运输的平均速度为200公里/3小时,即66.67公里/小时。
以上是初中八年级下册数学动点问题试卷的答案解析。
如有任
何疑问,请随时与我联系。
初中数学组卷初中动点问题初中数学组卷初中动点问题一.选择题(共7小题)1.(2006•临汾)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点Q从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A.B.C.D.2.(2009•庆阳)如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A.2B.3C.4D.53.(2007•舟山)如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于()A.30°B.60°C.90°D.45°4.(2010•陕西)如图,点A、B是在⊙O上的定点、P是在⊙O上的动点,要使△ABP为等腰三角形,则所有符合条件的点P有()A.1个B.2个C.3个D.4个5.(2011•本溪)如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.46.如图,⊙O的直径为10,弦AB的长为8,点P是弦AB上的一个动点,使线段OP的长度为整数的点P有()A.3个B.4个C.5个D.6个7.如图,MN是⊙O的直径,MN=2,∠AMN=30°B点,P是直径MN上的动点,则PA+PB的最小值为()A.B.C.1D.2二.填空题(共8小题)8.如图,在Rt△ABC中,∠BAC=90°,∠C=60°,BC=24,点P是BC边上的动点(点P与点B、C不重合),过动点P作PD∥BA交AC于点D.若△ABC与△DAP相似,则∠APD=_________°.9.如图,在坐标系中,动点P在以O为圆心,10为半径的圆上运动,整数点P有_________个.10.如图,正三角形ABC内接于圆O,AD⊥BC于点D交圆于点E,动点P在优弧BAC上,且不与点B,点C重合,则∠BPE等于_________.11.如图,在矩形ABCD中,AB=9,,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,则∠CQP=_________.12.如图,点A是反比例函数(x>0)图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为_________.13.(2010•吉林)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=50°,动点P在弦BC上,则∠PAB可能为_________度(写出一个符合条件的度数即可).14.(2005•广州)如图,在直径为6的半圆上有两动点M、N,弦AM、BN相交于点P,则AP•AM+BP•BN的值为_________.15.如图,点A、B、P在⊙O上,∠APB=50°,若M是⊙O上的动点,则等腰△ABM顶角的度数为_________.三.解答题(共14小题)16.(2011•新疆)如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AB的长;(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由.17.如图1,在梯形ABCD中,AD∥BC,且BC=12cm,AD=15cm,动点Q由点B沿BC向点C移动,1秒钟后动点P由点A沿AD向点D移动(1)若动点P的速度比动点Q的速度大1厘米/秒,且动点Q到达C时,动点P 恰好也到达D.试求动点P、Q 的速度.(2)若动点P的速度为5厘米/秒,动点Q的速度为3厘米/秒,在运动过程中(P与A、D不重合时),AQ与BP 交于K,CP与DQ交于N①当动点Q到达BC中点时,过K作KM∥AD交AB于M,求KM的长;(如图2)②在这运动过程中,KN是否会与AD平行?若会,请求出此时为P点出发后几秒?若不会,请说明理由.(如图3)18.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?19.(2009•乐山)如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出发以3厘米/秒的速度沿B⇒C⇒D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC的长;(2)当t为何值时,PC与BQ相互平分;(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?20.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒1cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=_________cm;(2)当t为多少时,四边形PQCD成为平行四边形?21.如图,已知矩形ABCD中,BC=6,AB=8,延长AD到点E,使AE=15,连接BE交AC于点P.(1)求AP的长;(2)若以点A为圆心,AP为半径作⊙A,试判断线段BE与⊙A的位置关系并说明理由;(3)已知以点A为圆心,r1为半径的动⊙A,使点D在动⊙A的内部,点B在动⊙A的外部,求动⊙A的半径r1的取值范围.22.如图,在△ABC中,AB=6cm,AC=12cm,动点M从点A出发,以1cm∕秒的速度向点B运动,动点N从点C 出发,以2cm∕秒的速度向点A运动,若两点同时运动,是否存在某一时刻t,使得以点A、M、N为顶点的三角形与△ABC相似,若存在,求出t的值;若不存在,请说明理由.23.如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.24.如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD上的一个动点,求PE+PC 的最小值.25.如图所示,四边形ABCD是直角梯形,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从A出发,以1cm/s 的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向B运动,其中一个动点到达端点时,另一动点也随之停止运动,从运动开始,经过多少时间,四边形PQCD成为等腰梯形?26.如图,矩形ABCD中,AB=6,BC=8,动点P从B点出发沿着BC向C移动,速度为每秒2个单位,动点Q 从点C出发沿CD向D出发,速度为每秒1个单位,几秒后由C、P、Q三点组成的三角形与△ABC相似?这时线段PQ与AC的位置关系如何?请说明理由.27.(2009•呼和浩特)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB 为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s 的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?28.四边形ABCD内接于圆,已知∠ADC=90°,CD=4,AC=8,AB=BC.设O是AC的中点.(1)设P是AB上的动点,求OP+PC的最小值;(2)设Q,R分别是AB,AD上的动点,求△CQR的周长的最小值.29.如图⊙O的直径为10,弦AB的长为8,如果点P是弦AB上的一个动点,那么线段OP的长度取值范围是多少?20XX年4月tjlyq0630的初中数学组卷初中动点问题参考答案与试题解析一.选择题(共7小题)1.(2006•临汾)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点Q从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A.B.C.D.考点:动点问题的函数图象;二次函数的图象.专题:动点型.分析:解决本题的关键是正确确定y与x之间的函数解析式.解答:解:∵运动时间x(s),则CP=x,CQ=2x;∴S△CPQ =CA•CQ=x•2x=x2.∴则△CPQ的面积y(cm2)与运动时间x(s)之间的函数关系式是:y=x2(0≤x≤3),故选C.点评:解决本题的关键是读懂图意,确定函数关系式.2.(2009•庆阳)如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A.2B.3C.4D.5考点:垂径定理;勾股定理.专题:动点型.分析:OM最长边应是半径长,根据垂线段最短,可得弦心距最短,分别求出后即可判断.解答:解:①M与A或B重合时OM最长,等于半径5;②∵半径为5,弦AB=8∴∠OMA=90°,OA=5,AM=4∴OM 最短为=3,∴3≤OM≤5,因此OM不可能为2.故选A.点评:解决本题的关键是:知道OM最长应是半径长,最短应是点O到AB的距离长.然后根据范围来确定不可能的值.3.(2007•舟山)如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于()A.30°B.60°C.90°D.45°考点:圆周角定理;等边三角形的性质.专题:动点型.分析:由等边三角形的性质知,∠A=60°,即弧BC的度数为60°,可求∠BPC=60°.解答:解:∵△ABC正三角形,∴∠A=60°,∴∠BPC=60°.故选B.点评:本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.和等边三角形的性质求解.4.(2010•陕西)如图,点A、B是在⊙O上的定点、P是在⊙O上的动点,要使△ABP为等腰三角形,则所有符合条件的点P有()A.1个B.2个C.3个D.4个考点:垂径定理.专题:分类讨论.分析:根据垂径定理,分两种情况:①以AB为底边,可求出有点P1、P2;②以AB为腰,可求出有点P3、P4.故共4个点.解答:解:如图:①以AB为底边,过点O作弦AB的垂线分别交⊙O于点P1、P2,∴AP1=BP1,AP2=BP2,故点P1、P2即为所求.②以AB为腰,分别以点A、点B为圆心,以AB长为半径画弧,交⊙O于点P3、P4,故点P3、P4即为所求.共4个点.故选D.点评:本题考查了垂径定理:垂直于弦的直径平分线并且平分弦所在的弧.5.(2011•本溪)如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.4考点:轴对称-最短路线问题;正方形的性质.专题:探究型.分析:过D作AE的垂线交AE于F,交AC于D′,再过D′作D′P′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.解答:解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2.故选C.点评:本题考查的是轴对称﹣最短路线问题,根据题意作出辅助线是解答此题的关键.6.如图,⊙O的直径为10,弦AB的长为8,点P是弦AB上的一个动点,使线段OP的长度为整数的点P有()A.3个B.4个C.5个D.6个考点:垂径定理;勾股定理.专题:计算题.分析:当P为AB的中点时OP最短,利用垂径定理得到OP垂直于AB,在直角三角形AOP中,由OA与AP的长,利用勾股定理求出OP的长;当P与A或B重合时,OP最长,求出OP的范围,由OP为整数,即可得到OP所有可能的长.解答:解:当P为AB的中点时,利用垂径定理得到OP⊥AB,此时OP最短,∵AB=8,∴AP=BP=4,在直角三角形AOP中,OA=5,AP=4,根据勾股定理得:OP==3,即OP的最小值为3;当P与A或B重合时,OP最长,此时OP=5,∴3≤OP≤5,则使线段OP的长度为整数的点P有3,4,5,共5个.故选C点评:此题考查了垂径定理,以及勾股定理,熟练掌握定理是解本题的关键.7.如图,MN是⊙O的直径,MN=2,∠AMN=30°B点,P是直径MN上的动点,则PA+PB的最小值为()A.B.C.1D.2考点:轴对称-最短路线问题;勾股定理;垂径定理.专题:计算题.分析:首先利用在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点P的位置,然后根据弧的度数发现一个等腰直角三角形计算.解答:解:作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.此时PA+PB最小,且等于AC的长.连接OA,OC,根据题意得弧AN的度数是60°,则弧BN的度数是30°,根据垂径定理得弧CN的度数是30°,则∠AOC=90°,又∵OA=OC=1,则AC=.故选B.点评:此题主要考查了轴对称最短路径问题,找到A的对称点,确定点P的位置,利用垂径定理是关键步骤.二.填空题(共8小题)8.如图,在Rt△ABC中,∠BAC=90°,∠C=60°,BC=24,点P是BC边上的动点(点P与点B、C不重合),过动点P作PD∥BA交AC于点D.若△ABC与△DAP相似,则∠APD=60°或30°.考点:相似三角形的性质.专题:计算题.分析:由于△ABC∽△DAP,那么∠APD=∠BCA,易求∠APD=60°;或△ABC∽△DPA,则∠DPA=∠B=30°,解答:解:如右图所示,①∵△ABC∽△DAP,∴∠APD=∠BCA,∴∠APD=60°.②∵△ABC∽△DPA,∴∠DPA=∠B=30°,故答案是60°或30°.点评:本题考查了相似三角形的性质.解题的关键是找出相似三角形的对应顶点.9.如图,在坐标系中,动点P在以O为圆心,10为半径的圆上运动,整数点P有12个.考点:圆的认识;勾股定理.专题:动点型.分析:要使点P(x,y)在以O为圆心,10为半径的圆上运动,则x2+y2=102,且x,y为整数,则应求方程x2+y2=100的整数解.解答:解:设点P(x,y),由题意知:x2+y2=100,则方程的整数解是:x=6,y=8;x=8,y=6;x=10,y=0;x=6,y=﹣8;x=8,y=﹣6;x=0,y=﹣10;x=﹣6,y=﹣8;x=﹣8,y=﹣6;x=﹣10,y=0;x=﹣6,y=8;x=﹣8,y=6;x=0,y=10.所以点P的坐标可以是:(6,8),(8,6),(10,0),(6,﹣8)(,8,﹣6),(0,﹣10)(﹣6,﹣8),(﹣8,﹣6),(﹣10,0),(﹣6,8),(﹣8,6)(,0,10).所以,这样的整数点有12个.点评:解决本题的关键找出x2+y2=100的整数解,在确定整数解时,可以先利用图形进行分析,将数和形结合起来.⑨10.如图,正三角形ABC内接于圆O,AD⊥BC于点D交圆于点E,动点P在优弧BAC上,且不与点B,点C 重合,则∠BPE等于30°.考点:圆周角定理;等边三角形的性质.专题:动点型.分析:由于点P始终在优弧BAC上移动,故∠P度数不易直接求,可转化为求同弧所对的其他它圆周角的度数.解答:解:∵△ABC为正三角形,AD⊥BC,∴AD为∠BAC的平分线,∴∠BAE=60°×=30°,又∵∠BPE=∠BAE,∴∠BPE=30°.点评:在解此类动点问题时,一般将位置不固定的角转化为固定角来解,体现了转化思想在解题中的应用.11.如图,在矩形ABCD中,AB=9,,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,则∠CQP=30°.考点:翻折变换(折叠问题);矩形的性质.专题:几何图形问题.分析:在Rt△ABD中,根据AB、AD的长,即可求出∠ABD的度数,也就得到∠CDB的度数;而∠CQP和∠CDB 是平行线的同位角,因此这两角相等,由此得出∠CQP的度数.解答:解:∵四边形ABCD是矩形,∴∠A=90°;Rt△ABD中,AD=3 ,AB=9,则tan∠ABD==,即∠ABD=30°;∴∠CDB=∠ABD=30°;∵PQ∥BD,∴∠CQP=∠CDB=30°.故答案为:30°.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.12.如图,点A是反比例函数(x>0)图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为1.考点:反比例函数系数k的几何意义.分析:设A的坐标是:(m,n).则n=,即mn=2,根据三角形的面积公式即可求解.解答:解:设A的坐标是:(m,n).则n=,即mn=2,∵AB=m,AB边上的高是n.∴S△ABC=mn=×2=1,故答案是:1.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.13.(2010•吉林)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=50°,动点P在弦BC上,则∠PAB可能为大于或等于0并且且小于或等于40的任意一个数皆可度(写出一个符合条件的度数即可).考点:圆周角定理;三角形的外角性质.专题:开放型.分析:连接AC,由圆周角定理易知∠ACB=90°,由此可求得∠CAB=40°,若P在BC上运动,根据∠CAB的度数即可得到∠PAB的取值范围,只要在这个范围内的度数均符合∠PAB的条件.解答:解:连接AC;∵AB是⊙O的直径,∴∠ACB=90°;∴∠CAB=90°﹣∠ABC=40°;∵P在弦BC上运动,∴0°≤∠PAB≤40°;故∠PAB的度数可能是20°或30°…(答案不唯一,符合∠PAB的取值范围即可).点评:此题主要考查的是圆周角定理的推论:半圆(或直径)所对的圆周角是直角.14.(2005•广州)如图,在直径为6的半圆上有两动点M、N,弦AM、BN相交于点P,则AP•AM+BP•BN的值为36.考点:相交弦定理;勾股定理;圆周角定理.专题:动点型.分析:连接AN、BM,根据圆周角定理,由AB是直径,可证∠AMB=90°,由勾股定理知,BP2=MP2+BM2,由相交弦定理知,AP•PM=BP•PN,原式=AP(AP+PM)+BP(BP+PN)=AP2+AP•PM+BP2+BP•PN=AP2+BP2+2AP•PM=AP2+MP2+BM2+2AP•PM=AP2+(AP+PM)2=AP2+AM2=AB2=36.解答:解:连接AN、BM,∵AB是直径,∴∠AMB=90°.∴BP2=MP2+BM2∵AP•PM=BP•PN原式=AP(AP+PM)+BP(BP+PN)=AP2+AP•PM+BP2+BP•PN=AP2+BP2+2AP•PM=AP2+MP2+BM2+2AP•PM=BM2+(AP+PM)2=BM2+AM2=AB2=36.点评:本题利用了圆周角定理和相交弦定理,勾股定理求解.15.如图,点A、B、P在⊙O上,∠APB=50°,若M是⊙O上的动点,则等腰△ABM顶角的度数为50°或65°或130°.考点:圆周角定理;等腰三角形的性质.分析:首先连接AM,BM,分别从若点M在优弧APB上与若点M在劣弧AB上,根据圆周角定理与等腰三角形的性质,即可求得等腰△ABM顶角的度数.解答:解:连接AM,BM,①若点M在优弧APB上,∴∠M=∠APB=50°,若AM=BM,则等腰△ABM顶角的度数为50°;若AM=AB或BM=AB,则等腰△ABM顶角的度数为:=65°;②若点M在劣弧AB上,则∠M=180°﹣∠APB=130°,此时∠M是顶角.∴等腰△ABM顶角的度数为:50°或65°或130°.故答案为:50°或65°或130°.点评:此题考查了圆周角定理、等腰三角形的性质以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与分类讨论思想的应用.三.解答题(共14小题)16.(2011•新疆)如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AB的长;(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由.考点:等腰梯形的性质;二次函数的最值;菱形的性质;解直角三角形.分析:(1)作AE⊥BC,根据题意可知BE的长度,再根据∠B的正弦值,即可推出AB的长度;(2)作QF⊥BC,根据题意推出BP=CQ,推出CP关于x的表达式,然后根据∠C的正弦值推出高QF关于x的表达式,即可推出面积关于x的二次函数式,最后根据二次函数的最值即可推出x的值;(3)首先假设存在M点,然后根据菱形的性质推出,若存在,则PC=QC,9﹣x=x,x=,得出矛盾,所以假设是错误的,故AB上不存在M点.解答:解:(1)作AE⊥BC,∵等腰梯形ABCD中,AD=4,BC=9,∴BE=(BC﹣AD)÷2=2.5,∵∠B=45°,∴AB=;(2)作QF⊥BC,∵等腰梯形ABCD,∴∠B=∠C=45°,则△CQF是等腰直角三角形.∵点P和点Q的运动速度、运动时间相同,BP=x,∴BP=CQ=x,∵BC=9,∴CP=9﹣x,QF=,设△PQC的面积为y,∴y=(9﹣x)•,即y==﹣+,∵AB=,动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.BP=x,∴0<x≤<,∴当x=时,△PQC的面积最大,最大值为:S=PC•QF=(9﹣)×=﹣;(3)不存在,若存在,则PC=QC,∴9﹣x=x,∴x=,而>,∴边AB上不存在点M,使得四边形PCQM为菱形.点评:本题主要考查等腰梯形的性质、解直角三角形、二次函数的最值、内角和定理、菱形的性质,关键在于根据图形画出相应的辅助线,熟练掌握相关的性质定理即可.17.如图1,在梯形ABCD中,AD∥BC,且BC=12cm,AD=15cm,动点Q由点B沿BC向点C移动,1秒钟后动点P由点A沿AD向点D移动(1)若动点P的速度比动点Q的速度大1厘米/秒,且动点Q到达C时,动点P 恰好也到达D.试求动点P、Q 的速度.(2)若动点P的速度为5厘米/秒,动点Q的速度为3厘米/秒,在运动过程中(P与A、D不重合时),AQ与BP 交于K,CP与DQ交于N①当动点Q到达BC中点时,过K作KM∥AD交AB于M,求KM的长;(如图2)②在这运动过程中,KN是否会与AD平行?若会,请求出此时为P点出发后几秒?若不会,请说明理由.(如图3)考点:平行线分线段成比例;分式方程的应用;梯形.分析:(1)首先设动点Q的速度为x厘米/秒,根据题意即可得方程:,解此方程即可求得答案,注意分式方程需检验;(2)①由动点Q到达BC中点,即可求得BQ与AP的值,又由MK∥AD∥BC,根据平行线分线段成比例定理,即可求得MK的值;②首先设点P点出发后t秒时,KN∥AD,然后根据平行线分线段成比例定理与比例的性质,即可得方程’又由此方程无解,即可证得KN不会平行于AD.解答:解:(1)设动点Q的速度为x厘米/秒,根据题意得:,解得:x1=2,x2=﹣6(不合题意舍去)经检验x=2是原方程根,∴动点Q速度为2厘米/秒,动点P速度为3厘米/秒.(2)①当BQ=BC=6cm时,AP=5×(6÷3﹣1)=5cm,由MK∥AD∥BC,得,,∴MK=cm;②设点P点出发后t秒时,KN∥AD,∴,,若KN∥AD,则’解得:此方程无解,∴KN不会平行于AD.点评:此题考查了平行线分线段成比例定理,分式方程的解法,以及比例的性质等知识.此题综合性较强,难度较大,解题的关键是注意比例的性质与比例变形,注意数形结合思想的应用.18.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?考点:相似三角形的性质;一元一次方程的应用.专题:动点型;分类讨论.分析:若两三角形相似,则由相似三角形性质可知,其对应边成比例,据此可解出两三角形相似时所需时间.解答:解:设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即解之得t=1.2;②若Rt△ABC∽Rt△PQC则,解之得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t <2,验证可知①②两种情况下所求的t均满足条件.所以可知要使△CPQ与△CBA相似,所需要的时间为1.2或秒.点评:本题综合考查了相似三角形的性质以及一元一次方程的应用问题,并且需要用到分类讨论的思想,解题时应注意解答后的验证.19.(2009•乐山)如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出发以3厘米/秒的速度沿B⇒C⇒D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC的长;(2)当t为何值时,PC与BQ相互平分;(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?考点:梯形;二次函数的最值.专题:分类讨论.分析:(1)作CE⊥AB于E,根据坡度的定义进行求解;(2)要使PC与BQ相互平分,只需保证四边形CPBQ是平行四边形,即可得到关于t的方程,进行求解;(3)此题要分两种情况考虑:点Q在BC上,即0≤t≤3时;当点Q在CD上,即3<t≤4.根据三角形的面积公式建立函数关系式,再进一步求解.解答:解:(1)作CE⊥AB于E,则四边形ADCE是矩形.则CE=AD=6.又BC的坡度i=CE:BE=3:4,且BE⊥CE,则CE:BC=3:5,则BC=10;(2)要使PC与BQ相互平分,只需保证四边形CPBQ是平行四边形,即PB=CQ.由(1),得AB=4+8=12,则PB=12﹣2t.则12﹣2t=3t﹣10,t=4.4.(3)当0≤t≤3时,则BP=12﹣2t,QF=×3t=t,y=×t(12﹣2t)=﹣t2+t,当t=3时,y最大,是16.2;当3<t≤4时,则y=×6×(12﹣2t)=﹣6t+36,则t=3时,y最大,是16.综上所述,则当t=3时,y最大,是16.2.点评:此题考查了梯形的性质、平行四边形的判定、解直角三角形的知识、三角形的面积公式.能够借助函数的知识讨论图形的面积最值问题.20.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒1cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=12cm;(2)当t为多少时,四边形PQCD成为平行四边形?考点:勾股定理;平行四边形的性质.专题:计算题.分析:作DE⊥BC,则四边形ABED为矩形,(1)在直角△CDE中,已知DC、DE=AB根据勾股定理可以计算EC的长度,根据BC=BE+EC可以求BC的长度.(2)PD∥QC,当满足PD=QC时,四边形PQCD为平行四边形.解答:解:作DE⊥BC,则四边形ABED为矩形,即DE=AB,AD=BE,(1)在直角△CDE中,CD为斜边,DC=10cm,DE=AB=6cm,∴EC==8cm,∴BC=BE+EC=12cm.(2)设t秒是四边形PQCD为平行四边形,即PD=QC,PD=4﹣t,QC=3t,即4﹣t=3tt=1秒,故1秒时四边形PQCD为平行四边形.答:当t=1秒时,四边形PQCD为平行四边形.点评:本题考查了勾股定理在直角三角形中的运用,考查了平行四边形的判定,本题中根据DE,DC求EC是解题的关键.21.如图,已知矩形ABCD中,BC=6,AB=8,延长AD到点E,使AE=15,连接BE交AC于点P.(1)求AP的长;(2)若以点A为圆心,AP为半径作⊙A,试判断线段BE与⊙A的位置关系并说明理由;(3)已知以点A为圆心,r1为半径的动⊙A,使点D在动⊙A的内部,点B在动⊙A的外部,求动⊙A的半径r1的取值范围.考点:圆与圆的位置关系;矩形的性质;点与圆的位置关系;直线与圆的位置关系;相似三角形的判定与性质.专题:几何综合题.分析:(1)首先根据四边形ABCD是矩形,可证得AE∥BC,可以列出比例式求出AP的值;(2)作AH⊥BE,垂足为H,首先求出BE的长,然后根据AB•AE=BE•AH式子求出AH的长,最后比较AH和半径的大小;(3)根据点与圆的位置关系可知,动⊙A的半径r1大于AD且小于AB.解答:解:(1)∵四边形ABCD是矩形,∴AE∥BC,∴△BPC∽△EPA,∵AB=8,BC=6,∴AC=10,∵,即解得:.(2)∵AB=8,AE=15,∴BE=17.作AH⊥BE,垂足为H,则AB•AE=BE•AH,∴.∵,∴⊙A与BE相交.(3)如图,点D在动⊙A的内部,点B在动⊙A的外部,则动圆A半径的取值范围为6<r1<8.点评:本题主要考查点与圆、直线与圆的位置关系的知识点,解答本题的关键是利用好三角形相似和垂径定理等知识点,本题比较复杂,需要同学们做题时认真仔细.22.如图,在△ABC中,AB=6cm,AC=12cm,动点M从点A出发,以1cm∕秒的速度向点B运动,动点N从点C 出发,以2cm∕秒的速度向点A运动,若两点同时运动,是否存在某一时刻t,使得以点A、M、N为顶点的三角形与△ABC相似,若存在,求出t的值;若不存在,请说明理由.考点:相似三角形的性质.专题:动点型.分析:首先设经过t秒时,△AMN与△ABC相似,可得AM=t,CN=2t,AN=12﹣2t(0≤t≤6),然后分别从当MN∥BC 时,△AMN∽△ABC与当∠AMN=∠C时,△ANM∽△ABC去分析,根据相似三角形的对应边成比例即可求得答案.解答:解:存在t=3秒或4.8秒,使以点A、M、N为顶点的三角形与△ABC相似(无此过程不扣分)设经过t秒时,△AMN与△ABC相似,此时,AM=t,CN=2t,AN=12﹣2t(0≤t≤6),(1)当MN∥BC时,△AMN∽△ABC,(1分)则,即,(3分)解得t=3;(5分)(2)当∠AMN=∠C时,△ANM∽△ABC,(6分)则,即,(8分)解得t=4.8;(10分)故所求t的值为3秒或4.8秒.(11分)点评:此题考查了平行线的性质与判定.此题难度适中,解此题的关键是分类讨论思想与数形结合思想的应用.23.如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.考点:轴对称-最短路线问题;等边三角形的性质.专题:计算题.分析:作点B关于AC的对称点E,连接EP、EB、EM、EC,则PB+PM=PE+PM,因此EM的长就是PB+PM的最小值.解答:解:如图,作点B关于AC的对称点E,连接EP、EB、EM、EC,则PB+PM=PE+PM,因此EM的长就是PB+PM的最小值.从点M作MF⊥BE,垂足为F,因为BC=2,所以BM=1,BE=2=2.因为∠MBF=30°,所以MF=BM=,BF==,ME==.所以PB+PM的最小值是.点评:本题考查了勾股定理的灵活运用,解本题的关键是作出恰当的图形,并且根据勾股定理求各边长.24.如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD上的一个动点,求PE+PC 的最小值.。
AE 并延长AE 交DC 的延长线于点F.最新资料推荐2015特殊四边形动点问题专题训练及答案解析(一)已知,如图,点D 是八ABC 的边AB 的中点,四边形BCED 是平行四边形,(1)求证:四边形ADCE!平行四边形;⑵ 当ABC 满足什么条件时,平行四边形ADCE 是矩形?证明:(1)因为四边形BCED 是平行四边形,所以 BD=CE 且 BD// CE又因为D 是八ABC 的边AB 的中点,所以AD=BD 即卩DA=CE又因为CE//卅以四边形ADCE 是平行四边形.(2)当八ABC 为等腰三角形且AC=BC 寸,四边形 ADCE 是矩形 理由:••• AC=BC D 是八ABC 的边AB 的中点… CDIAD 即/ ADC=90 ,由(1)可知,四边形ADCE 是平行四边形…四边形ADCE 是矩(T#如图,已知E 是? ABCD 中BC 边的中点,连接 (1) 求证:△ ABE J FCE(2) 连接AC BF,若/ AEC=N ABC 求证:四边形证明:C 1 J 二四边形ABCD 为平荷四I 边瑋亠-■-AB//DC >-'「ABE 二"ECF *又YE 为BC 的中点*-■-BE =CE >在ZiABE 和GCE 中上 '上 ABE 二/ECFBE=CENEB^FEC OS 寸顶角相等)-A ABE " A FCE CC 2 } AABE^ZXFCE >AB 二匚F r 又丸BZZ CF r 四边形ABF 匚为平行四边形“——BE=EC ■ AE=EF >又,KE 匚三2/ABU ,且NAEC 为 △ ABE 的夕卜角*"AEG「ABG+AEAB >一"JABC「EAB A一・—AE二BE >AE+EF二BE+EC〉艮卩AF=BC > 则四边形为矩形・最新资料推荐(三)如图,0为八ABC的边AC上一动点,过点0的直线MN/ BC,设MN分别交/ ACB的内、外角平分线于点E、Fo求证:0E=0F若CE=12 CF=5求0C的长当点0在AC边上运动到何处时,四边形AECF是矩形?证明你的结论存 V)的峯件下.当/\ ARC満忆什么峯件时.IHH力形AFCF%7F有形・并说日日你的理比.(1)(2)(3)(4)•••/ Ad BCE••• MN/ BC •••/ 0EC=/ BCE •••/ Ad OEC •••()£二OC 同理:OM OC …0E= OF(2)v CE 平分/ ACB / \ \ /•••/ Ad ACB/2Z ------------- 4 -------- VCF 平分/ ACD / (•••/ Ad ACD/2•••/ ECF=/ ACEy ACF=/ ACB/2+/ ACD/2= ( / ACL ACD /2 = 180/2 二90。
八年级上册数学《第十二章 全等三角形》专题 全等三角形的应用---动点运动问题(30题)1.(2023春•虹口区校级期末)如图,AB =8,BC =10,CD 为射线,∠B =∠C ,点P 从点B 出发沿BC 向点C 运动,速度为1个单位/秒,点Q 从点C 出发沿射线CD 运动,速度为x 个单位/秒;若在某时刻,△ABP 能与△CPQ 全等,则x = .【分析】设点P 、Q 的速度为ts ,分两种情形构建方程即可解决问题.【解答】解:设点P 、Q 的速度为ts ,分两种情形讨论:①当AB =PC ,BP =CQ 时,△ABP ≌△PCQ ,即8=10﹣t ,解得:t =2,∴2x =2×1,∴x =1;②当BP =PC ,AB =CQ 时,△ABP ≌△QCP ,即t =12×10=5,∴5x =8,x =85,综上所述,x =1或85,故答案为:1或85.【点评】本题考查全等三角形的判定、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.(2022秋•攸县期末)如图,在四边形ABCD 中,∠DAB =∠ABC ,AB =5cm ,AD =BC =3cm ,点E 在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动.设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为 cm/s.【分析】设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,由于∠DAB=∠ABC,则当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt;当AD=BF,AE=BE 时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,然后分别解方程求出x即可.【解答】解:设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,∵∠DAB=∠ABC,∴当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt,解得t=2,x=1;当AD=BF,AE=BE时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,解得t=2.5,x=1.2,综上所述,点F的运动速度为1或1.2cm/s.故答案为:1或1.2.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件.3.(2022春•普宁市期末)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为 .【分析】设BE=3t,则BF=7t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.【点评】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.4.如图,△ABC中,AB=AC=24cm,BC=16cm,AD=BD.如果点P在线段BC上以2cm/s的速度由B 点向C点运动,同时,点Q在线段CA上以vcm/s的速度由C点向A点运动,那么当△BPD与△CQP 全等时,v=( )A.3B.4C.2或4D.2或3【分析】表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD 与CQ是对应边两种情况讨论即可.【解答】解:∵AB=AC=20cm,BC=16cm,点D为AB的中点,∴BD=12×24=12cm,设点P、Q的运动时间为t,则BP=2t,PC=(16﹣2t)c①当BD=PC时,16﹣2t=12,解得:t=2,则BP=CQ=2t=4,故点Q的运动速度为:4÷2=2(厘米/秒);②当BP=PC时,∵BC=16cm,∴BP=PC=8cm,∴t=8÷2=4(秒),故点Q的运动速度为12÷4=3(厘米/秒);故选:D.【点评】本题考查了全等三角形的对应边相等的性质,等边对等角的性质,根据对应角分情况讨论是本题的难点.5.如图,已知长方形ABCD中,AD=8cm,AB=6cm,点E为AD的中点.若点P在线段AB上以2cm/s 的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若△AEP与△BPQ全等,则点Q的运动速度是( )A.2或83B.6或83C.2或6D.1或23【分析】设Q运动的速度为xcm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【解答】解:∵长方形ABCD,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为xcm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,2y=6−2y4=8−xy,解得,x=83 y=32,即点Q的运动速度83cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,2y=8−xy4=6−2y,解得:x=6 y=1,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度83或6cm/s时能使两三角形全等.故选:B.【点评】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.6.(2022秋•高邑县期中)如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是( )A.2B.2.8C.3D.6【分析】分三种情况讨论得出关于t的方程,解方程求得t的值.【解答】解:当P在AC上,Q在BC上时,如图,过点P,Q,C分别作PE⊥直线l于点E,QF⊥直线l于点F,CD⊥AB于点D,∵∠ACB=90,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°,∴∠EPC=∠QCF,∵△PCE≌△CQF,∴PC=CQ,∴6﹣2t=8﹣3t,解得t=2;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,6﹣2t=3t﹣8,解得t=2.8;当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,由题意得,2t﹣6=6,解得t=6.综上,当△CPE与△CQF全等时,t的值为2或2.8或6.∴t的值不可能是3.故选:C.【点评】本题考查了三角形全等的判定和性质、作图﹣基本作图、平行线之间的距离、勾股定理,根据题意得出关于t的方程是解题的关键.7.(2022秋•浠水县校级期中)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.当△ABD≌△ACE时,t的值为( )A.2B.4C.6D.2或6【分析】当点E在射线CM上时,D在CB上,BD=CE,当点E在CM的反向延长线上时DB=CE,由全等三角形的性质求出其解即可.【解答】解:∵△ABD≌△ACE,∴AD=AE,AB=AC,BD=CE.如图,当点E在射线CM上时,D在CB上,BD=CE,∵CE=t,BD=6﹣2t,∴6﹣2t=t,∴t=2.如图,当点E在CM的反向延长线上时DB=CE,∵CE=t,BD=2t﹣6,∴t=2t﹣6,∴t=6.综上所述,当t=2或6时,△ABD≌△ACE,故选:D.【点评】本题考查了全等三角形的性质的运用,等腰三角形的性质的运用,三角形的面积公式的运用,解答时分类讨论是重点也是难点.8.(2023春•和平区校级期中)如图,已知Rt△ABC中,∠ACB=90°,满足AC=7,BC=12,点P从A 点出发沿A→C→B路径向终点B运动:点Q从B出发沿B→C→A路径向终点A运动;点P,Q的速度分别以每秒1个单位长度和每秒3个单位长度的速度同时开始运动,两个点都要到达相应的终点时才能停止运动,分别过P,Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,当以P,E,C为顶点的三角形与以Q,F,C为顶点的三角形全等时,t的值为 (不考虑两三角形重合的情况).【分析】三角形PEC和三角形QFC要全等,P的对应顶点是C,有两种情况:一种是点P在AC上,点P在BC上时;另一种是点Q到达终点,而P在BC上时,先把各线段的长度表示出来,再让对应边相等,即可构造方程解出t.【解答】解:①当点P在线段AC上,点P在线段BC上时;如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=7﹣t,BQ=3t,CQ=12﹣3t;∴7﹣t=12﹣3t,解得t=2.5.②当P在线段BC上,点Q到达终点时,如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=t﹣7,CQ=7,∴t﹣7=7,解得t=14.综上所述,t的值为2.5或14.【点评】本题考查全等三角形的性质,找到全等三角形的对应边是解题的关键.9.如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,点E从点A出发沿线段AG以2cm/s的速度运动至点G,E、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与直线AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0<t<2和2<t<4时段BF的长度(用含t的代数式表示)(2)当BF=AE时,求t的值;(3)当△ADE≌△CDF时,直接写出所有满足条件的t值.【分析】(1)根据点F从点B出发、点E从点A出发的速度、结合图形解答;(2)根据题意列出方程,解方程即可;(3)分点E从点A运动至点G、从点G返回两种情况,根据全等三角形的性质列式计算即可.【解答】解:(1)当0<t≤2时,BF=4t,当2<t≤4时,BF=16﹣4t;(2)由题意得,16﹣4t=2t,解得t=8 3;(3)当0<t≤2时,△ADE≌△CDF,则AE=CF,即8﹣4t=2t,解得t=4 3,当2<t≤4时,△ADE≌△CDF,则AE=CF,即4t﹣8=2t,解得t=4,则t=43或4时,△ADE≌△CDF.【点评】本题考查的是全等三角形的性质的应用,根据题意求出函数关系式、掌握全等三角形的对应边相等是解题的关键.10.在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且PQ=AB,问P点运动到AC上什么位置时△ABC才能和△QPA全等.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,AP=BCPQ=AB∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,AP=ACPQ=AB,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=10cm,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,当P运动到AP=BC、点P与点C重合时,△ABC才能和△APQ全等.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.11.(2023春•吉安县期末)如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C向终点A运动,若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q第一次在△ABC的哪条边上追上点P?【分析】(1)根据等腰三角形的性质得到∠B=∠C,再加上BP=CQ=3,PC=BD=5,则可判断△BPD 与△CQP全等;(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解方程得到点P运动的路程为3×10=30,得到此时点P在BC边上,于是得到结果.【解答】解:(1)∵BP=3×1=3,CQ=3×1=3,∴BP=CQ,∵D为AB的中点,∴BD=AD=5,∵CP=BC﹣BP=5,∴BD=CP,在△BPD与△CQP中,BD=CP∠B=∠C,BP=CQ∴△BPD≌△CQP(SAS);(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解得:x=10,∴点P运动的路程为3×10=30,∵30=28+2,∴此时点P在BC边上,∴经过10秒,点Q第一次在BC边上追上点P.【点评】本题考查了全等三角形的判定和性质,找准对应边是解题的关键.12.如图,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C 点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?【分析】分类讨论:当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,利用三角形全等得PA=AQ,即22﹣2t=28﹣3t;当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,由PA=AQ,即2t﹣22=3t﹣28;当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,然后分别解方程求出t,再根据题意确定t的值.【解答】解:设P、Q点运动的时间为t,(1)当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,∵△PFA与△QAG全等,∴PA=AQ,即22﹣2t=28﹣3t,解得t=6,即P运动6秒时,△PFA与△QAG全等;(2)当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,解得t=10,(3)当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,∵△PFA与△QAG全等,∴PA=AQ,即2t﹣22=3t﹣28,解得t=6(舍去);当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,解得t=22,舍去.综上所述:当t等于6秒或10秒时,△PFA与△QAG全等.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.对于动点问题常利用代数的方法解决.13.(2022秋•苍溪县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.【分析】(1)证明△ABC≌△EDC(SAS),可得∠A=∠E,然后根据内错角相等两直线平行即可得出结论;(2)分两种情况讨论:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,可得AP=8﹣(2t﹣8)=(16﹣2t)cm,进而可以解决问题;(3)先证△ACP≌△ECQ(ASA),得AP=EQ,再分两种情况列方程求解即可.【解答】(1)证明:在△ABC和△EDC中,AC=EC∠ACB=∠ECD,BC=DC∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)解:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,∴AP=8﹣(2t﹣8)=(16﹣2t)cm,∴线段AP的长为2tcm或(16﹣2t)cm;(3)解:根据题意得DQ =tcm ,则EQ =(8﹣t )cm ,由(1)得:∠A =∠E ,ED =AB =8cm ,在△ACP 和△ECQ 中,∠A =∠E AC =EC ∠ACP =∠ECQ,∴△ACP ≌△ECQ (ASA ),∴AP =EQ ,当0≤t ≤4时,2t =8﹣t ,解得:t =83;当4<t ≤8时,16﹣2t =8﹣t ,解得:t =8;综上所述,当线段PQ 经过点C 时,t 的值为83或8.【点评】本题考查了全等三角形的判定与性质,列代数式,一元一次方程的应用,解决本题的关键是得到△ACP ≌△ECQ .14.如图,在等腰△ABC 中,AB =AC =6cm ,BC =10cm ,点P 从点B 出发,以2cm /s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC = cm .(用t 的代数式表示)(2)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /s 的速度沿CA 向点A 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC ﹣BP 即可得到CP 的长;(2)此题主要分两种情况①当BP =CQ ,AB =PC 时,△ABP ≌△PCQ ;当BA =CQ ,PB =PC 时,△ABP ≌△QCP ,然后分别计算出t 的值,进而得到v 的值.【解答】解:(1)依题意,得PC=(10﹣2t)(cm).故答案为:10﹣2t;(2)①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=6cm,∴PC=6(cm),∴BP=10﹣6=4(cm),2t=4,解得:t=2,CQ=BP=4(cm),v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=12BC=5(cm),2t=5,解得:t=2.5,CQ=BP=6(cm),v×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP与△PQC全等.【点评】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.15.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向C运动,同时,点Q在线段CA上由点C向A运动,①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以1cm/s的运动速度从B同时出发,都逆时针沿△ABC三边运动,则经过 秒后,点P与点Q第一次在△ABC上相遇.(在横线上直接写出答案,不必书写解题过程)【分析】(1)①根据时间和速度分别求得两个三角形中BP、CQ和BD、PC边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个边长.【解答】解:(1)①△BPD≌△CQP,理由如下:∵t=1秒,∴BP=CQ=1×1=1cm,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t=BP1=2秒,∴v Q=CQt=32=1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得 1.5x=x+2×6,解得x=24,∴点P共运动了24s×1cm/s=24cm.∵24×1.5=36,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.【点评】此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.16.(2022秋•聊城月考)如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等?请说明理由.(2)当点Q的运动速度为多少时,能够使△BPE与△CQP全等.【分析】(1)经过1秒后,可得BP=CQ=3厘米,则PC=8﹣3=5厘米,可证明△BPE≌△CQP;(2)由△BPE与△CQP全等可知有△BEP≌△CQP或△BEP≌△CPQ,全等可得BP=CP或BP=CQ,或可求得BP的长,可求得P点运动的时间,由CQ=BE或CQ=BP可求得Q点运动的路程,可求得其速度.【解答】解:(1)△BPE与△CQP全等,理由如下:当运动1秒后,则BP=CQ=3厘米,∴PC=BC﹣BP=8﹣3=5厘米,∵E为AB中点,且AB=10厘米∴BE=5厘米,∴BE=PC,在△BPE和△CQP中BE=PC∠B=∠CBP=CQ∴△BPE≌△CQP(SAS);(2)∵△BPE与△CQP全等,∴△BEP≌△CQP或△BEP≌△CPQ,当△BEP≌△CQP时,则BP=CP,CQ=BE=5厘米,设P点运动的时间为t秒,则3t=8﹣3t,解得t=4 3,∴Q点的运动的速度=5÷43=154(厘米/秒),当△BEP≌△CPQ时,由(1)可知t=1(秒),∴BP=CQ=3厘米,∴Q点的运动的速度=3÷1=3(厘米/秒),即当Q点每秒运动154厘米或3厘米时△BEP≌△CQP.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定是解题的关键,即SSS、SAS、ASA、AAS和HL17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P,Q是边AC,BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E,设点P,Q运动的时间是t秒(t>0).(1)若点P,Q分别从A,B两点同时出发,沿AC,BC向点C匀速运动,运动速度都为每秒1个单位,其中一点到达终点C后,另一点也随之停止运动,在运动过程中△APD和△QBE是否保持全等?判断并说明理由;(2)若点P从点C出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q仍从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t为何值时,△APD和△QBE全等?【分析】(1)根据∠C=90°,PD⊥AB,QE⊥AB,于是得到∠A+∠APD=∠A+∠B=90°,证得∠APD =∠B,∠ADP=∠QEB=90°,即可得到结论;(2)分两种情况:①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,求得t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,求得t=4.【解答】解:(1)△ADP≌△QBE,理由:∵∠C=90°,PD⊥AB,QE⊥AB,∴∠A+∠APD=∠A+∠B=90°,∴∠APD=∠B,∠ADP=∠QEB=90°,∵AP=BQ=t,在△ADP与△QBE中,∠APD=∠B∠ADP=∠QEB AP=BQ,∴△ADP≌△QBE;(2)①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4,综上所述:当t=2s或4s时,△ADP≌△QBE.【点评】本题考查了全等三角形的判定,解方程,垂直的定义,熟练掌握全等三角形的判定定理是解题的关键.18.如图,在长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(注:长方形中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC)(1)若点Q的运动速度与点P的运动速度相等:①经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;②设运动时间为t秒时,△PEQ的面积为Scm2,请用t的代数式表示S.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 cm/s时,能够使△AEP与△BPQ全等.【分析】(1)①当t=1时,AP=BQ,∠A=∠B,AE=PB,从而可证明△EAP≌Rt△PBQ;②当t≤4时,AP=BQ=t,S=S梯形AEQB﹣S AEP﹣S PBQ;当4<t≤6时,点P与点B重合,S=2t;(2)如图3所示:因为△AEP≌△BQP,所以AP=PB=2,AE=BQ=3,从而可求得t=2,点Q运动的速度为=3÷2=1.5cm/秒.【解答】解:(1)①当t=1时,AP=1,BQ=1,∴AP=BQ.∵E是AD的中点,∴AE=12AD=3.∵PB=AB=AP=4﹣1=3,∴AE=PB.在Rt△EAP和Rt△PBQ中,AE=PB ∠A=∠B AP=BQ,∴Rt△EAP≌Rt△PBQ.∴∠APE=∠BQP,∵∠BQP+∠BPQ=90°,∴∠APE+∠BPQ=90°,∴∠EPQ=90°,∴PE⊥PQ;②如图1所示连接QE.图1Ⅰ、当t≤4时,AP=BQ=t,S梯形AEQB =12(AE+BQ)•AB=12×4×(3+t)=2t+6.S△AEP =12AE•PA=12×3t=32t,S△PBQ=12PB•BQ=12×(4﹣t)t=2t−12t2.∴S=2t+6−32t﹣(2t−12t2).整理得:S=12t2−32t+6,如图2所示:Ⅱ、当4<t≤6时,点P与点B重合,S=12QB•AB=12×4×t=2t.∴S与t的函数关系式为S=2−32t+6(0<t≤4)<t≤6);(2)如图3所示:∵△AEP≌△BQP,PA≠BQ,∴AP=PB=2,AE=BQ=3.∴t=AP=12AB=12×4=2.∴点Q运动的速度为=3÷2=1.5cm/秒时,△AEP≌△BQP.故答案为:1.5.【点评】此题是四边形综合题,主要考查的是全等三角形的性质和判定、相似三角形的性质和判定、矩形的性质、函数的解析式、一元一次方程的综合应用,根据题意画出符合题意的图形是解题的关键.19.(2023春•碑林区校级期末)如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ全等时,求t的值.【分析】(1)由AAS证明Rt△BDO≌Rt△ADC,根据对应边相等求得BO的长;(2)分情况讨论点F分别在BC延长线上或在BC之间时△AOP≌△FCQ,根据对应边相等求得t值.【解答】解:(1)∵∠BOD=∠AOE,∠CAD+∠ACD=∠CAD+∠AOE=90°,∴∠ACD=∠AOE,∴∠BOD=∠ACD.又∵∠BDO=∠ADC=90,AD=BD,∴Rt△BDO≌Rt△ADC(AAS),∴BO=AC=6.(2)①当点F在BC延长线上时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=6﹣4t,∴t=6﹣4t,解得t=1.2.②当点F在BC之间时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=4t﹣6,∴t=4t﹣6,解得t=2.综上,t=1.2或2.【点评】本题考查全等三角形的判定.这部分内容是初中几何中非常重要的内容,一定要深刻理解,做到活学活用.20.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以1cm/s的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.【分析】(1)①根据SAS证明:△BEF≌△ADE;②由①:△BEF≌△ADE得DE=EF,∠BEF=∠ADE,证明△DEF是等腰直角三角形可得结论;(2)分两种情况:①如图2,当△DAE≌△EBF时,②如图3,当△ADE≌△BFE时,分别根据AD=BE,AE=BF,列方程组可得结论.【解答】解:(1)①△BEF≌△ADE,理由如:当t=2时,AE=BF=2,∴BE=AB﹣AD=7﹣2=5,∵AD=5,∴BE=AD,∵∠A=∠B=90°,∴△BEF≌△ADE;②由①得DE=EF,∠BEF=∠ADE,∵∠A=90°,∴∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=180°﹣(∠BEF+∠AED)=90°,∵DE=EF∴∠EDF=∠EFD,∵∠EDF+∠EFD=90°,∴∠EDF=45°;(说明:用其他方法的,请参照此评分标准给分)(2)存在,①如图2,当△DAE≌△EBF时,∴AD=BE,AE=BF,则5=7−t t=xt∴x=1,t=2;②如图3,当△ADE≌△BFE时,AE=BE,AD=BF,则t=7−t 5=xt,∴x=107,t=72.(说明:每正确写出一对x、t的值,给1分.)【点评】本题考查四边形综合题、矩形的判定和性质、等腰直角三角形的判定、三角形全等的性质和判定及动点运动等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.21.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.【分析】(1)由PD⊥BD、∠C=90°可推出∠PDA=∠CBD,即可根据ASA判定△PDA≌△DBC;(2)由PD⊥AB,AE⊥AC可推出∠APF=∠CAB,即可根据AAS判定△APD≌△CAB,再由全等三角形的性质即可得解.【解答】(1)证明:如图①,∵PD⊥BD,∴∠PDB=90°,∴∠BDC+∠PDA=90°,又∵∠C=90°,∴∠BDC+∠CBD=90°,∴∠PDA=∠CBD,又∵AE⊥AC,∴∠PAD=90°,∴∠PAD=∠C=90°,又∵BC=6cm,AD=6cm,∴AD=BC,在△PAD和△DCB中,∠PAD=∠CAD=CB,∠PDA=∠CBD∴△PDA≌△DBC(ASA);(2)解:如图②,∵PD⊥AB,∴∠AFD=∠AFP=90°,∴∠PAF+∠APF=90°,又∵AE⊥AC,∴∠PAF+∠CAB=90°,∴∠APF=∠CAB,在△APD和△CAB中,∠APD=∠CAB∠PAD=∠C,AD=CB∴△APD≌△CAB(AAS),∴AP=AC,∵AC=8cm,∴AP=8cm,∴t=8.【点评】此题考查了全等三角形的判定与性质,根据ASA判定△PDA≌△DBC、根据AAS判定△APD≌△CAB是解题的关键.22.在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PG⊥CD于点G,QF⊥CD于点F.问两动点运动多长时间时△OPG与△OQF全等?【分析】(1)①根据全等三角形的判定定理ASA证得结论;②利用①中全等三角形的性质得到:AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时(ii)当点P、Q都在y轴上时,(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时,列方程即可得到结论.【解答】解:(1)①如图,∵∠DBO=∠ABO,OB⊥AE,∴∠BAO=∠BEO,∴AB=BE,∴AO=OE,∵∠CAy=∠BAO,∴∠CAy=∠BEO,∴∠DEO=∠CAO在△ACO与△EDO中,∠CAO=∠DEO OA=OE∠AOC=∠DOE,∴△ACO≌△EDO(ASA);②由①知,△ACO≌△EDO,∴∠C=∠D,AC=DE,∴AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时PO=QO得:6﹣t=8﹣2t,解得t=2(秒),(ii)当点P、Q都在y轴上时PO=QO得:6﹣t=2t﹣8,解得t=143(秒),(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,则PO=QO得:t﹣6=2t﹣8,解得t=2(秒)不合题意;当点Q提前停止时,有t﹣6=6,解得t=12(秒),综上所述:当两动点运动时间为2、143、12秒时,△OPE与△OQF全等【点评】本题考查了全等三角形的判定,坐标与图形的性质,正确的理解题意是解题的关键.23.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t= 时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P 在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=12BC=92cm,此时,点P移动的距离为AC+CP=12+92=332,移动的时间为:332÷3=112秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=12AB,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+152=572cm,移动的时间为:572÷3=192秒,故答案为:112或192;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=154cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=9332cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速度为154cm/s或9332cm/s.。
专题动点综合问题(32题)1(2023·四川遂宁·统考中考真题)如图,在△ABC 中,AB =10,BC =6,AC =8,点P 为线段AB 上的动点,以每秒1个单位长度的速度从点A 向点B 移动,到达点B 时停止.过点P 作PM ⊥AC 于点M 、作PN ⊥BC 于点N ,连接MN ,线段MN 的长度y 与点P 的运动时间t (秒)的函数关系如图所示,则函数图象最低点E 的坐标为()A.5,5B.6,245C.325,245D.325,5【答案】C【分析】如图所示,过点C 作CD ⊥AB 于D ,连接CP ,先利用勾股定理的逆定理证明△ABC 是直角三角形,即∠C =90°,进而利用等面积法求出CD =245,则可利用勾股定理求出AD =325;再证明四边形CMPN 是矩形,得到MN =CP ,故当点P 与点D 重合时,CP 最小,即MN 最小,此时MN 最小值为245,AP =325,则点E 的坐标为325,245.【详解】解:如图所示,过点C 作CD ⊥AB 于D ,连接CP ,∵在△ABC 中,AB =10,BC =6,AC =8,∴AC 2+BC 2=62+82=100=102=AB 2,∴△ABC 是直角三角形,即∠C =90°,∴S △ABC =12AC ⋅BC =12AB ⋅CD ,∴CD =AC ⋅BC AB=245,∴AD =AC 2-CD 2=325;∵PM ⊥AC ,PN ⊥BC ,∠C =90°,∴四边形CMPN 是矩形,∴MN =CP ,∴当MN 最小时,即CP 最小,∴当点P 与点D 重合时,CP 最小,即MN 最小,此时MN 最小值为245,AP =AD =325,∴点E 的坐标为325,245,故选:C .【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.2(2023·广东深圳·统考中考真题)如图1,在Rt △ABC 中,动点P 从A 点运动到B 点再到C 点后停止,速度为2单位/s ,其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为()B.427C.17D.53A.1552【答案】C【分析】根据图象可知t=0时,点P与点A重合,得到AB=15,进而求出点P从点A运动到点B所需的时间,进而得到点P从点B运动到点C的时间,求出BC的长,再利用勾股定理求出AC即可.【详解】解:由图象可知:t=0时,点P与点A重合,∴AB=15,∴点P从点A运动到点B所需的时间为15÷2=7.5s;∴点P从点B运动到点C的时间为11.5-7.5=4s,∴BC=2×4=8;在Rt△ABC中:AC=AB2+BC2=17;故选:C.【点睛】本题考查动点的函数图象,勾股定理.从函数图象中有效的获取信息,求出AB,BC的长,是解题的关键.3(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A 点出发,点M以每秒2个单位长度沿折线A-B-C向终点C运动;点N以每秒1个单位长度沿线段AD 向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y 个平方单位,则下列正确表示y与x函数关系的图象是()A. B.C. D.【答案】A【分析】连接BD ,过点B 作BE ⊥AD 于点E ,根据已知条件得出△ABD 是等边三角形,进而证明△AMN ∽ABE 得出∠ANM =∠AEB =90°,当0<t <4时,M 在AB 上,当4≤t <8时,M 在BC 上,根据三角形的面积公式得到函数关系式,【详解】解:如图所示,连接BD ,过点B 作BE ⊥AD 于点E ,当0<t <4时,M 在AB 上,菱形ABCD 中,∠A =60°,AB =4,∴AB =AD ,则△ABD 是等边三角形,∴AE =ED =12AD =2,BE =3AE =23∵AM =2x ,AN =x ,∴AM AN =AB AE =2,又∠A =∠A ∴△AMN ∽ABE∴∠ANM =∠AEB =90°∴MN =AM 2-AN 2=3x ,∴y =12x ×3x =32x2当4≤t <8时,M 在BC 上,∴y =12AN ×BE =12x ×23=3x ,综上所述,0<t <4时的函数图象是开口向上的抛物线的一部分,当4≤t <8时,函数图象是直线的一部分,故选:A .【点睛】本题考查了动点问题的函数图象,二次函数图象的性质,一次函数图象的性质,菱形的性质,勾股定理,等边三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.4(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中,AB =4,动点M ,N 分别从点A ,B 同时出发,沿射线AB ,射线BC 的方向匀速运动,且速度的大小相等,连接DM ,MN ,ND .设点M 运动的路程为x 0≤x ≤4 ,△DMN 的面积为S ,下列图像中能反映S 与x 之间函数关系的是()A. B.C. D.【答案】A【分析】先根据S =S 正方形ABCD -S △ADM -S △DCN -S △BMN ,求出S 与x 之间函数关系式,再判断即可得出结论.【详解】解:S =S 正方形ABCD -S △ADM -S △DCN -S △BMN ,=4×4-12×4x -12×4(4-x )-12x (4-x ),=12x 2-2x +8,=12(x -2)2+6,故S 与x 之间函数关系为二次函数,图像开口向上,x =2时,函数有最小值6,故选:A .【点睛】本题考查了正方形的性质,二次函数的图像与性质,本题的关键是求出S 与x 之间函数关系式,再判断S 与x 之间函数类型.5(2023·河南·统考中考真题)如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PBPC=y ,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A.6B.3C.43D.23【答案】A【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB =PC ,AO =23,易知∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为43,可知AO =OB =23,过点O 作OD ⊥AB ,解直角三角形可得AD =AO ⋅cos30°=3,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PBPC=1,∴PB =PC ,AO =23,又∵△ABC 为等边三角形,∴∠BAC =60°,AB =AC ,∴△APB ≌△APC SSS ,∴∠BAO =∠CAO ,∴∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为43,∴OB =23,即AO =OB =23,∴∠BAO =∠ABO =30°,过点O 作OD ⊥AB ,∴AD =BD ,则AD =AO ⋅cos30°=3,∴AB =AD +BD =6,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.6(2023·四川乐山·统考中考真题)如图,在平面直角坐标系xOy 中,直线y =-x -2与x 轴、y 轴分别交于A 、B 两点,C 、D 是半径为1的⊙O 上两动点,且CD =2,P 为弦CD 的中点.当C 、D 两点在圆上运动时,△PAB 面积的最大值是()A.8B.6C.4D.3【答案】D【分析】根据一次函数与坐标轴的交点得出OA =OB =2,确定AB =22,再由题意得出当PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,利用勾股定理求解即可.【详解】解:∵直线y =-x -2与x 轴、y 轴分别交于A 、B 两点,∴当x =0时,y =-2,当y =0时,x =-2,∴A -2,0 ,B 0,-2 ,∴OA =OB =2,∴AB =OA 2+OB 2=22,∵△PAB 的底边AB =22为定值,∴使得△PAB 底边上的高最大时,面积最大,点P 为CD 的中点,当PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,∵CD =2,⊙O 的半径为1,∴DP=22∴OP=OD2-DP2=22,∵OE⊥AB,∴OE=12AB=2,∴PE=OE+OP=322,∴S△PAB=12×22×322=3,故选:D.【点睛】题目主要考查一次函数的应用及勾股定理解三角形,垂径定理的应用,理解题意,确定出高的最大值是解题关键.7(2023·河北·统考中考真题)如图是一种轨道示意图,其中ADC和ABC均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y,则y与x关系的图象大致是()A. B.C. D.【答案】D【分析】设圆的半径为R,根据机器人移动时最开始的距离为AM+CN+2R,之后同时到达点A,C,两个机器人之间的距离y越来越小,当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是直径2R,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M,N两点同时出发,设圆的半径为R,∴两个机器人最初的距离是AM+CN+2R,∵两个人机器人速度相同,∴分别同时到达点A,C,∴两个机器人之间的距离y越来越小,故排除A,C;当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是直径2R,保持不变,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,故排除C,故选:D.【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.8(2023·江苏苏州·统考中考真题)如图,在平面直角坐标系中,点A的坐标为9,0,点C的坐标为0,3,以OA,OC为边作矩形OABC.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,AC⋅EF的值为()A.10B.910C.15D.30【答案】D【分析】根据题意,得出E4,0,勾股定理求得EF=10,AC=310,即可求解.,F5,3【详解】解:连接AC、EF∵点A的坐标为9,0,以OA,OC为边作矩形OABC.,点C的坐标为0,3∴B9,3,AC=32+92=310则OA=9,BC=OA=9依题意,OE=4×1=4,BF=4×1=4∴AE=9-4=5,则E4,0,∴CF=BC-BF=9-4=5∴F5,3,∴EF=5-42+32=10,∵C0,3,∴AC⋅EF=310×10=30故选:D.【点睛】本题考查了坐标与图形,勾股定理求两点坐标距离,矩形的性质,求得E,F的坐标是解题的关键.9(2023·山东滨州·统考中考真题)已知点P 是等边△ABC 的边BC 上的一点,若∠APC =104°,则在以线段AP ,BP ,CP 为边的三角形中,最小内角的大小为()A.14°B.16°C.24°D.26°【答案】B【分析】将△ABP 绕点A 逆时针旋转60°得到△ACQ ,可得以线段AP ,BP ,CP 为边的三角形,即△PCQ ,最小的锐角为∠PQC ,根据邻补角以及旋转的性质得出∠AQC =∠APB =76°,进而即可求解.【详解】解:如图所示,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,∴AP =AQ ,∠PAQ =60°,BP =CQ ,∠AQC =∠APB ,∴△APQ 是等边三角形,∴PQ =AP ,∴以线段AP ,BP ,CP 为边的三角形,即△PCQ ,最小的锐角为∠PQC ,∵∠APC =104°,∴∠APB =76°∴∠AQC =∠APB =76°∴∠PQC =76°-60°=16°,故选:B .【点睛】本题考查了旋转的性质,等边三角形的性质与判定,熟练掌握旋转的性质是解题的关键.10(2023·甘肃武威·统考中考真题)如图1,正方形ABCD 的边长为4,E 为CD 边的中点.动点P 从点A 出发沿AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,线段PE 的长为y ,y 与x 的函数图象如图2所示,则点M 的坐标为()A.4,23B.4,4C.4,25D.4,5【答案】C【分析】证明AB =BC =CD =AD =4,∠C =∠D =90°,CE =DE =2,则当P 与A ,B 重合时,PE 最长,此时PE =22+42=25,而运动路程为0或4,从而可得答案.【详解】解:∵正方形ABCD 的边长为4,E 为CD 边的中点,∴AB =BC =CD =AD =4,∠C =∠D =90°,CE =DE =2,当P 与A ,B 重合时,PE 最长,此时PE =22+42=25,运动路程为0或4,结合函数图象可得M 4,25 ,故选:C .【点睛】本题考查的是从函数图象中获取信息,正方形的性质,勾股定理的应用,理解题意,确定函数图象上横纵坐标的含义是解本题的关键.11(2023·浙江绍兴·统考中考真题)如图,在△ABC 中,D 是边BC 上的点(不与点B ,C 重合).过点D作DE ∥AB 交AC 于点E ;过点D 作DF ∥AC 交AB 于点F .N 是线段BF 上的点,BN =2NF ;M 是线段DE 上的点,DM =2ME .若已知△CMN 的面积,则一定能求出()A.△AFE 的面积B.△BDF 的面积C.△BCN 的面积D.△DCE 的面积【答案】D【分析】如图所示,连接ND ,证明△FBD ∽△EDC ,得出FB ED =FD EC ,由已知得出NF ME =BF DE ,则FDEC=NFME,又∠NFD =∠MEC ,则△NFD ∽△MEC ,进而得出∠MCD =∠NDB ,可得MC ∥ND ,结合题意得出S △EMC =12S △DMC =12S △MNC ,即可求解.【详解】解:如图所示,连接ND ,∵DE ∥AB ,DF ∥AC ,∴∠ECD =∠FDB ,∠FBD =∠EDC ,∠BFD =∠A ,∠A =DEC .∴△FBD ∽△EDC ,∠NFD =∠MEC .∴FB ED =FD EC .∵DM =2ME ,BN =2NF ,∴NF =13BF ,ME =13DE ,∴NF ME =BF DE .∴FD EC=NF ME .又∵∠NFD =∠MEC ,∴△NFD ∽△MEC .∴∠ECM =∠FDN .∵∠FDB =∠ECD ∴∠MCD =∠NDB .∴MC ∥ND .∴S △MNC =S △MDC .∵DM =2ME ,∴S △EMC =12S △DMC =12S △MNC .故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ∥ND 是解题的关键.12(2023·安徽·统考中考真题)如图,E 是线段AB 上一点,△ADE 和△BCE 是位于直线AB 同侧的两个等边三角形,点P ,F 分别是CD ,AB 的中点.若AB =4,则下列结论错误的是()A.PA +PB 的最小值为33B.PE +PF 的最小值为23C.△CDE 周长的最小值为6D.四边形ABCD 面积的最小值为33【答案】A【分析】延长AD ,BC ,则△ABQ 是等边三角形,观察选项都是求最小时,进而得出当E 点与F 重合时,则Q ,P ,F 三点共线,各项都取得最小值,得出B ,C ,D 选项正确,即可求解.【详解】解:如图所示,延长AD ,BC ,依题意∠QAD =∠QBA =60°∴△ABQ 是等边三角形,∵P 是CD 的中点,∴PD =PC ,∵∠DEA =∠CBA ,∴ED ∥CQ∴∠PQC =∠PED ,∠PCQ =∠PDE ,∴△PDE ≌△PCQ ∴PQ =PE ,∴四边形DECQ 是平行四边形,则P 为EQ 的中点如图所示,设AQ ,BQ 的中点分别为G ,H ,则GP =12AE ,PH =12EB∴当E 点在AB 上运动时,P 在GH 上运动,当E 点与F 重合时,即AE =EB ,则Q ,P ,F 三点共线,PF 取得最小值,此时AE =EB =12AE +EB =2,则△ADE ≌△ECB ,∴C ,D 到AB 的距离相等,则CD ∥AB ,此时PF =32AD =3此时△ADE 和△BCE 的边长都为2,则AP ,PB 最小,∴PF =32×2=3,∴PA =PB =22+3 2=7∴PA +PB =27,或者如图所示,作点B 关于GH 对称点B ,则PB =PB ,则当A ,P ,B 三点共线时,AP +PB =AB此时AB =AB 2+BB =42+23 2=27故A 选项错误,根据题意可得P ,Q ,F 三点共线时,PF 最小,此时PE =PF =3,则PE +PF =23,故B 选项正确;△CDE 周长等于CD +DE +CE =CD +AE +EB =CD +AB =CD +4,即当CD 最小时,△CDE 周长最小,如图所示,作平行四边形GDMH ,连接CM ,∵∠GHQ =60°,∠GHM =∠GDM =60°,则∠CHM =120°如图,延长DE ,HG ,交于点N ,则∠NGD =∠QGH =60°,∠NDG =∠ADE =60°∴△NGD 是等边三角形,∴ND =GD =HM ,在△NPD 与△HPC 中,∠NPD =∠HPC∠N =∠CHP =60°PD =PC∴△NPD ≌△HPC∴ND =CH∴CH =MH∴∠HCM =∠HMC =30°∴CM ∥QF ,则CM ⊥DM ,∴△DMC 是直角三角形,在△DCM 中,DC >DM∴当DC =DM 时,DC 最短,DC =GH =12AB =2∵CD =PC +2PC∴△CDE 周长的最小值为2+2+2=6,故C 选项正确;∵△NPD ≌△HPC∴四边形ABCD 面积等于S △ADE +S △EBC+S △DEC =S △ADE +S 平行四边NEBH∴当△BGD的面积为0时,取得最小值,此时,D,G重合,C,H重合∴四边形ABCD面积的最小值为3×34×22=33,故D选项正确,故选:A.【点睛】本题考查了解直角三角形,等边三角形的性质,勾股定理,熟练掌握等边三角形的性质,得出当E点与F重合时得出最小值是解题的关键.二、填空题13(2023·四川达州·统考中考真题)在△ABC中,AB=43,∠C=60°,在边BC上有一点P,且BP= 12AC,连接AP,则AP的最小值为.【答案】213-2【分析】如图,作△ABC的外接圆,圆心为M,连接AM、BM、CM,过M作MD⊥AB于D,过B作BN⊥AB,交BP的垂直平分线于N,连接AN、BN、PN,以N为圆心,BN PN为半径作圆;结合圆周角定理及垂径定理易得AM=BM=CM=4,再通过圆周角定理、垂直及垂直平分线的性质、三角形内角和定理易得∠AMC=∠PNB,从而易证△AMC∼△PNB可得CMPN=ACPB=21即PN=12CM=2勾股定理即可求得AN=213在△APN中由三角形三边关系AP≥AN-PN即可求解.【详解】解:如图,作△ABC的外接圆,圆心为M,连接AM、BM、CM,过M作MD⊥AB于D,过B作BN ⊥AB,交BP的垂直平分线于N,连接AN、BN、PN,以N为圆心,BN PN为半径作圆;∵∠C=60°,M为△ABC的外接圆的圆心,∴∠AMB=120°,AM=BM,∴∠MAB=∠MBA=30°,∴MD=12AM,∵MD⊥AB,∴AD=12AB=23,在Rt△ADM中,∵AM2=MD2+AD2,∴AM2=12AM2+232,∴AM=4,即AM=BM=CM=4,由作图可知BN⊥AB,N在BP的垂直平分线上,∴∠PBN=∠BPN=90°-∠ABC,∴∠PNB=180°-∠PBN+∠BPN=2∠ABC,又∵M为△ABC的外接圆的圆心,∴∠AMC=2∠ABC,∴∠AMC=∠PNB,∵CM PN =AMBN,∴△AMC∼△PNB,∴CM PN =ACPB,∵BP=12AC,∴CM PN =ACPB=21,即PN=12CM=2,∴PN=BN=2,在Rt△ABN中,AN=AB2+BN2=432+22=213,在△APN中,AP≥AN-PN=213-2,即AP最小值为213-2,故答案为:213-2.【点睛】本题考查了圆周角定理,垂径定理,勾股定理解直角三角形,相似三角形的判定和性质,垂直平分线的性质,30°角所对的直角边等于斜边的一半,三角形三边之间的关系;解题的关键是结合△ABC的外接圆构造相似三角形.14(2023·浙江宁波·统考中考真题)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连接AD,BE=3,BD=35.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为.【答案】230或6【分析】连接OD,勾股定理求出半径,平行线分线段成比例,求出CD的长,勾股定理求出AC和AD的长,分AP=AD和AP=PD两种情况进行求解即可.【详解】解:连接OD,∵以AE为直径的半圆O与BC相切于点D,∴OD⊥BC,OA=OE=OD,∴∠ODB=90°设OA=OE=OD=r,则OB=OE+BE=3+r,在Rt△ODB中:OD2+BD2=OB2,即:r2+352=3+r2,解得:r=6,∴OA=OE=OD=6,∴OB=9,AB=15,AE=12,∵∠C=∠ODB=90°,∴OD∥AC,∴OB OA =DBDC=96=32,∵DB=35,∴CD=25,∴BC=DB+CD=55,∴AC=AB2-BC2=10,∴AD=AC2+CD2=230;∵△ADP为等腰三角形,当AD=AP时,AP=230,当PA=PD时,∵OA=OD,∴点P与点O重合,∴AP=OA=6,不存在PD=AD的情况;综上:AP的长为230或6.故答案为:230或6.【点睛】本题考查切线的性质,平行线分线段成比例,勾股定理,等腰三角形的定义.熟练掌握切线的性质,等腰三角形的定义,确定点P的位置,是解题的关键.15(2023·四川凉山·统考中考真题)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是.【答案】1+3【分析】如图所示,取AB的中点D,连接OD,CD,先根据等边三角形的性质和勾股定理求出CD=3,再根据直角三角形的性质得到OD=12AB=1,再由OC≤OD+CD可得当O、C、D三点共线时,OC有最大值,最大值为1+3.【详解】解:如图所示,取AB的中点D,连接OD,CD,∵△ABC是边长为2的等边三角形,∴CD⊥AB,BC=AB=2,∴BD=AD=1,∴CD=BC2-BD2=3,∵OM⊥ON,即∠AOB=90°,∴OD =12AB =1,∵OC ≤OD +CD ,∴当O 、C 、D 三点共线时,OC 有最大值,最大值为1+3,故答案为:1+3.【点睛】本题主要考查了等边三角形的性质,勾股定理,直角三角形斜边上的中线的性质等等,正确作出辅助线确定当O 、C 、D 三点共线时,OC 有最大值是解题的关键.16(2023·四川泸州·统考中考真题)如图,E ,F 是正方形ABCD 的边AB 的三等分点,P 是对角线AC 上的动点,当PE +PF 取得最小值时,AP PC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP =27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.17(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A=90°,则BN=AB2+AN2=2,∴BN=ND=2∴AD=AN+ND=2+1,综上,AD的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.18(2023·湖南·统考中考真题)如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P的运动过程中,线段CB 的最小值为.【答案】11-2【分析】根据折叠的性质得出B 在A为圆心,2为半径的弧上运动,进而分类讨论当点P在BC上时,当点P在DC上时,当P在AD上时,即可求解.【详解】解:∵在矩形ABCD中,AB=2,AD=7,∴BC=AD=7,AC=BC2+AB2=7+4=11,如图所示,当点P在BC上时,∵AB =AB=2∴B 在A为圆心,2为半径的弧上运动,当A,B ,C三点共线时,CB 最短,此时CB =AC-AB =11-2,当点P在DC上时,如图所示,此时CB >11-2当P 在AD 上时,如图所示,此时CB >11-2综上所述,CB 的最小值为11-2,故答案为:11-2.【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.19(2023·广西·统考中考真题)如图,在边长为2的正方形ABCD 中,E ,F 分别是BC ,CD 上的动点,M ,N 分别是EF ,AF 的中点,则MN 的最大值为.【答案】2【分析】首先证明出MN 是△AEF 的中位线,得到MN =12AE ,然后由正方形的性质和勾股定理得到AE =AB 2+BE 2=4+BE 2,证明出当BE 最大时,AE 最大,此时MN 最大,进而得到当点E 和点C 重合时,BE 最大,即BC 的长度,最后代入求解即可.【详解】如图所示,连接AE ,∵M ,N 分别是EF ,AF 的中点,∴MN 是△AEF 的中位线,∴MN =12AE ,∵四边形ABCD 是正方形,∴∠B =90°,∴AE =AB 2+BE 2=4+BE 2,∴当BE 最大时,AE 最大,此时MN 最大,∵点E 是BC 上的动点,∴当点E 和点C 重合时,BE 最大,即BC 的长度,∴此时AE =4+22=22,∴MN =12AE =2,∴MN 的最大值为2.故答案为:2.【点睛】此题考查了正方形的性质,三角形中位线的性质,勾股定理等知识,解题的关键是熟练掌握以上知识点.20(2023·山东·统考中考真题)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD <BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.【答案】29-2【分析】设AD的中点为O,以AD为直径画圆,连接OB,设OB与⊙O的交点为点F ,证明∠DFA=90°,可知点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O的交点F 时,线段BF有最小值,据此求解即可.【详解】解:设AD的中点为O,以AD为直径画圆,连接OB,设OB与⊙O的交点为点F ,∵∠ABC=∠BAD=90°,∴AD∥BC,∴∠DAE=∠AEB,∵∠ADF=∠BAE,∴∠DFA=∠ABE=90°,∴点F在以AD为直径的半圆上运动,∴当点F运动到OB与⊙O的交点F 时,线段BF有最小值,∵AD=4,AD=2,,∴AO=OF =12∴BO=52+22=29,BF的最小值为29-2,故答案为:29-2.【点睛】本题考查了平行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F的运动轨迹是解题的关键.21(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形ABCD中,AB=5,AD=12,对角线AC与BD交于点O,点E为BC边上的一个动点,EF⊥AC,EG⊥BD,垂足分别为点F,G,则EF+EG=.【答案】6013【分析】连接OE ,根据矩形的性质得到BC =AD =12,AO =CO =BO =DO ,∠ABC =90°,根据勾股定理得到AC =AB 2+BC 2=13,求得OB =OC =132,根据三角形的面积公式即可得到结论.【详解】解:连接OE ,∵四边形ABCD 是矩形,∴∠ABC =90°,BC =AD =12,AO =CO =BO =DO ,∵AB =5,BC =12,∴AC =AB 2+BC 2=13,∴OB =OC =132,∴S △BOC =S △BOE +S △COE =12×OB ⋅EG +12OC ⋅EF =12S △ABC =12×12×5×12=15,∴12×132EG +12×132EF =12×132(EG +EF )=15,∴EG +EF =6013,故答案为:6013.【点睛】此题考查了矩形的性质、勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.22(2023·山东烟台·统考中考真题)如图1,在△ABC 中,动点P 从点A 出发沿折线AB →BC →CA 匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则△ABC 的高CG 的长为.【答案】732【分析】过点A 作AQ ⊥BC 于点Q ,当点P 与Q 重合时,在图2中F 点表示当AB +BQ =12时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,勾股定理求得AQ ,然后等面积法即可求解.【详解】如图过点A 作AQ ⊥BC 于点Q ,当点P 与Q 重合时,在图2中F 点表示当AB +BQ =12时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴BC =7,BQ =4,QC =3在Rt △ABQ 中,AB =8,BQ =4∴AQ =AB 2-BQ 2=82-42=43∵S △ABC =12AB ×CG =12AQ ×BC ,∴CG =BC ×AQ AB=7×438=732,故答案为:732.【点睛】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.23(2023·新疆·统考中考真题)如图,在▱ABCD 中,AB =6,BC =8,∠ABC =120°,点E 是AD 上一动点,将△ABE 沿BE 折叠得到△A BE ,当点A 恰好落在EC 上时,DE 的长为.【答案】37-3【分析】过点C作CH⊥AD交AD的延长线于点H,根据平行四边形的性质以及已知条件得出∠ADC=∠ABC=120°,∠HDC=60°,进而求得DH,HC,根据折叠的性质得出CB=CE,进而在Rt△ECH中,勾股定理即可求解.【详解】解:如图所示,过点C作CH⊥AD交AD的延长线于点H,∵在▱ABCD中,AB=6,BC=8,∠ABC=120°,∴∠ADC=∠ABC=120°,∠HDC=60°,CD=AB=6,AD=CB=8,DC=3,∴DH=DC×cos∠HDC=12在Rt△ECH中,HC=CD2-DH2=62-32=33∵将△ABE沿BE折叠得到△A BE,当点A 恰好落在EC上时,∴∠AEB=∠CEB又AD∥BC∴∠EBC=∠AEB∴∠EBC=∠CEB∴CE=BC=8设ED=x,∴EH=x+3在Rt△ECH中,EC2=EH2+HC2∴82=x+322+33解得:x=37-3(负整数)故答案为:37-3.【点睛】本题考查了折叠的性质,平行四边形的性质,解直角三角形,熟练掌握折叠的性质是解题的关键.24(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为【答案】M-8,6或M-8,2 3【分析】如图,由△AMN是以点N为直角顶点的等腰直角三角形,可得N在以AM为直径的圆H上,MN= AN,可得N是圆H与直线y=-2x-6的交点,当M,B重合时,符合题意,可得M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK=AB=8,证明△MNK≌△NAJ,设N x,-2x-6,可得MK=NJ=-x,KN=AJ=-2x-6-6=-2x-12,而KJ=AB =8,则-2x-12-x=8,再解方程可得答案.【详解】解:如图,∵△AMN是以点N为直角顶点的等腰直角三角形,∴N在以AM为直径的圆H上,MN=AN,∴N是圆H与直线y=-2x-6的交点,当M,B重合时,∵B-8,6,则H-4,3,∴MH=AH=NH=4,符合题意,∴M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK= AB=8,∴∠NAJ+∠ANJ=90°,∵AN =MN ,∠ANM =90°,∴∠MNK +∠ANJ =90°,∴∠MNK =∠NAJ ,∴△MNK ≌△NAJ ,设N x ,-2x -6 ,∴MK =NJ =-x ,KN =AJ =-2x -6-6=-2x -12,而KJ =AB =8,∴-2x -12-x =8,解得:x =-203,则-2x -6=223,∴CM =CK -MK =223-203=23,∴M -8,23 ;综上:M -8,6 或M -8,23 .故答案为:M -8,6 或M -8,23.【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,本题属于填空题里面的压轴题,难度较大,清晰的分类讨论是解本题的关键.25(2023·四川自贡·统考中考真题)如图,直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,点D 是线段AB 上一动点,点H 是直线y =-43x +2上的一动点,动点E m ,0 ,F m +3,0 ,连接BE ,DF ,HD .当BE +DF 取最小值时,3BH +5DH 的最小值是.【答案】392【分析】作出点C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,此时BE +DF 的最小值为CD 的长,利用解直角三角形求得F 113,0 ,利用待定系数法求得直线CD 的解析式,联立即可求得点D 的坐标,过点D 作DG ⊥y 轴于点G ,此时3BH +5DH 的最小值是5DG 的长,据此求解即可.【详解】解:∵直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,∴B 0,2 ,A 6,0 ,作点B 关于x 轴的对称点B 0,-2 ,把点B 向右平移3个单位得到C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,过点B 作B E ∥CD 交x 轴于点E ,则四边形EFCB 是平行四边形,此时,BE =B E =CF ,∴BE +DF =CF +DF =CD 有最小值,作CP ⊥x 轴于点P ,则CP =2,OP =3,∵∠CFP =∠AFD ,∴∠FCP =∠FAD ,∴tan ∠FCP =tan ∠FAD ,∴PF PC =OB OA ,即PF 2=26,∴PF =23,则F 113,0 ,设直线CD 的解析式为y =kx +b ,则3k +b =-2113k +b =0,解得k =3b =-11 ,∴直线CD 的解析式为y =3x -11,联立,y =3x -11y =-13x +2 ,解得x =3910y =710,即D3910,710;过点D 作DG ⊥y 轴于点G ,直线y =-43x +2与x 轴的交点为Q 32,0 ,则BQ =OQ 2+OB 2=52,∴sin ∠OBQ =OQ BQ =3252=35,∴HG =BH sin ∠GBH =35BH ,∴3BH +5DH =535BH +DH =5HG +DH =5DG ,即3BH +5DH 的最小值是5DG =5×3910=392,故答案为:392.【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.三、解答题26(2023·重庆·统考中考真题)如图,△ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A出发,点E沿折线A→B→C方向运动,点F沿折线A→C→B方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E,F相距3个单位长度时t的值.【答案】(1)当0<t≤4时,y=t;当4<t≤6时,y=12-2t(2)图象见解析,当0<t≤4时,y随x的增大而增大(3)t的值为3或4.5【分析】(1)分两种情况:当0<t≤4时,根据等边三角形的性质解答;当4<t≤6时,利用周长减去2AE即可;(2)在直角坐标系中描点连线即可;(3)利用y=3分别求解即可.【详解】(1)解:当0<t≤4时,连接EF,由题意得AE=AF,∠A=60°,∴△AEF是等边三角形,∴y=t;当4<t≤6时,y=12-2t;(2)函数图象如图:。
2024年中考数学高频压轴题训练——圆-动点问题1.“同弧或等弧所对的圆周角相等”,利用这个推论可以解决很多数学问题.(1)【知识理解】如图1,圆O 的内接四边形ACBD 中,60ABC ∠=︒,BC AC =,①BDC ∠=;DAB ∠DCB ∠(填“>”,“=”,“<”)②将D 点绕点B 顺时针旋转60︒得到点E ,则线段DB DC DA ,,的数量关系为.(2)【知识应用】如图2,AB 是圆O 的直径,1tan 2ABC ∠=,猜想DA DB DC ,,的数量关系,并证明;(3)【知识拓展】如图3,已知2AB =,A B ,分别是射线DA DB ,上的两个动点,以AB 为边往外构造等边ABC ,点C 在MDN ∠内部,若120D ∠=︒,直接写出四边形ADBC 面积S 的取值范围.2.如图1,对于PMN 的顶点P 及其对边MN 上的一点Q ,给出如下定义:以P 为圆心,PQ 为半径的圆与直线MN 的公共点都在线段MN 上,则称点Q 为PMN 关于点P 的内联点.在平面直角坐标系xOy 中:(1)如图2,已知点(70)A ,,点B 在直线1y x =+上.①若点(34)B ,,点(30)C ,,则在点O ,C ,A 中,点是AOB 关于点B 的内联点;②若AOB 关于点B 的内联点存在,求点B 纵坐标n 的取值范围;(2)已知点(20)D ,,点(42)E ,,将点D 绕原点O 旋转得到点F .若EOF 关于点E 的内联点存在,直接写出点F 横坐标m 的取值范围.3.在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(B C '',分别是B C ,的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233A B C B C B C ,,,,,,的横、纵坐标都是整数.在线段112233B C B C B C ,,中,O 的以点A 为中心的“关联线段”是;(2)ABC 是边长为1的等边三角形,点()0A t ,,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,12AB AC ==,.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.4.已知:点C 为⊙O 的直径AB 上一动点,过点C 作CD ⊥AB ,交⊙O 于点D 和点E ,连接AD 、BD ,∠DBA 的角平分线交⊙O 于点F .(1)若DF =BD ,求证:GD =GB ;(2)若AB =2cm ,在(1)的条件下,求DG 的值;(3)若∠ADB 的角平分线DM 交⊙O 于点M ,交AB 于点N .当点C 与点O 重合时,AD BD DM+=;据此猜想,当点C 在AB (不含端点)运动过程中,AD BD DM +的值是否发生改变?若不变,请求其值;若改变,请说明理由.5.在平面直角坐标系xOy 中,O 的半径为1,对于ABC 和直线l 给出如下定义:若ABC 的一条边关于直线l 的对称线段PQ 是O 的弦,则称ABC 是O 的关于直线l 的“关联三角形”,直线l 是“关联轴”.(1)如图1,若ABC 是O 的关于直线l 的“关联三角形”,请画出ABC 与O 的“关联轴”(至少画两条);(2)若ABC 中,点A 坐标为(23),,点B 坐标为(41),,点C 在直线3y x =-+的图像上,存在“关联轴l ”使ABC 是O 的关联三角形,求点C 横坐标的取值范围;(3)已知A ,将点A 向上平移2个单位得到点M ,以M 为圆心MA 为半径画圆,B ,C 为M 上的两点,且2AB =(点B 在点A 右侧),若ABC 与O 的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC 最大时AC 的长.6.如图,在⊙O 中,AB 为弦,CD 为直径,且AB ⊥CD ,垂足为E ,P 为 AC 上的动点(不与端点重合),连接PD .(1)求证:∠APD =∠BPD ;(2)利用尺规在PD 上找到点I ,使得I 到AB 、AP 的距离相等,连接AD (保留作图痕迹,不写作法).求证:∠AIP+∠DAI =180°;(3)在(2)的条件下,连接IC 、IE ,若∠APB =60°,试问:在P 点的移动过程中,IC IE 是否为定值?若是,请求出这个值;若不是,请说明理由.7.在平面直角坐标系xOy 中,已知线段AB 和点P ,给出如下定义:若PA PB =且点P 不在线段AB 上,则称点P 是线段AB 的等腰顶点.特别地,当90APB ∠≥︒时,则称点P 是线段AB 的非锐角等腰顶点.(1)已知点(20)A ,,(42)B ,.①在点(40)C ,,(31)D ,,(15)E -,,(05)F ,中,是线段AB 的等腰顶点的是▲;②若点P 在直线3(0)y kx k =+≠上,且点P 是线段AB 的非锐角等腰顶点,求k 的取值范围;(2)直线33y x =-+与x 轴交于点M ,与y 轴交于点N .⊙P 的圆心为(0)P t ,,半径为,若⊙P 上存在线段MN 的等腰顶点,请直接写出t 的取值范围.8.在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CPOQ的值.9.综合与实践动手操作利用正方形纸片的折叠开展数学活动.探究体会在正方形折叠过程中,图形与线段的变化及其蕴含的数学思想方法.如图1,点E 为正方形ABCD 的AB 边上的一个动点,3AB =,将正方形ABCD 对折,使点A 与点B 重合,点C 与点D 重合,折痕为MN .思考探索(1)将正方形ABCD 展平后沿过点C 的直线CE 折叠,使点B 的对应点B '落在MN 上,折痕为EC ,连接DB ',如图2.①点B '在以点E 为圆心,的长为半径的圆上;②B M '=;③DB C ' 为三角形,请证明你的结论.(2)拓展延伸当3AB AE =时,正方形ABCD 沿过点E 的直线l (不过点B )折叠后,点B 的对应点B '落在正方形ABCD 内部或边上.①ABB ' 面积的最大值为;②连接AB ',点P 为AE 的中点,点Q 在AB '上,连接PQ AQP AB E ∠=∠',,则2B C PQ '+的最小值为.10.在平面直角坐标系xOy 中,过⊙T (半径为r )外一点P 引它的一条切线,切点为Q ,若0<PQ≤2r ,则称点P 为⊙T 的伴随点.(1)当⊙O 的半径为1时,①在点A(4,0),B(0,),C(1,)中,⊙O 的伴随点是▲;②点D 在直线y =x+3上,且点D 是⊙O 的伴随点,求点D 的横坐标d 的取值范围;(2)⊙M 的圆心为M(m ,0),半径为2,直线y =2x ﹣2与x 轴,y 轴分别交于点E ,F .若线段EF 上的所有点都是⊙M 的伴随点,直接写出m 的取值范围.11.定义:在平面直角坐标系xOy 中,点P 为图形M 上一点,点Q 为图形N 上一点.若存在OP OQ =,则称图形M 与图形N 关于原点O “平衡”.(1)如图,已知⊙A 是以()1,0为圆心,2为半径的圆,点()1,0C -,()2,1D -,()3,2E .①在点C ,D ,E 中,与⊙A 关于原点O “平衡”的点是;②点H 为直线y x =-上一点,若点H 与⊙A 关于原点O “平衡”,点H 的横坐标的取值范围为:;(2)如图,已知图形G 是以原点O 为中心,边长为2的正方形.⊙K 的圆心在x 轴上,半径为2.若⊙K 与图形G 关于原点O “平衡”,请直接写出圆心K 的横坐标的取值范围.12.阅读下列材料,并按要求解答相关问题:【思考发现】根据直径所对的圆周角是直角,我们可以推出“如果一条定边所对的角始终为直角,那么所有满足条件的直角顶点组成的图形是以定边为直径的圆或圆弧(直径的两个端点除外)”这一正确的结论.如图1,若AB 是一条定线段,且90APB ∠=︒,则所有满足条件的直角顶点P 组成的图形是定边AB 为直径的O (直径两端点A 、B 除外)(1)已知:如图2,四边形ABCD 是边长为8的正方形,点E 从点B 出发向点C 运动,同时点F 从点C 出发以相同的速度向点D 运动,连接AE ,BF 相交于点P .①当点E 从点B 运动到点C 的过程中,APB ∠的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请直接写出APB ∠的度数.②当点E 从点B 运动到点C 的过程中,点P 运动的路径是()A .线段;B .弧;C .半圆;D .圆③点P 运动的路经长是▲.(2)已知:如图3,在图2的条件下,连接CP ,请直接写出E 、F 运动过程中,CP 的最小值.13.对于平面内的图形1G 和图形2G ,记平面内一点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.在平面直角坐标系xOy 中,已知点()60A ,,(0B .(1)在()30R ,,()20S ,,(1T 三点中,点A 和点B 的等距点是;(2)已知直线2y =-.①若点A 和直线2y =-的等距点在x 轴上,则该等距点的坐标为▲;②若直线y a =上存在点A 直线2y =-的等距点,求实数a 的取值范围;(3)记直线AB 为直线1l ,直线2l :33y x =-,以原点O 为圆心作半径为r 的O .若O 上有m 个直线1l 和直线2l 的等距点,以及n 个直线1l 和y 轴的等距点(0m ≠,0n ≠),求m n ≠时,求r 的取值范围.14.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.15.如图,在ABC 中,AB BC =,30CAB ∠=︒,8AC =,半径为2的O 从点A 开始(如图1)沿直线AB 向右滚动,滚动时始终与直线AB 相切(切点为D ),当O 与ABC 只有一个公共点时滚动停止,作OG AC ⊥于点G .(1)图1中,O 在AC 边上截得的弦长AE =;(2)当圆心落在AC 上时,如图2,判断BC 与O 的位置关系,并说明理由.(3)在O 滚动过程中,线段OG 的长度随之变化,设AD x =,OG y =,求出y 与x 的函数关系式,并直接写出x 的取值范围.16.在平面直角坐标系xOy 中,给出如下定义:若点P 在图形M 上,点Q 在图形N 上,称线段PQ 长度的最小值为图形M ,N 的“近距离”,记为d(M ,N),特别地,若图形M ,N 有公共点,规定d(M ,N)=0.已知:如图,点A(2-,0),B(0,.(1)如果⊙O 的半径为2,那么d(A ,⊙O)=,d(B ,⊙O)=.(2)如果⊙O 的半径为r ,且d (⊙O ,线段AB )=0,求r 的取值范围;(3)如果C(m ,0)是x 轴上的动点,⊙C 的半径为1,使d (⊙C ,线段AB )<1,直接写出m 的取值范围.17.在平面直角坐标系xOy 中,对于点()P m n ,,我们称直线y mx n =+为点P 的关联直线.例如,点()24P ,的关联直线为24y x =+.(1)已知点()12A ,.①点A 的关联直线为;②若O 与点A 的关联直线相切,则O 的半径为;(2)已知点()02C ,,点()0.D d ,点M 为直线CD 上的动点.①当2d =时,求点O 到点M 的关联直线的距离的最大值;②以()11T -,为圆心,3为半径作.T 在点M 运动过程中,当点M 的关联直线与T 交于E ,F 两点时,EF 的最小值为4,请直接写出d 的值.18.在平面直角坐标系xOy 中,给定圆C 和点P ,若过点P 最多可以作出k 条不同的直线,且这些直线被圆C 所截得的线段长度为正整数,则称点P 关于圆C 的特征值为.k 已知圆O 的半径为2,(1)若点M 的坐标为()11,,则经过点M 的直线被圆O 截得的弦长的最小值为,点M 关于圆O 的特征值为;(2)直线y x b =+分别与x ,y 轴交于点A ,B ,若线段AB 上总存在关于圆O 的特征值为4的点,求b 的取值范围;(3)点T 是x 轴正半轴上一点,圆T 的半径为1,点R ,S 分别在圆O 与圆T 上,点R 关于圆T 的特征值记为r ,点S 关于圆O 的特征值记为.s 当点T 在x 轴正轴上运动时,若存在点R ,S ,使得3r s +=,直接写出点T 的横坐标t 的取值范围.答案解析部分1.【答案】(1)60︒;=;DC DB DA=+(2)解:在AB 上取一点E ,使ADE BDC ∠=∠,如图所示:∵AB 是圆O 的直径,1tan 2ABC ∠=,∴1tan 2AC ABC BC BC =∠⋅=,∴在Rt ACB 中,52AB BC ==,∵ BD BD =,∴DAB DCB ∠=∠,∵ADE BDC ∠=∠,∴ADE CDB ∽,∴ADAECD CB =,∴AD CB CD AE ⋅=⋅,∵ AD AD =,∴DBA DCA ∠=∠,∵ADE CDE CDB CDE ∠-∠=∠-∠,即ADC BDE ∠=∠,∴BDE CDA ∽,∴BDBECD AC =,∴BD AC CD BE ⋅=⋅,∴()AD CB AC BD CD AE CD BE CD AE BE CD AB⋅+⋅=⋅+⋅=⋅+=⋅,∴AB CD AC DB AD BC ⋅=⋅+⋅,∴122BC CD BC DB AD BC ⋅=⋅+⋅,∴5122CD DB AD ⋅=⋅+,∴5122CD DB AD =+,即2DB AD =+,故答案为:2DB AD =+.(3)解:∵A B ,分别是射线DA DB ,上的两个动点,120D ∠=︒,ABC 是等边三角形,∴四边形ADBC 的两个对角180ADB ACB ∠+∠=︒,∴构造四边形ADBC 的外接圆,∴根据四边形外接圆的性质可得:当点A 和点D 重合时,四边形ADBC 面积S 最小;当CD AB ⊥时,四边形ADBC 面积S 最大,①当点A 和点D 重合时,四边形ADBC 面积S 最小,∵CBD 时等边三角形,且2AB =,∴60CBD ∠=︒,2AB BD BC ===∴1sin 602CBD S BC BD =⋅⋅⋅= ,②当CD AB ⊥时,四边形ADBC 面积S 最大,∵CBD 时等边三角形,且2AB =,∴30ACD ∠=︒,2AC =,∴tan 233AD ACD AC =∠⋅==,∴11232322233ADC S AD DC =⋅⋅=⨯= ,∴23ADC ADBC S S == 四边形;433S <≤.2.【答案】(1)解:①O ,C ②当点B 的坐标为(0,1)时,如图,此时以BO 为半径的B 与线段OA 相切于点O ,∴点O 是OAB 关于点B 的内联点;当点B 移动到在y 轴左侧时,作图发现B 与x 轴有相交,且有一个交点不在线段OA 上,∴不再有OAB 关于点B 的内联点;当点B 的坐标为(7,8)时,以BA 为半径的B 与x 轴相切于点A ,∴点A 是OAB 关于点B 的内联点;当点B 直线x=7的右侧时,以BA 为半径的B 与x 轴相交,且有一个交点不在线段OA 上∴不再有OAB 关于点B 的内联点;综上所述,若AOB 关于点B 的内联点存在,求点B 纵坐标n 的取值范围为18n ≤≤;(2)80m 555m -≤≤≤≤或3.【答案】(1)22B C (2)解:由题意可得:当BC 是O 的以点A 为中心的“关联线段”时,则有AB C '' 是等边三角形,且边长也为1,当点A 在y 轴的正半轴上时,如图所示:设B C ''与y 轴的交点为D ,连接OB ',易得B C y ''⊥轴,∴12B D DC ''==,∴32OD ==,32==,∴OA =,∴t =;当点A 在y 轴的正半轴上时,如图所示:同理可得此时的OA =,∴t =;(3)当1min OA =时,此时BC =;当2max OA =时,此时2BC =.4.【答案】(1)证明:∵CD ⊥直径AB ,∴ BDBE =,∵DF =BD ,∴ DFBD =,∴ BEDF =,∴∠1=∠2,∴DG =BG(2)解:∠DBA 的角平分线交⊙O 于点F ,∴∠2=∠3,由(1)知,∠1=∠2,∴∠1=∠2=∠3,∵∠BCD =90°,∴∠1+∠2+∠3=90°,∴∠1=∠2=∠3=30°,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠4=90°﹣∠2﹣∠3=30°,∵AB =2,∴BD =1,在Rt △BCD 中,∠1=30°,∴BC =12BD =12,在Rt △BCG 中,∠3=30°,∴CG ==6,∴BG =2CG =33,由(1)知,DG =BG =33(3)5.【答案】(1)解:如图1,作BM ⊥x 轴,垂足为M ,根据题意AB=AE=EF=BF=,且∠EFO=∠BFM=45°,∴∠EFB=90°,∴四边形ABFE 是正方形,∴边AE ,BF 的中点所在直线就是ABC 与O 的一条“关联轴”;∵O 的半径为1,∴,且∠EFG=90°,∴四边形EFGH 是正方形,∵∠EFG+∠EFB=180°,∴B 、F 、G 三点共线,∴直线EF 是ABC 与O 的一条“关联轴”.(2)解:如图2,根据A (2,3),B (4,1),C (4,1),计算2=,故AB 不能落在圆的内部;过点A 作AN ⊥y 轴,垂足为N ,则AN=2,等于圆的直径,存在“关联轴l ”使ABC 是O 的关联三角形,此时0C x =;作点B 关于x 轴的对称点P ,此时BP=2,等于圆的直径,存在“关联轴l ”使ABC 是O 的关联三角形,此时4C x =,综上所述,点C 横坐标的范围是04C x ≤≤.(3)解:OC 的最小值为2-;OC 最大,根据勾股定理,AC=4.6.【答案】(1)证明:∵直径CD ⊥弦AB ,∴ AD BD=,∴∠APD=∠BPD ;(2)解:如图,作∠BAP 的平分线,交PD 于I ,证:∵AI 平分∠BAP ,∴∠PAI=∠BAI ,∴∠AID=∠APD+∠PAI=∠APD+BAI ,∵ AD BD=,∴∠DAB=∠APD ,∴∠DAI=∠DAB+∠BAI=∠APD+∠BAI ,∴∠AID=∠DAI ,∵∠AIP+∠DAI=180°,∴∠AIP+∠DAI=180°;(3)解:如图2,连接BI ,AC ,OA ,OB ,∵AI 平分∠BAP ,PD 平分∠APB ,∴BI 平分∠ABP ,∠BAI=12∠BAP ,∴∠ABI=12∠ABP ,∵∠APB=60°,∴∠PAB+∠PBA=120°,∴∠BAI+∠ABI=12(∠BAP+∠ABP )=60°,∴∠AIB=120°,∴点I 的运动轨迹是 AB ,∴DI=DA ,∵∠AOB=2∠APB=120°,∵AD ⊥AB ,∴ AD BD=,∴∠AOB=∠BOD=60°,∵OA=OD ,∴△AOD 是等边三角形,∴AD=AO ,∵CD 是⊙O 的直径,∴∠DAC=90°,∵CD ⊥AB ,∴∠AED=90°,∴∠AED=∠CAD ,∵∠ADC=∠ADE ,∴△ADE ∽△CDA ,∴AD DE CD AD=,∴AD 2=DE•CD ,∵DI′=DI=AD ,∴DI 2=DE•CD ,∵∠I′DE 是公共角,∴△DIE ∽△DCI ,∴2IC CD IE DI==.7.【答案】(1)解:①C(4,0),E(-1,5);②(Ⅰ)当点(40),在直线3y kx =+上时,430k +=,34k =-;(Ⅱ)当点(31),在直线3y kx =+上时,331k +=,23k =-;(Ⅲ)当点(22),在直线3y kx =+上时,232k +=,12k =-;结合图象可得3142k -≤≤-且23k ≠-;(2)解:直线333y x =-+与x 轴的交点M 坐标为()30,,与y 轴交点N 的坐标为(03,,∴tan 3NMO ∠=,∴30NMO ∠=︒,如图,作出线段MN 的垂直平分线,如图为两个临界情况:,利用待定系数法求得MN 垂直平分线解析式为y =,∴(0R -,,12230ORQ P RQ ∠=∠=︒,∴1112PR PQ ==,2222P R P Q ==,∴(10P ,(20P -,,∴t -≤<.8.【答案】(1)A 、B 、D(2)解:如图,依题意作⊙O 的“等直三角形”△TQP∴TQ=PQ ,∠TQP=90°过Q 点作MH //x 轴,交y 轴于M 点,过点P 作PH ⊥MH 于H 点∴∠TMQ=∠QHP=90°∴∠TQM+∠MTQ=∠TQM+∠HQP=90°∴∠MTQ=∠HQP∴△TMQ ≌△QHP (AAS )∴TM=QH ,MQ=HP设Q (x ,y )∴HM=MQ+QH=MQ+TM=x+3-y ,PH=MQ=x∴P (x-y+3,x+y )∵C (3,0)∴∵∴CP OQ .9.【答案】(1)BE ;3332-;等边;证明:B′D=BC CD ==,∴△DB'C 为等边三角形(2)310.【答案】(1)B ,C ;解:②如图2中,设点D 的坐标为(3)d d +,当过点D 的切线长为22r =时,OD ==由两点之间的距离公式得:OD =解得1221d d =-=-,结合图象可知,点D 的横坐标d 的取值范围是21d -≤≤-;(2)解:对于22y x =-当0y =时,220x -=,解得1x =,则点E 的坐标为(10)E ,当0x =时,2y =-,则点F 的坐标为(02)F -,⊙M 的半径为2,⊙M 的圆心为(0)M m ,24r ∴=,OM m=由题意,由以下两种情况:如图3-1中,点M 在点E 的右侧设FT 是⊙M 的切线则有两个临界位置:4FT =和点E 对应的切线长为0当4FT =时,则4OM m FT ===当点E 对应的切线长为0,即2EM =12EM m ∴=-=解得3m =结合图象得,当34m <≤时,线段EF 上的所有点都是⊙M 的伴随点②如图3-2和3-3中,点M 在点E 的左侧则有如下两个临界位置:如图3-2,设ET 是⊙M 的切线,连接MT ,则90MTE ∠=︒当4ET =时,2222245EM MT ET =+=+此时15m -=解得15m =-如图3-3,当⊙M 在直线EF 的左侧与EF 相切时,设切点为T ,连接MT∵(10)(02)E F -,,,∴12OE OF ==,∴22125EF =+=∵EF 是切线∴EF MT⊥∴90MTE FOE ∠=∠=︒∵MET FEO∠=∠∴MTE FOE~ ∴EM MTEF OF =,即22=解得EM =,即1m -=解得1m =-结合图象得,当11m -≤<-时,线段EF 上的所有点都是⊙M 的伴随点综上,m 的取值范围是11m -≤<-或34m <≤.11.【答案】(1)点C 、D ;22H x -≤≤-或22H x ≤≤(2)解: 图形G 是以原点O 为中心,边长为2的正方形,∴原点O 到正方形的最短距离是1d =,最长距离是d =,⊙K 与图形G 关于原点O “平衡”,∴原点O 到⊙K 上一点的距离1d ≤≤,⊙K 的圆心在x 轴上,半径为2,∴当⊙K 在x 轴正半轴时,圆心K 的横坐标的取值范围为:22x -≤≤+,当⊙K 在x 轴负半轴时,圆心K 的横坐标的取值范围为:22x --≤≤,综上所述,圆心K 的横坐标的取值范围22x -≤≤+或22x --≤≤.12.【答案】(1)解:①90°;②B ;③2π(2)解:413.【答案】(1)S(2,0)(2)解:①(4,0)或(8,0);②如图,设直线y a =上的点Q 为点A 和直线2y =-的等距点,连接QA ,过点Q 作直线2y =-的垂线,垂足为点C .点Q 为点A 和直线2y =-的等距点,QA QC ∴=.22QA QC ∴=.点Q 在直线y a =上,∴可设点Q 的坐标为()Q x a ,.()()22262x a a ∴-+=--⎡⎤⎣⎦.整理得2123240x x a -+-=.由题意得关于x 的方程2123240x x a -+-=有实数根.()()()212413241610a a ∴∆=--⨯⨯-=+≥.解得1a ≥-.(3)解:如图.直线l 1和直线l 2的等距点在直线l 3:33y x =-+上,直线l 1和y 轴的等距点在直线4l y =+:或33y x =+上,点O 与l 4的距离为32,点O 与l 3的距离为,点O 与l 5的距离为3,当r <时,n=0不符合题意,当r=时,m=2,n=0,符合题意,当<r <3时,m=n=2,不符合题意,当r≥3时,m=2,n=3或4,符合题意,综上所述,r=或r≥3.14.【答案】(1)C(2)解:∵P (0,1),点A (﹣2,﹣1),点B (2,﹣1).∴AP =BP ==2,如图2,分别以PA 、PB 为直径作圆,交x 轴于点K 1、K 2、K 3、K 4,∵OP=OG=1,OE∥AB,∴PE=AE=,∴OE=12AG=1,∴K1(﹣1﹣,0),k2(1﹣,0),k3(﹣1,0),k4(1+,0),∵点K为点P与线段AB的共圆点,∴﹣1﹣≤x k≤1﹣或﹣1≤x k≤1+(3)解:分两种情况:①如图3,当M在点A的左侧时,Q为线段AM上一动点,以PQ为直径的圆E与直线y=12x+3相切于点F,连接EF,则EF⊥FH,当x=0时,y=3,当y=0时,y=12x+3=0,x=﹣6,∴ON=3,OH=6,∵tan∠EHF=ON EFOH FH=36=12,设EF=a,则FH=2a,EH=a,∴OE=6﹣a,Rt △OEP 中,OP =1,EP =a ,由勾股定理得:EP 2=OP 2+OE 2,∴2221(6)a =+-,解得:a =2+(舍去)或2,∴QG =2OE =2(6﹣a )=﹣3+2,∴m≤3﹣2;②如图4,当M 在点A 的右侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =12x+3相切于点F ,连接EF ,则EF ⊥FH ,同理得QG =3+2,∴m≥3+2,综上,m 的取值范围是m≤3﹣2或m≥3+215.【答案】(1)2(2)解:BC 与O 相切;理由:如图2,过点O 作OH BC ⊥于H ,连接OD ,∵O 与AB 相切于D ,∴OD AB ⊥,在Rt AOD 中,30BAC ∠=︒,∴24OA OD ==,∵8AC =,∴4OC =,在ABC 中,AB BC =,∴30C BAC ∠=∠=︒,在Rt OHC 中,30C ∠=︒,∴122OH OC OD ===,∴BC 与O 相切,(3)解:①当点O 在AC 的左侧时,连接OD 交AC 于F ,如备用图1,∵O 与AB 相切于D ,∴OD AB ⊥,∵OG AC ⊥,∴30FOG BAC ∠=∠=︒,在Rt FDA 中,tan FD BAC AD ∠=,∴tan 3FD AD BAC x =⋅∠=,∴23OF x =-,在Rt FOG 中,331cos 2322y OG OF FOG ⎛⎫==⋅∠=-⨯-+ ⎪ ⎪⎝⎭,即12y x =-+,此时x 的取值范围为0x ≤≤;②当点O 在AC 的右侧时,连接DO 并延长交AC 于F ,如备用图2,同①的方法得,33FD x =,∴23OF x =-,∵FD AB ⊥,∴90BAC AFD ∠+∠=︒,∴30FOG BAC ∠=∠=︒,在Rt FOG 中,331cos 2322y OG OF FOG x x ⎛⎫==⋅∠=-⨯- ⎪⎪⎝⎭,即12y x =-,此时x 的取值范围为1433x ≤≤.16.【答案】(1)0;2-(2)解:过点O 作OD ⊥AB 于点D ,∵点A(2-,0),B(0,.∴2OA OB ==,,∴4AB ==,∵1122OA OB AB OD ⋅=⋅,∴112422OD ⨯⨯=⨯⨯∴DO =,∵d (⊙O ,线段AB )=0,∴当⊙O 的半径等于OD 时最小,当⊙O 的半径等于OB 时最大,∴r r ≤≤(3)43423m -<<-17.【答案】(1)2y x =+(2)解:①当2d =时,()20D ,,设直线CD 的解析式为:y kx b =+,()02C ,,202k b b +=⎧∴⎨=⎩,解得:12k b =-⎧⎨=⎩,∴直线CD 的解析式为:y x =-+,设点M 的坐标为()2m m -+,,∴点M 的关联直线为:()212y mx m m x =-+=-+,∴点M 的关联直线经过定点()12N ,,如图2,过点O 作直线2y mx m =--+的垂线,垂足为H ,连接ON ,ON OH ∴≥,∴当点H与点N重合时,OH最大,即点O到点M的关联直线的距离最大,∴点O到点M=;2 d=②或2 3-18.【答案】(1);3(2)解:设点G是O的特征值为4的点,∴经过一点G且弦长为4(最长弦)的直线有1条,弦长为3的直线有2条,弦长为2的直线有且只有1条, 经过点G的直线被O截得的弦长的最小值为2,=,∴关于O的特征值为4的所有点都在以O为半径的圆周上,直线y x b=+分别与x,y轴交于点A、B,()0A b∴-,,()B b,,OA OB b∴==,45OBH∴∠=︒,当0b>时,线段AB与以O为半径的圆相切时,点G特征值为4,设切点为为H,连接OH,则OH=,OB∴==,b∴=,设以O 为半径的圆与y 轴正半轴的交点记为1B ,则1OB =,当线段AB 与以O 1B 时,可得b =,b ≤≤同理可求当0b <时,b ≤≤,综上,b b b ≤≤-≤(3)当372122t -≤≤+时,存在点R ,S ,使得3r s +=。
组卷——动点问题及解析
1.(2008•呼和浩特)如图,已知梯形ABCD,AD∥BC,AD=DC=4,BC=8,点N在BC上,CN=2,E是AB中点,在AC上找一点M使EM+MN的值最小,此时其最小值一定等于()
最小,则此时PM+PN=_________.
3.如图,菱形ABCD的边长为6cm,∠C=120°,E是AD中点,当点P从B点出发以cm/s的速度在对角线BD 上移动时,经过_________s,△PAE的周长最小.
4.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒1cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:
(1)BC=_________cm;
(2)当t为多少时,四边形PQCD成为平行四边形?
5.(2009•河南)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=_________度时,四边形EDBC是等腰梯形,此时AD的长为_________;
②当α=_________度时,四边形EDBC是直角梯形,此时AD的长为_________;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
6.(2010•河南)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=,∠C=45°,点P 是BC边上一动点,设PB的长为x.
(1)当x的值为_________时,以点P、A、D、E为顶点的四边形为直角梯形;
(2)当x的值为_________时,以点P、A、D、E为顶点的四边形为平行四边形;
(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.
7.(2011•河南)如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.
8.(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为_________时,四边形AMDN是矩形;
②当AM的值为_________时,四边形AMDN是菱形.
组卷——动点问题及解析
参考答案与试题解析
1.(2008•呼和浩特)如图,已知梯形ABCD,AD∥BC,AD=DC=4,BC=8,点N在BC上,CN=2,E是AB中点,在AC上找一点M使EM+MN的值最小,此时其最小值一定等于()
(
2.如图,正方形ABCD的边长为2,M、N分别为AB、AD的中点,在对角线BD上找一点P,使△MNP的周长最小,则此时PM+PN=2.
MN=,
FDB=
3.如图,菱形ABCD的边长为6cm,∠C=120°,E是AD中点,当点P从B点出发以cm/s的速度在对角线BD 上移动时,经过4s,△PAE的周长最小.
PD=2
cm
BP=62cm
÷
以每秒1cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:
(1)BC=12cm;
(2)当t为多少时,四边形PQCD成为平行四边形?
EC==8cm
5.(2009•河南)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=30度时,四边形EDBC是等腰梯形,此时AD的长为1;
②当α=60度时,四边形EDBC是直角梯形,此时AD的长为 1.5;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
AC×=1.5
AC=2
=
AD
=
6.(2010•河南)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=,∠C=45°,点P 是BC边上一动点,设PB的长为x.
(1)当x的值为3或8时,以点P、A、D、E为顶点的四边形为直角梯形;
(2)当x的值为1或11时,以点P、A、D、E为顶点的四边形为平行四边形;
(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.
×
==2≠==5
7.(2011•河南)如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.
=5
t=.
t=
t=.
2t=t
t=
8.(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为1时,四边形AMDN是矩形;
②当AM的值为2时,四边形AMDN是菱形.
AM=AD=1
AM=1=
©2010-2013 菁优网。