_第12讲-第6章(1)a
- 格式:pdf
- 大小:663.42 KB
- 文档页数:46
第六章 化学反应与能量第一节 化学能与热能[高考备考指南]焓变、反应热与能源(对应复习讲义第65页)1.化学反应的实质与特征(1)实质:反应物中化学键断裂和生成物中化学键形成。
(2)特征:既有物质变化,又伴有能量变化;能量转化主要表现为热量的变化。
(3)两守恒:化学反应遵循质量守恒定律,同时也遵循能量守恒定律。
2.吸热反应与放热反应(1)从化学键的角度分析(2)吸热反应和放热反应的比较(3)常见的放热反应和吸热反应放热反应:①可燃物的燃烧;②酸碱中和反应;③大多数化合反应;④金属跟水或酸的置换反应;⑤物质的缓慢氧化;⑥铝热反应。
吸热反应:①大多数分解反应;②盐类的水解反应;③Ba(OH)2·8H2O与NH4Cl反应;④碳和水蒸气、C和CO2的反应。
3.两种反应热——燃烧热与中和热(1)比较(2)中和反应反应热的测定①实验装置②中和热的测定原理ΔH =-(m 酸+m 碱)·c ·(t 终-t 始)nc =4.18 J·g -1·℃-1=4.18×10-3kJ ·g -1·℃-1;n 为生成H 2O 的物质的量。
③注意事项a .泡沫塑料板和碎泡沫塑料(或纸条)的作用是保温隔热,防止热量损失。
b .为保证酸完全中和,采取的措施是碱稍微过量。
c .测定温度时,应测反应过程的最高温度作为终止温度。
4.能源判断正误(1)放热反应不需要加热就能反应,吸热反应不加热就不能反应。
( ) (2)水结成冰放出热量的反应为放热反应。
( ) (3)同一物质的三态能量中气态最高,固态最低。
( )(4)同温同压下,反应H 2(g)+Cl 2(g)===2HCl(g)在光照和点燃条件下反应的ΔH 不同。
( ) (5)可逆反应的ΔH 表示完全反应时的热量变化,与反应是否可逆无关。
( )(6)甲烷的标准燃烧热ΔH =-890 kJ·mol -1,则甲烷燃烧的热化学方程式为CH 4(g)+2O 2(g)===CO 2(g)+2H 2O(g) ΔH =-890 kJ·mol -1。
第四章非金属及其化合物第12讲富集在海水中的元素——卤素(精讲)【考情分析】本讲内容与化工生产、日常生活、科学技术等方面有着广泛的联系,如氯碱工业、漂白粉应用、饮用水消毒、环境保护等,往往与氧化还原反应、离子反应、化学实验方案的设计与评价等知识结合出现。
预计今后:1.以氯单质及其重要化合物的性质、用途设计选择题;2.以制取氯气设计有关实验题;3.根据同主族元素性质的相似性设计信息题,考查溴、碘及其重要性质和用途。
【核心素养分析】1.宏观辨识与微观探析:能从宏观和微观相结合的视角分析与解决实际问题,在卤素学习过程中,使用“宏观—微观—结合”来认识物质及其递变规律,形成科学的方法论。
2.科学探究与创新意识:能和同学交流实验探究的成果,提出进一步探究或改进氯及其化合物的制备及性质实验的设想,培养勇于质疑和批判的创新精神。
认识科学探究是进行科学发现、创造和应用的科学实践活动;能从问题和假设出发,依据探究目的,设计探究方案,获得卤素单质的提取方法。
3.科学态度与社会责任:认识氯及其化合物对环境的影响,形成绿色环保的意识。
关注与化学有关的社会热点问题。
了解环境保护与资源开发的关系.具有绿色化学观念。
勇于承担责任,权衡利弊,积极参与化学问题的社会决策。
【网络构建】【知识梳理】智能点一氯气及其重要化合物(一)氯气1.物理性质【特别提醒】实验室里闻有毒气体及未知气体气味的方法是:用手在瓶口轻轻扇动,仅使极少量气体飘进鼻孔。
2.化学性质1)从氯的原子结构认识氯气的氧化性:依据氯气的氧化性完成下列方程式: (1)与金属反应①Fe :2Fe +3Cl 2=====点燃2FeCl 3,棕红色烟。
②Cu :Cu +Cl 2=====点燃CuCl 2,棕黄色烟。
(2)与非金属反应H 2:H 2+Cl 2=====点燃2HCl ,苍白色火焰; H 2和Cl 2的混合气体光照时会发生爆炸。
(3)与还原性无机化合物反应:①与碘化钾溶液反应:Cl 2+2KI===2KCl +I 2。
学科教师辅导讲义 学员编号:年 级:五年级 课 时 数: 学员姓名:辅导科目: 学科教师: 授课主题第12讲-期末复习(1) 授课类型T 同步课堂 P 实战演练 S 归纳总结 教学目标 ① 使学生能够基本掌握牛津5年级上册Unit1中的基础词汇及重要句型; ② 使学生掌握现在完成时的基本用法和解题技巧;③ 提高学生通过句子成分和词性解首字母填空题的能力。
授课日期及时段T (Textbook-Based )——同步课堂阅读判断,正确写“T ”,不相符写“F ”。
Helen usually gets up very early in the morning. She often goes to school at about half past seven. She has her first lesson at eight o five. She doesn’t go home at noon. She has lunch at a quarter to eleven at school. After lunch, she has a rest for half an hour. Then she plays games with her classmates. Classes are over at half past four. Helen goes home with her friends at about five. At six thirty, she has supper with her parents. She goes to bed at half past nine. That’s Helen’s day.( ) 1. Helen usually gets up late in the morning.( ) 2. The first lesson begins at about half past seven.( ) 3. Helen doesn’t have lunch at home.( ) 4. Helen goes home with her classmates at about four.( ) 5. Helen goes to bed at nine thirty.答案: 1.F 2.F 3.T 4.F 5.T知识点1:词汇gold 金子/金色/金制的 food 食物 angry 生气 only 只 away 离开said (say 的过去式) 说 paintbrush 画笔 magic 神奇的、有魔力的 snake 蛇 monster 怪物 soup 汤 last 刚过去的/最后 watermelon 西瓜 knee 膝盖finger 手指 hungry 饥饿 bump 碰撞 careful 小心的 sand 沙滩 matter 麻烦事体系搭建前情回顾medicine 药toothache 牙疼fever 发烧stomachache胃疼chocolate 巧克力headache 头疼dolly 洋娃娃sick 生病的also 也competition 比赛Wednesday星期三grandparents祖父母cup 奖杯practise 练习help 帮助ship 船flute 笛子noodle 面条football 足球bicycle 自行车dirty 脏important 重要的paper 纸dancing 舞蹈holiday 假日tiger 老虎biscuit 饼干special 特别的mountain 山American 美国人yesterday 昨天知识点2:短语第一天the first day新学期the new term所有的男孩all the boys回到学校back at school两幢新楼房two new buildings多少个滑梯how many slides在阅览室里in the reading room我肯定。
第12讲一元一次方程的实际应用(二)知识导航1.列一元一次方程解决行程问题;2.列一元一次方程解决工程问题;3.列一元一次方程解决调配与配套问题;4.列一元一次方程解决利润问题.【板块一】行程问题方法技巧1.行程问题有相遇问题,追及问题,顺流(风)、逆流(风)问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运动.2.相遇问题是相向而行,相遇时的总路程=两运动物体的路程和.3.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追.4.顺流(风)、逆流(风)和上坡、下坡问题应注意运动方向和速度不同.题型一一般行程问题【例1】一列匀速前进的火车,从它进入320米长隧道到完全通过隧道共用了18秒,隧道顶部一盏固定的小灯灯光在火车上照了10秒钟,求这列火车的长为多少米?【练1】某人骑自行车由甲地驶向乙地,如果每小时比原来的速度快6公里,便可以早到5分钟;如果每小时比原来的速度慢5公里,便要迟到6分钟.求甲、乙两地的距离为多少公里?题型二相遇问题【例2】小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A,B两地间的路程.【练2】A,B两地间的路程为360km,甲车从A地出发开往B地,每小时行驶72km,甲车出发25min后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自按原来速度继续行驶,那么相遇以后,两车相距100km时,甲车从出发开始共行驶了多少小时?题型三追及问题【例3】A,B两地相距480km,一列慢车从A地出发,每小时行走50km,一列快车从B地出发,每小时走70km.⑴两车同时出发,相向而行,出发后多少小时相遇?⑵若两车同时出发,同向而行,慢车在快车前面,相遇前经过多少小时两车相距200km?相遇后经过多少小时两车相距200km?【练3】甲、乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.⑴求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)⑵若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?题型四 流水问题与上、下坡问题【例4】某船从A 地顺流而下到达B 地,然后逆流返回,到达A ,B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A ,C 两地之间的路程为10千米,求A ,B 两地之间的路程.【练4】如图所示,折线AC -CB 是一条公路的示意图,AC =8km .甲骑摩托车从A 地沿这条公路到B 地,速度为40km /h ,乙骑自行车从C 地到B 地,速度为10km /h ,两人同时出发,结果甲比乙早到6分钟.求这条公路的长.针对练习11、 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行( )A . 0.5小时B . 1小时C . 1.2小时D . 1.5小时2、我国元朝朱世杰所著的《算学启蒙》中有这样的记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,良马数日追及之”.如果设良马x 日追上驽马,那么根据题意,可列方程为 .3、已知A 、B 两地相距350千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.若甲车速度为110千米/ 时,乙车速度为90千米/时,经过t 小时两车相距50千米,则t = 小时.4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相 同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内 可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.ACB5、为赴台湾考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆小轿车(平均速度为60千米/时)从家里出发赶往距家45千米的重庆江北机场,此时,距规定到达机场的时间仅剩90分钟. 7点30分时小颖发现爸爸忘了带身份证,急忙通知爸爸返同,同时她乘坐出租车以40千米/时的平均速度直奔机场(打电话和上出租车的时间忽略不计),与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返同,结果不到30分钟就遇上了小颖(拿身份证的时间忽略不计),并立即赶赴机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶千米,爸爸返回千米(均用含x的代数式表示);(2)小颖的爸爸能否在规定的时间内赶到机场?6.有甲、乙两艘船,现同时由A地顺流而下,乙船到B地时接到通知,须立即逆流而上返回C地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5 km,水流速度为每小时2.5 km,A、C两地间的距离为10km.如果乙船由A地经过B地再到达C地共用了4h,问:乙船从B到到达C地时,甲船距离B地有多远?【板块二】工程问题方法技巧1、基本量之间的关系:工作量=工作效率╳工作时间.2、当总工作量未给出具体数量时,常把总工作量当作整体1.常用的相等关系为:总工作量=各部分工作量的和.题型一有具体数量作为工作量【例5】某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道.【练5】有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及粉刷,同样的时间内5名徒弟粉刷了9个房间的墙面,每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张师傅现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?题型二没有具体数量作为工作量【例6】检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙合做,但乙中途离开了一段时间,后2天由乙、丙合做完成,问乙中途离开了几天?【练6】一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、a次能运完;若甲、丙两车运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.问:(1)乙车每次所运货物是甲车每次所运货物量的几倍?(2)现甲、乙、丙合运相同次数把这次货物运完时,货主应付车主运费各多少元?(按每运1吨付运费20元计算)题型三牛吃草问题(总工作量发生变化)【例7】有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问:(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,至多放牧几头牛?【练7】山脚下有一池塘,山泉以固定的流量(即单位时间里流人池中的水量相同)不停地向池塘内流淌,现池塘中有一定深度的水,若用一台A型抽水机则1小时后正好能把池塘中的水抽完,若用两台A型抽水机则 20分钟正好把池塘中的水抽完,问若用三台A型抽水机同时抽,则需要多长时间恰好把池塘中的水抽完?针对练习21、完成某项工程,甲、乙合做要2天,乙、丙合做要4天,丙、甲合做要2.4天,则甲单独完成此项工程需要的天数是( )A. 2.8B. 3C. 6D. 122、为使某项工程提前20天完成任务,需将原定工作效率提高25%,则原计划完成这项工程需要 .3、某农民在农贸市场卖鸡,甲先买了总数的一半又半只,然后乙买了剩下的一半又半只,最后丙买了剩下的一半又半只,恰好卖完,则该农民一共卖了只鸡.4、刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成.现在甲先单独绣1天,接着乙又单独绣 4天,剩下的工作由甲、乙两人合绣.再绣多少天可以完成这件作品?5、甲、乙两个施工队在六安(六盘水一安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设 5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,则乙队每天铺设(x—100)米.(1)依题意列出一元一次方程;(2)求出甲、乙两个施工队每天各铺设多少米.6、—棉花种植区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时.(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)—个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值.【板块三】调配及配套问题方法技巧1.调配问题的相等关系往往通过题目中的一句关键的语气呈现.2.产品配套问题的相等关系要抓住成套产品的两个部件之间固有的倍数关系.题型一调配问题【例8】学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有个.【练8】某工厂生产一批桌椅,甲车间有29人生产桌子,乙车间有17人生产椅子,现要赶工期,总公司调20人去支援,使甲车间的人数为乙车间人数的2倍,应调往甲、乙车间各多少人?题型二配套问题【例9】某儿童三轮车厂有95名工人,每人每天能生产车身9个或车轮30个.要使每天生产的车身和车轮恰好配套(一个车身配三个车轮),应安排生产车身和车轮各多少人?【练9】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?针对练习31.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输,为提高质量,做进一步研究,某饮料加工在厂需生产A,B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?2.某服装厂加工车间有工人54人,每人每天可以加工上衣8件或裤子10条(一件上衣配一条裤子),应怎样分配人数,才能使每天生产的上衣和裤子配套?3.甲仓库和乙仓库分别存放着某种机器20台和6台.现在准备调运给A厂10台,B厂16台,已知从甲库调运一台机器到A厂的运费为400元,到B厂的运费为800无;从乙库调运一台机器到A厂的运费为300元,到B厂的运费为500元,如果总运费用了16000元.求:从甲库调给A厂,乙库调给B厂各为多少台机器?4.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件。
6.1.3 电场强度与电位的微分关系它与电场的关系是:式中负号说明,电场强度矢量方向由正电荷指向负电荷,即指向电位 ψ 减小的方向,而电位梯度方向是电位 ψ 增大的方向。
6.1.4 点电荷系和连续分布电荷的场强和电位公式(1)点电荷系电场的电场强度∑==+⋅⋅⋅++=⇒n i i i i n n n r r q r r q r r q r r q E 1303023202131014444 πεπεπεπε 即 ∑==n i i E E 1电位为:(2)连续带电体电场的电场强度把连续带电体分成无限多个电荷元,看成点电荷,可有:dq 产生场强为r r dq E d 034επ= 总场强⎰⎰==q r r dq E d E 304πε6.2 高斯通量定理6.2.1 导体和电介质(1)静电场中的导体的特性ψψ=-∇=-grad E 1101()()4||NN i i i i i q 'ψψε====π-∑∑r r r r 000111()d ()d ()d 444S L V''L''S'l'R R R ρρρψτψψεεε∑===πππ⎰⎰⎰⎰⎰⎰,,r r r①导体内部的场强处处为零,E 内=0.没有电场线.②整个导体是等势体,导体表面是等势面,但导体表面的场强并不一定相同.③导体外部电场线与导体表面垂直,表面场强不一定为零.④对孤立导体,净电荷分布在外表面上,并且电荷的分布与表面的曲率有关,曲率大的地方电荷分布密.(2)静电场的电介质的特性6.2.2 高斯通量定理高斯定理:通过任一闭合曲面的电场强度的通量,等于该曲面所包围的所有电荷的代数和除以0ε,与封闭曲面外的电荷无关。
总结 1)高斯面上的电场强度为所有内外电荷的总电场强度.2)高斯面为封闭曲面.3)穿进高斯面的电场强度通量为正,穿出为负.4)仅高斯面内的电荷对高斯面的电场强度通量有贡献.5)静电场是有源场.说明:• 高斯定理是反映静电场性质(有源性)的一条基本定理;• 高斯定理是在库仑定律的基础上得出的,但它的应用范围比库仑定律更为广泛; • 高斯定理中的电场强度是封闭曲面内和曲面外的电荷共同产生的,并非只有曲面内的电荷确定;• 若高斯面内的电荷的电量为零,则通过高斯面的电通量为零,但高斯面上各点的电场强度并不一定为零;• 通过任意闭合曲面的电通量只决定于它所包围的电荷的代数和,闭合曲面外的电荷对电通量无贡献。
第12讲对数知识点一对数的概念与性质1.对数的概念一般地,如果a b =N (a >0,且a ≠1),那么就称b 是以a 为底N 的对数,记作log a b N =,其中a 叫作对数的底数,N 叫作真数.2.常用对数与自然对数3.对数的基本性质(1)负数和0没有对数;(2)log a 1=0(a >0,且a ≠1);(3)log a a =1(a >0,且a ≠1);(4)log a a N =N (a >0,a ≠1,N >0).4.指数式与对数式的互化(其中a >0,且a≠1).知识点二对数的运算性质1.若a >0,且a ≠1,M >0,N >0,n ∈R ,那么:(1)log a (MN )=log log a a M N +;(2)log aMN=log log a a M N -;(3)log a M n =log a n M .2.对数运算中的常见公式及推广知识点二换底公式1.换底公式:log log log c a c NN a=(0,1,0,0,1a a N c c >≠>>≠).2.换底公式的推论3.对数的换底公式用常用对数、自然对数表示是什么形式?4.你能用换底公式和对数的运算性质推导出结论log n mN M =log N M n吗?考点一:指数式与对数式的互化例1将下列指数式化为对数式,对数式化为指数式.(1)3-2=19;-2=16;(3)13log 27=-3;(4)64=-6.【解析】(1)∵3-2=19,∴log 319=-2.(2)-2=16,∴log 1416=-2.(3)∵13log 27=-3-3=27.(4)∵64=-6,∴(x )-6=64.【总结】变式将下列指数式与对数式互化.(1)log 216=4;(2)x =6;(3)43=64;(4)3-3=127.【解析】(1)因为log 216=4,所以24=16.(2)因为x =6,所以(3)6=x .(3)因为43=64,所以log 464=3.(4)因为3-3=127,所以log 3127=-3.考点二:对数的计算例2求下列各式中的x 的值.(1)log 64x =-23;(2)log x 8=6;(3)lg 100=x ;(4)-ln e 2=x .【解析】(1)x =()2364-=()2334-=4-2=116.(2)x 6=8,所以x =()166x=168=()1362=122=2.(3)10x =100=102,于是x =2.(4)由-ln e 2=x ,得-x =ln e 2,即e -x =e 2.所以x =-2.【总结】变式求下列各式中x 的值.(1)log x 27=32;(2)log 2x =-23;(3)x =log 2719.【解析】(1)由log x 27=32,可得x 32=27,∴x =2723=(33)23=32=9.(2)由log 2x =-23,可得x =232-.∴x 23=314=322.(3)由x =log 2719,可得27x =19,∴33x =3-2,∴x =-23.考点三:对数的性质例3求下列各式中x 的值.(1)log 2(log 5x )=0;(2)log 3(lg x )=1;(3)log 3(log 4(log 5x ))=0.【解析】(1)∵log 2(log 5x )=0,∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1000.(3)由log 3(log 4(log 5x ))=0可得log 4(log 5x )=1,故log 5x =4,∴x =54=625.【总结】变式求下列各式中x 的值.(1)log 3(log 4(log 5x ))=1【解析】由log 3(log 4(log 5x ))=1可得,log 4(log 5x )=3,则log 5x =43=64,所以x =564.(2)3log 3(log 4(log 5x ))=1【解析】由3log 3(log 4(log 5x ))=1可得log 4(log 5x )=1,故log 5x =4,所以x =54=625.考点四:对数的运算性质例4求下列各式的值.(1)log 2(47×25);(2)lg5100;(3)lg 14-2lg73+lg 7-lg 18;(4)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.【解析】(1)log 2(47×25)=log 247+log 225=7log 24+5log 22=7×2+5×1=19.(2)lg5100=lg 10015=15lg 100=15×2=25.(3)lg 14-2lg 73+lg 7-lg 18=lg (2×7)-2(lg 7-lg 3)+lg 7-lg (32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.(4)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.【总结】变式已知ab >0,有下列四个等式:①lg (ab )=lg a +lg b ;②lg =lg a -lg b ;③12lg 2=lg ;④lg (ab )=1log ab 10,其中正确的是________.【答案】③【解析】①②式成立的前提条件是a >0,b >0;④式成立的前提条件是ab ≠1.只有③式成立.考点五:对数换底公式的应用例5计算:(1)log 29·log 34;(2)log 52×log 79log 513×log 734.【解析】(1)由换底公式可得,log 29·log 34=lg 9lg 2·lg 4lg 3=2lg 3lg 2·2lg2lg 3=4.(2)原式=log 52log 513×log 79log 734=13log 9=lg 2lg 13×13lg 9lg 4=12lg 2-lg 3×2lg 323lg 2=-32.【总结】变式若log 513·log 36·log 6x =2,则x 等于()A .9B .19C .25D .125【答案】D【解析】log 513·log 36·log 6x =-log 53·log 36·log 6x =-log 5x ,则log 5x =-2,则x =5-2=125.故选D.考点六:对数的综合应用例6已知log 189=a ,18b =5,求log 3645.(用a ,b 表示)【解析】因为18b =5,所以b =log 185.所以log 3645=log 1845log 1836=log 18(5×9)log 18(2×18)=log 185+log 189log 182+log 1818=a +b 1+log 182=a +b 1+log 18189=a +b 2-log 189=a +b 2-a .【总结】求解与对数有关的各种求值问题的三个注意点(1)利用对数的定义可以将对数式转化为指数式;(2)两边同时取对数是将指数式化成对数式的常用方法;(3)对数的换底公式在解题中起着重要的作用,能够将不同底的问题转化为同底问题,从而使我们能够利用对数的运算性质解题.变式(1)已知log 189=a ,18b =5,求log 1845?(用a ,b 表示)【解析】因为18b =5,所以log 185=b ,所以log 1845=log 189+log 185=a +b .(2)已知log 94=a ,9b =5,求log 3645.(用a ,b 表示)【解析】因为9b =5,所以log 95=b .所以log 3645=log 945log 936=log 9(5×9)log 9(4×9)=log 95+log 99log 94+log 99=b +1a +1.考点七:利用对数运算解决实际问题例6某种汽车安全行驶的稳定性系数μ随使用年数t 的变化规律是μ=μ0e -λt ,其中μ0、λ是正常数.经检测,当t =2时,μ=0.9μ0,则当稳定性系数降为0.5μ0时,该种汽车已使用的年数为________(结果精确到1,参考数据:lg 2≈0.3010,lg 3≈0.4771).【答案】13【解析】由0.9μ0=μ0e -2λ=μ0(e -λ)2,得e -λ=0.9,令0.5μ0=μ0(e -λ)t ,得0.5=(0.9)t ,两边取常用对数,得lg 0.5=t 2lg 0.9,故t =2lg 0.5lg 0.9=2lg 2-1lg 910=-2lg 22lg 3-1=2lg 21-2lg 3≈13.【总结】变式有关数据显示,中国快递行业产生的包装垃圾在2020年为3000万吨,2021年增长率约为50%.有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从________年开始,快递业产生的包装垃圾超过30000万吨(参考数据:lg 2≈0.3010,lg 3≈0.4771).【答案】2026【解析】第n 年(2021为第一年)包装垃圾为3000×1.5n ,令3000×1.5n >30000,解得n >log 1.510=1lg 3-lg 2≈10.1761≈5.68.又n 为整数,所以从2026年开始快递业产生的包装垃圾超过30000万吨.1.(多选)下列指数式与对数式互化正确的有() A.e0=1与ln1=0B.log39=2与912=3C.138 =12与log812=-13D.log77=1与71=7【答案】ACD【解析】log39=2化为指数式为32=9,故B错误.A、C、D正确.2.在b=log a-2(5-a)中,实数a的取值范围是()A.(-∞,2)∪(5,+∞)B.(2,5)C.(2,3)∪(3,5)D.(3,4)【答案】C【解析】-a>0,-2>0,-2≠1,解得2<a<3或3<a<5.3.已知a23=49(a>0),则log23a=()A.2B.3C.12D.13【答案】B【解析】由a 23=49,得a323,所以log23a=log233=3.4.若log5x=2,log y8=3,则x+y=________.【答案】27【解析】∵log5x=2,∴x=52=25.∵log y8=3,∴y3=8,∴y=2,∴x+y=27. 5.已知x=log23,求23x-2-3x2x-2-x的值.【解析】(方法1)∵23x=(2log23)3=33=27,2-3x=(2x)-3=(2log23)-3=3-3=127,2x=2log23=3,2-x=12x=13,∴原式=27-1273-13=919.(方法2)∵x =log 23,∴2x =3,∴23x -2-3x2x -2-x =(2x )3-(2x )-32x -(2x )-1=33-3-33-3-1=27-1273-13=919.6.求值:lg 4+lg 25=()A .100B .10C .2D .1【答案】C【解析】lg 4+lg 25=lg (4·25)=lg 102=2lg 10=2.故选C.7.已知log 34·log 48·log 8m =log 416,则m 等于()A .92B .9C .18D .27【答案】B【解析】∵log 34·log 48·log 8m =lg 4lg 3·lg 8lg 4·lg m lg 8=lg mlg 3=2,∴lg m =2lg 3,∴m =9.8.(多选)设a >0且a ≠1,m ,n 是正整数,则()A .log a (mn )=log a m +log a n B .log=log amlog a n C .log a n m =n log a m D .log a m n =n log a m 【答案】AD【解析】由对数的运算性质可得log a (mn )=log a m +log a n ,故A 正确;log=log a m -log a n ,故B 错误;log a n m =1nlog a m ,故C 错误;log a m n =n log a m ,故D 正确.故选A 、D9.已知a 2=1681(a >0),则log 23a =________.【答案】2【解析】由a 2=1681(a >0)得a =49,所以234log 9=2232log 3⎛⎫⎪⎝⎭=2.10.已知a,b 是方程log 3x 3+log 273x =-43的两个根,试给出关于a,b 的一个结论________.【答案】a +b =1081(答案不唯一)【解析】根据换底公式有log 33log 33x +log 33x log 327=-43,即11+log 3x +1+log 3x 3=-43.令1+log 3x =t ,则1t +t 3=-43,解得t =-1或t =-3.所以1+log 3x =-1或1+log 3x =-3,解得x =19或x =181.故a +b =1081.1.若lg x =lg a +2lg b -3lg c ,则x =()A .a +2b -3cB .a +b 2-c 3C .ab 2c 3D .2ab 3c【答案】C【解析】∵lg x =lg a +2lg b -3lg c =lg ab 2c 3,∴x =ab 2c 3.故选C.2.方程9x -6·3x -7=0,则x =()A .log 37B .log 73C .7D .-1【答案】A【解析】设3x =t (t >0),则原方程可化为t 2-6t -7=0,解得t =7或t =-1(舍去),即3x =7.∴x =log 37.3.若log x 7y =z ,则()A .y 7=x zB .y =x 7zC .y =7x zD .y =z 7x【答案】B【解析】由log x 7y =z ,得x z =7y ,∴(7y )7=(x z )7,则y =x 7z .4.设a =log 32,则log 38-2log 36用a 表示的形式是()A .a -2B .3a -(1+a )2C .5a -2D .-a 2+3a -1【答案】A【解析】∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1)=3a -2(a +1)=a -2.5.方程lg (x 2-1)=lg (2x +2)的根为()A .-3B .3C .-1或3D .1或-3【答案】B【解析】由lg (x 2-1)=lg (2x +2),得x 2-1=2x +2,即x 2-2x -3=0,解得x =-1或x =3.经检验x =-1不合题意,所以原方程的根为x =3.6.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中某类物质的原子总数N 约为1050.则下列各数中与MN最接近的是(参考数据:lg 3≈0.48)()A .1093B .10113C .10123D .10133【答案】C【解析】因为M ≈3361,N ≈1050,所以lg M ≈361×lg 3,lg N ≈50,lgM N =lg M -lg N ≈361×0.48-50≈123,所以MN≈10123.故选C.7.(多选)下列指数式与对数式互化正确的是()A .54=625与log 4625=5B .10-2=0.01与lg 0.01=-2C -4=16与log -416=12D .912=3与log 93=12【答案】BD【解析】对于A ,54=625可化为log 5625=4,故不正确;对于B ,10-2=0.01可化为lg 0.01=-2,故正确;对于C -4=16可化为log 1216=-4,故不正确;对于D ,912=3可化为log 93=12,故正确.故选B 、D.8.(多选)下列运算正确的是()A .2log 1510+log 150.25=2B .log 427·log 258·log 95=98C .lg 2+lg 50=2D .((2log2--(log 22)2=-54【答案】BCD【解析】对于A ,2log 1510+log 150.25=log 15102+log 150.25=log 1525=-2,故A 错误;对于B ,log 427·log 258·log 95=32log 23·32log 52·12log 35=98·lg 3lg 2·lg 2lg 5·lg 5lg 3=98,故B 正确;对于C ,lg 2+lg 50=lg (2×50)=2,故C 正确;对于D ,((2log 2-(log 22)2=(2log 2=-1-14=-54,故D 正确.故选B 、C 、D.9.若a =lg 2,b =lg 3,则2100b a -的值为________.【答案】43【解析】∵a =lg2,∴10a =2.∵b =lg3,∴10b =3,∴2100ba -=(10a )210b=43.10.若log m 2=a ,log m 3=b ,则2a b m+的值为________.【答案】18【解析】因为log m 2=a ,log m 3=b ,所以m a =2,m b =3,即2a bm +=m a ×(m b )2=2×32=18.11.若log 12x =m ,log 14y =m +2,求x 2y的值.【解析】∵log 12x =mm=x ,x 22m.∵log 14y =m +2m +2=y ,y2m +4.∴x 2ym +42m -(2m +4)-4=16.12.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =4+lg V .已知某同学视力的五分记录法的数据为3.9,则其视力的小数记录法的数据约为(1010≈1.259)()A .1.5B .1.2C .0.8D .0.6【答案】C【解析】因为L =4+lg V ,即V =10L -4,所以当L =3.9时,V =10-0.1=1100.1≈0.8.故选C.13.若log 2(log 3x )=log 3(log 4y )=log 4(log 2z )=0,则x +y +z 的值为()A .9B .8C .7D .6【答案】A【解析】∵log 2(log 3x )=0,∴log 3x =1,∴x =3.同理y =4,z =2.∴x +y +z =9.故选A.14.利用对数恒等式a log a N =N(a >0,且a ≠1,N >0).计算:-1+log 0.54=________;(2)23+log 23+32-log 39=________.【答案】(1)8(2)25【解析】(1)0.51log 412-+⎛⎫⎪⎝⎭=112-⎛⎫ ⎪⎝⎭·12log 412⎛⎫ ⎪⎝⎭=2×4=8.(2)23log 32++32log 93-=23×2log 32+32log 933=8×3+99=25.15.已知log 23=a ,则4a +4-a 的值为________.【答案】829【解析】因为log 23=a ,所以4a +4-a =2log 34+2log 34-=()2log 322+()2log 322-=()22log 32+()log 3222-=32+3-2=829.16.求x 的值.(1)()()2221log 321x x x -+-=1;(2))1log=x .【解析】(1)由()()2221log321xx x -+-=1x 2+2x -1=2x 2-1,x 2+2x -1>0,x 2-1>0且2x 2-1≠1,解得x =-2.(2)x =)1log)1log))1log1-=1.17.设实数a ,b ,c 为正数,且满足a 2+b 2=c 2,log =1,log 8(a +b -c )=23,求实数a ,b ,c 的值.【解析】由log =1得1+b +ca=4,即b +c =3a ,由log 8(a +b -c )=23得a +b -c =823=4,又a 2+b 2=c 2,∴a =6,b =8,c =10.18.已知log a b =log b a (a >0,且a ≠1;b >0,且b ≠1),试探究a 与b 的关系,并给出证明.【解析】a =b 或a =1b .证明如下:设log a b =log b a =k ,则b =a k ,a =b k ,所以b =(b k )k =bk 2,因为b >0,且b ≠1,所以k 2=1,即k =±1.当k =-1时,a =1b;当k =1时,a =b .所以a =b 或a =1b.。