通信原理信道与噪声第3章
- 格式:ppt
- 大小:504.50 KB
- 文档页数:54
一.填空 1.对DSB —SC 信号,当采用插入导频法进行载波同步时,插入的条件是( )。
2.残留边带滤波器的传输特性H (w )应该是( )。
3.AM 系统在( )情况下会出现门限效应。
4.什么是门限效应?AM 信号瞎用包络检波法为什么会产生门限效应? 5.在残留边带调制系统中,为了不失真地恢复信号,其传输函数H (w )应满足( )。
6.在解调过程中,( )的解调方式会产生门限效应,产生门限效应的原因是( )。
7.当调频指数满足( )时称为窄带调频。
8.相干解调器由( )和( )组成,信号与噪声可以分开处理,故没有门限效应。
9.门限效应是由包络检波器的( )作用所引起的。
10.什么是频分复用? 填空答案:1.载频处、正交插入2.在载频两边具有互补对称特性 3.在包络检波时且小信噪比时4小信噪比时,解调输出信号无法与噪声分开,有用信号“淹没”在噪声中,这时候输出信噪比不是按比例地随着输入信噪比下降,而是急剧恶化。
这种现象称为门限效应。
5.H ()()c c H H ωωωωωω++-=≤常数, 6.非相干解调 非线性应用 7.1f m <<8.相乘器 低通滤波器 9.非线性解调 10.利用调制技术将各路信息信号调制到不同载频上,使各路信号的频谱搬移到各自的子通道内,合成后送入信道传输。
在接收端,采用一系列不同中心频率的带通滤波器分离出各路已调信号,解调后恢复各路相应的基带信号。
1.常见的幅度调制方式:(调幅<AM>)、(双边带<DSB>)、(单边带<SSB>)、(残留边带<VSB>)。
2.如果把语音信号0.3-3.4kHZ 直接通过天线发射,那么天线的长度为(22km ) 3.基带信号控制高频载波的过程叫(调制)4.要保证Ao+f (t )总是正的,对于所有的t ,必须要求( )5.( )越大,说明这种调制制度的抗干扰性能越好。
第一部 通信原理部分习题答案第1章 绪论1—1 设英文字母E 出现的概率为0.105,x 出现的概率为0.002。
试求E 及x 的信息量。
解:英文字母E 的信息量为105.01log 2=E I =3.25bit 英文字母x 的信息量为002.01log 2=x I =8.97bit 1—2 某信息源的符号集由A 、B 、C 、D 和E 组成,设每一符号独立出现,其出现概率分别为1/4、l/8、l/8/、3/16和5/16。
试求该信息源符号的平均信息量。
解:平均信息量,即信息源的熵为∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-163log 1632-165log 1652- =2.23bit/符号1—3 设有四个消息A 、BC 、D 分别以概率1/4、1/8、1/8和l/2传送,每一消息的出现是相互独立的,试计算其平均信息量。
解:平均信息量∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-21log 212- =1.75bit/符号1—4 一个由字母A 、B 、C 、D 组成的字。
对于传输的每一个字母用二进制脉冲编码,00代替A ,01代替B ,10代替C ,11代替D ,每个脉冲宽度为5ms 。
(1)不同的字母是等可能出现时,试计算传输的平均信息速率。
(2)若每个字母出现的可能性分别为P A =l/5,P B =1/4,P C =1/4,P D =3/10 试计算传输的平均信息速率。
解:(1)不同的字母是等可能出现,即出现概率均为1/4。
每个字母的平均信息量为∑=-=ni i i x P x P H 12)(log )(=41log 4142⨯-=2 bit/符号因为每个脉冲宽度为5ms ,所以每个字母所占用的时间为 2×5×10-3=10-2s每秒传送符号数为100符号/秒 (2)平均信息量为∑=-=ni i i x P x P H 12)(log )(=51log 512-41log 412-41log 412-103log 1032-=1.985 bit/符号 平均信息速率为 198.5 比特/秒1—5 国际莫尔斯电码用点和划的序列发送英文字母,划用持续3单位的电流脉冲表示,点用持续1个单位的电流脉冲表示;且划出现的概率是点出现概率的l/3; (1)计算点和划的信息量; (2)计算点和划的平均信息量。
第三章3-1 设X 是0a =,1σ=的高斯随机变量,试确定随机变量Y cX d =+的概率密度函数()f y ,其中,c d 均为常数。
解:[][]E y cE x d d=+=,22222[][][]2[]E y E y c E X cdE X c -=+=22()()]2y d f y c -=-3-2 设一个随机过程()t ξ可以表示 ()2cos(2)t t ξπθ=+式中,θ是一个随机变量,且(0)12P θ==, (2)12P θπ==,试求(1)E ξ及(0,1)R ξ。
解: 由 (0)(2)1P P θθπ=+== 得到随机变量θ的概率密度分布函数为11()()()222f πθδθδθ=+-,11[]2cos(2)[()()]222cos(2)cos(2)2E t t d t t πξπππθδθδθθπππ-=++-=++⎰[1]1E =11(0,1)4cos()cos(2)[()()]2222R d πξππθπθδθδθθ-=++-=⎰ 3-3 设1020()cos sincos Y t X t X t ωω=-是一随机过程,若X 1和X 2是彼此独立且具有均值为0、方差为σ2的正态随机变量,试求:(1)[()]E Y t 、2[()]E Y t ;(2)()Y t 的一维分布密度函数()f y ; (3)12(,)R t t 和12(,)B t t 。
10201020102022102022221012002022220011[()][cos sin ][cos ][sin ][]cos []sin 0[()][(cos sin )][]cos 2[][]cos sin []sin (cos sin )02E Y t E X t X t E X t E X t E X t E X t E Y t E X t X t E X t E X E X t t E X t t t X ωωωωωωωωωωωωσωωσ=-=-=-==-=-+=+-=解:()()因为、22222212121012011022022210102201021()[()]0[()][()][()]())23(,)[()()][(cos sin )(cos sin )][]cos cos []sin sin [X Y t E Y t D Y t E Y t E Y t y f y R t t E Y t Y t E X t X t X t X t E X t t E X t t E X σσωωωωωωωω==-==-==--=+-为正态分布,所以也为正态分布,又,所以()201022101022202102121212120][]cos sin [][]sin cos cos[()]cos (,)(,)[()][()](,)cos E X t t E X E X t t t t B t t R t t E Y t E Y t R t t ωωωωσωσωτσωτ-=-==-==3-4 已知()X t 和()Y t 是统计独立的平稳随机过程,且它们的均值分别为x a 和y a ,自相关函数分别为()x R τ、()y R τ。
第一部 各章重要习题及详细解答过程第1章 绪论1—1 设英文字母E 出现的概率为0.105,x 出现的概率为0.002。
试求E 及x 的信息量。
解:英文字母E 的信息量为105.01log 2=E I =3.25bit 英文字母x 的信息量为002.01log 2=x I =8.97bit 1—2 某信息源的符号集由A 、B 、C 、D 和E 组成,设每一符号独立出现,其出现概率分别为1/4、l/8、l/8/、3/16和5/16。
试求该信息源符号的平均信息量。
解:平均信息量,即信息源的熵为∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-163log 1632-165log 1652- =2.23bit/符号1—3 设有四个消息A 、BC 、D 分别以概率1/4、1/8、1/8和l/2传送,每一消息的出现是相互独立的,试计算其平均信息量。
解:平均信息量∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-21log 212-=1.75bit/符号1—4 一个由字母A 、B 、C 、D 组成的字。
对于传输的每一个字母用二进制脉冲编码,00代替A ,01代替B ,10代替C ,11代替D ,每个脉冲宽度为5ms 。
(1)不同的字母是等可能出现时,试计算传输的平均信息速率。
(2)若每个字母出现的可能性分别为P A =l/5,P B =1/4,P C =1/4,P D =3/10 试计算传输的平均信息速率。
解:(1)不同的字母是等可能出现,即出现概率均为1/4。
每个字母的平均信息量为∑=-=ni i i x P x P H 12)(log )(=41log 4142⨯-=2 bit/符号因为每个脉冲宽度为5ms ,所以每个字母所占用的时间为 2×5×10-3=10-2s每秒传送符号数为100符号/秒 (2)平均信息量为∑=-=ni i i x P x P H 12)(log )(=51log 512-41log 412-41log 412-103log 1032-=1.985 bit/符号平均信息速率为 198.5 比特/秒1—5 国际莫尔斯电码用点和划的序列发送英文字母,划用持续3单位的电流脉冲表示,点用持续1个单位的电流脉冲表示;且划出现的概率是点出现概率的l/3;(1)计算点和划的信息量;(2)计算点和划的平均信息量。
第三章信道与噪声通信原理电子教案第3章信道与噪声学习目标:信道的数学描述方法;恒参信道/随参信道及其传输特性;加性高斯白噪声;信道容量的概念。
重点难点:调制信道模型;编码信道模型;恒参信道对信号传输的影响;加性高斯白噪声;Shannon信道容量公式。
随参信道对信号传输的影响;起伏噪声;噪声等效带宽;连续信道的信道容量“三要素”。
随参信道特性的改善。
课外作业: 3-5,3-11,3-16,3-19,3-20本章共分4讲《通信原理》第九讲知识要点:信道等义、广义信道、狭义信道,调制信道和编码信道。
§3.1 信道定义与数学模型1、信道定义信道是指以传输媒质为基础的信号通道。
信道即允许信号通过,又使信号受到限制和损害。
研究信道的目的:建立传播预测模型;为实现信道仿真器提供基础。
狭义信道仅指信号的传输媒质,这种信道称为狭义信道;广义信道不仅是传输媒质,而且包括通信系统中的一些转换装置,这种信道称为广义信道。
狭义信道按照传输媒质的特性可分为有线信道和无线信道两类。
有线信道包括明线、对称电缆、同轴电缆及光纤等。
广义信道按照它包括的功能,可以分为调制信道、编码信道等。
图3-1 调制信道和编码信道2、信道的数学模型信道的数学模型用来表征实际物理信道的特性,它对通信系统的分析和设计是十分方便的。
下面我们简要描述调制信道和编码信道这两种广义信道的数学模型。
1. 调制信道模型图3-2 调制信道模型二端口的调制信道模型其输出与输入的关系有一般情况下,可表示为信道单位冲击响应与输入信号的卷积,即或其中,依赖于信道特性。
对于信号来说,可看成是乘性干扰,而为加性干扰。
在实际使用的物理信道中,根据信道传输函数的时变特性的不同可以分为两大类:一类是基本不随时间变化,即信道对信号的影响是固定的或变化极为缓慢的,这类信道称为恒定参量信道,简称恒参信道;另一类信道是传输函数随时间随机快变化,这类信道称为随机参量信道,简称随参信道。
习题解答3-1.填空题(1) 在模拟通信系统中,有效性与已调信号带宽的定性关系是( 已调信号带宽越小,有效性越好),可靠性与解调器输出信噪比的定性关系是(解调器输出信噪比越大,可靠性越好)。
(2) 鉴频器输出噪声的功率谱密度与频率的定性关系是(功率谱密度与频率的平方成正比),采用预加重和去加重技术的目的是(提高解调器输出信噪比)。
(3) 在AM 、DSB 、SSB 、FM 等4个通信系统中,可靠性最好的是(FM ),有效性最好的是(SSB ),有效性相同的是(AM 和DSB ),可靠性相同的是(DSB 、SSB )。
(4) 在VSB 系统中,无失真传输信息的两个条件是:(相干解调)、(系统的频率特性在载频两边互补对称)。
(5) 某调频信号的时域表达式为6310cos(2105sin10)t t ,此信号的载频是(106)Hz ,最大频偏是(2500)Hz ,信号带宽是(6000)Hz ,当调频灵敏度为5kHz/V 时,基带信号的时域表达式为(30.5cos10t )。
3-2.根据题3-2图(a )所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比较它们分别通过包络检波器后的波形差别。
解:设载波()sin c s t t ,(1)DSB 信号()()()DSB s t m t s t 的波形如题3-2图(b ),通过包络后的输出波形为题3-2图(c)。
(2)AM 信号0()[()]sin AM c s t m m t t ,设0max ()m m t ,波形如题3-2图(d ),通过包络后的输出波形为题3-2图(e)。
结论:DSB 解调信号已严重失真,故对DSB 信号不能采用包络检波法;而AM 可采用此法恢复。
3-3.已知调制信号()cos(2000)cos(4000)m t t t ,载波为4cos10t ,进行单边带调制,试确定该单边带信号的表示式,并画出频谱图。
解法一:若要确定单边带信号,需先求得()m t 的希尔波特变换题3-2图(a )题3-2图(b)、(c)、(d)和(e)ˆ()cos(2000)cos(4000)22sin(2000)sin(4000)mt t t t t故上边带信号11ˆ()()cos ()sin 2211cos(12000)cos(14000)22USB c c s t m t t mt t t t下边带信号为11ˆ()()cos ()sin 2211cos(8000)cos(6000)22LSB c c s t m t t mt t t t其频谱图如题2-3图所示。
第一部 通信原理部分习题答案第1章 绪论1—1 设英文字母E 出现的概率为0.105,x 出现的概率为0.002。
试求E 及x 的信息量。
解:英文字母E 的信息量为105.01log 2=E I =3.25bit 英文字母x 的信息量为002.01log 2=x I =8.97bit 1—2 某信息源的符号集由A 、B 、C 、D 和E 组成,设每一符号独立出现,其出现概率分别为1/4、l/8、l/8/、3/16和5/16。
试求该信息源符号的平均信息量。
解:平均信息量,即信息源的熵为∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-163log 1632-165log 1652- =2.23bit/符号1—3 设有四个消息A 、BC 、D 分别以概率1/4、1/8、1/8和l/2传送,每一消息的出现是相互独立的,试计算其平均信息量。
解:平均信息量∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-21log 212- =1.75bit/符号1—4 一个由字母A 、B 、C 、D 组成的字。
对于传输的每一个字母用二进制脉冲编码,00代替A ,01代替B ,10代替C ,11代替D ,每个脉冲宽度为5ms 。
(1)不同的字母是等可能出现时,试计算传输的平均信息速率。
(2)若每个字母出现的可能性分别为P A =l/5,P B =1/4,P C =1/4,P D =3/10 试计算传输的平均信息速率。
解:(1)不同的字母是等可能出现,即出现概率均为1/4。
每个字母的平均信息量为∑=-=ni i i x P x P H 12)(log )(=41log 4142⨯-=2 bit/符号因为每个脉冲宽度为5ms ,所以每个字母所占用的时间为 2×5×10-3=10-2s每秒传送符号数为100符号/秒 (2)平均信息量为∑=-=ni i i x P x P H 12)(log )(=51log 512-41log 412-41log 412-103log 1032-=1.985 bit/符号 平均信息速率为 198.5 比特/秒1—5 国际莫尔斯电码用点和划的序列发送英文字母,划用持续3单位的电流脉冲表示,点用持续1个单位的电流脉冲表示;且划出现的概率是点出现概率的l/3; (1)计算点和划的信息量; (2)计算点和划的平均信息量。
第三章(模拟调制原理)习题及其答案【题3-1】已知线性调制信号表示式如下:(1)cos cos c t w t Ω (2)(10.5sin )cos c t w t +Ω 式中,6c w =Ω。
试分别画出它们的波形图和频谱图。
【答案3-1】(1)如图所示,分别是cos cos c t w t Ω的波形图和频谱图设()M S w 是cos cos c t w t Ω的傅立叶变换,有()[()()2()()] [(7)(5)(5)(7)]2M c c c c S w w w w w w w w w w w w w πδδδδπδδδδ=+Ω+++Ω-+-Ω++-Ω-=+Ω+-Ω++Ω+-Ω(2)如图所示分别是(10.5sin )cos c t w t +Ω的波形图和频谱图:设()M S w 是(10.5sin )cos c t w t +Ω的傅立叶变换,有()[()()] [()()2()()] [(6)(6)] [(7)(5)2(7)(5)]M c c c c c c S w w w w w j w w w w w w w w w w j w w w w πδδπδδδδπδδπδδδδ=++-++Ω+++Ω---Ω+--Ω-=+Ω+-Ω++Ω+-Ω--Ω-+Ω【题3-2】根据下图所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比较它们分别通过包络检波器后的波形差别。
【答案3-2】AM 波形如下:通过低通滤波器后,AM 解调波形如下:DSB 波形如下:通过低通滤波器后,DSB 解调波形如下:由图形可知,DSB 采用包络检波法时产生了失真。
【题3-3】已知调制信号()cos(2000)cos(4000)m t t t ππ=+载波为4cos10t π,进行单边带调制,试确定单边带信号的表达式,并画出频谱图。
【答案3-3】可写出上边带的时域表示式4411ˆ()()cos ()sin 221 [cos(2000)cos(4000)]cos1021 [sin(2000)sin(4000)]sin 1021 [cos12000cos 8000cos14000cos 6000]41 [cos 8000co 4m c c s t m t w t mt w t t t t t t tt t t t t πππππππππππ=-=+-+=+++--s12000cos 6000cos14000]11 cos12000cos1400022t t t t tπππππ+-=+其傅立叶变换对()[(14000)(12000)2+(14000)(12000)]M S w w w w w πδπδπδπδπ=+++-+-可写出下边带的时域表示式'4411ˆ()()cos ()cos 221 [cos(2000)cos(4000)]cos1021 [sin(2000)sin(4000)]sin 1021 [cos12000cos 8000cos14000cos 6000]41 +[cos 8000c 4m c c s t m t w t mt w t t t t t t tt t t t t πππππππππππ=+=+++=+++-os12000cos 6000cos14000]11 cos 8000cos1600022t t t t tπππππ+-=+其傅立叶变换对'()[(8000)(6000)2(8000)(6000)]M S w w w w w πδπδπδπδπ=++++-+-两种单边带信号的频谱图分别如下图。
第三章3-1 设X 是0a =,1σ=的高斯随机变量,试确定随机变量Y cX d =+的概率密度函数()f y ,其中,c d 均为常数。
解:[][]E y cE x d d=+=,22222[][][]2[]E y E y c E X cdE X c -=+=22()()]2y d f y c -=-3-2 设一个随机过程()t ξ可以表示 ()2cos(2)t t ξπθ=+式中,θ是一个随机变量,且(0)12P θ==, (2)12P θπ==,试求(1)E ξ及(0,1)R ξ。
解: 由 (0)(2)1P P θθπ=+== 得到随机变量θ的概率密度分布函数为11()()()222f πθδθδθ=+-,11[]2cos(2)[()()]222cos(2)cos(2)2E t t d t t πξπππθδθδθθπππ-=++-=++⎰[1]1E =11(0,1)4cos()cos(2)[()()]2222R d πξππθπθδθδθθ-=++-=⎰ 3-3 设1020()cos sin cos Y t X t X t ωω=-是一随机过程,若X 1和X 2是彼此独立且具有均值为0、方差为σ2的正态随机变量,试求:(1)[()]E Y t 、2[()]E Y t ;(2)()Y t 的一维分布密度函数()f y ; (3)12(,)R t t 和12(,)B t t 。
10201020102022102022221012002022220011[()][cos sin ][cos ][sin ][]cos []sin 0[()][(cos sin )][]cos 2[][]cos sin []sin (cos sin )02E Y t E X t X t E X t E X t E X t E X t E Y t E X t X t E X t E X E X t t E X tt t X ωωωωωωωωωωωωσωωσ=-=-=-==-=-+=+-=解:()()因为、22222212121012011022022210102201021()[()]0[()][()][()]())23(,)[()()][(cos sin )(cos sin )][]cos cos []sin sin [X Y t E Y t D Y t E Y t E Y t y f y R t t E Y t Y t E X t X t X t X t E X t t E X t t E X σσωωωωωωωω==-==-==--=+-为正态分布,所以也为正态分布,又,所以()201022101022202102121212120][]cos sin [][]sin cos cos[()]cos (,)(,)[()][()](,)cos E X t t E X E X t t t t B t t R t t E Y t E Y t R t t ωωωωσωσωτσωτ-=-==-==3-4 已知()X t 和()Y t 是统计独立的平稳随机过程,且它们的均值分别为x a 和y a ,自相关函数分别为()x R τ、()y R τ。