工程热力学课程教案
- 格式:doc
- 大小:92.00 KB
- 文档页数:10
•教学背景与目标•教学内容与方法•教学资源与工具•教学过程与实施目录•教学评价与反馈•教师角色与素质要求01教学背景与目标课程背景介绍工程热力学在能源与动力工程领域的重要性工程热力学是研究热能与机械能相互转换以及热能传递规律的学科,对于能源的高效利用和动力设备的优化设计具有重要意义。
当前工程热力学教学面临的挑战随着科技的快速发展和新能源技术的不断涌现,工程热力学的教学内容需要不断更新和完善,以适应新的教学需求。
教学目标设定知识与技能目标使学生掌握工程热力学的基本概念和基本定律,了解热能传递和转换的基本过程,能够运用所学知识分析和解决简单的工程热力学问题。
过程与方法目标通过理论讲解、案例分析、实验操作等多种教学手段,培养学生的分析、综合、创新和实践能力。
情感态度与价值观目标激发学生对工程热力学的学习兴趣和热情,培养学生的团队协作精神和创新意识,提高学生的职业素养和社会责任感。
学生需求分析学生的专业背景和先修课程01学生的学习特点和兴趣爱好02学生在未来职业发展中的需求03教学重点与难点教学重点教学难点02教学内容与方法整合知识点间的联系,构建系统的知识体系,如将热力学第一定律和第二定律结合起来讲解热机的工作原理;强调知识点的工程应用背景,引导学生将理论知识与实际问题相结合。
梳理工程热力学基本概念、定律和原理,如热力学系统、热力学第一定律、热力学第二定律等;知识点梳理与整合根据工程热力学的学科特点,选择启发式、案例式、讨论式等教学方法;针对学生的实际情况,采用分层次、分阶段的教学方式,逐步提高教学难度;利用多媒体、网络等现代化教学手段,增强教学的直观性和趣味性。
教学方法选择依据设计课堂提问环节,鼓励学生主动思考和回答问题,激发学生的学习兴趣;安排小组讨论环节,引导学生就某一问题进行深入探讨和交流,培养学生的合作精神和沟通能力;设置课堂练习环节,让学生及时巩固所学知识,提高教学效果。
课堂互动环节设计案例分析与实践应用引入工程实例,分析热力学理论在工程中的应用,如汽轮机、内燃机等热力设备的热力过程分析;安排实验课程,让学生亲自动手操作,加深对热力学理论的理解和掌握;布置课程设计任务,让学生综合运用所学知识解决实际问题,培养学生的工程实践能力和创新能力。
高等工程热力学教案一、教学目标1.掌握高等工程热力学的基本概念和基本原理。
2.理解热力学系统和热力学过程的基本特征。
3.掌握热力学第一定律和第二定律的表述和应用方法。
4.能够应用热力学知识解决实际工程问题。
二、教学内容1.高等工程热力学简介(1)高等工程热力学的定义和研究对象。
(2)热力学系统的基本概念和分类。
(3)热力学平衡和非平衡态。
2.热力学基本概念和基本原理(1)热力学过程和过程的分类。
(2)内能和焓的概念及其性质。
(3)热力学第一定律的表述和应用。
(4)克拉珀龙方程和基尔霍夫循环定理。
3.熵和热力学第二定律(1)熵的引入和熵增定理。
(2)热力学第二定律的表述和应用。
(3)熵的计算方法和热力学性能的描述。
4.理想气体和理想气体混合物的热力学性质(1)理想气体状态方程和气体定律。
(2)理想气体的内能、焓和熵的计算方法。
(3)理想气体混合物的理论计算方法。
5.热力学循环和工质使用(1)热力学循环的分类和性能参数。
(2)理想循环和实际循环。
(3)工质选择和工质性能参数。
三、教学方法1.理论讲授:通过课堂讲解,将高等工程热力学的基本概念、基本原理和应用方法传授给学生。
2.实例分析:提供一些实际工程问题,并引导学生应用热力学知识解决问题,加强实际应用能力的培养。
3.讨论引导:组织学生开展小组讨论,让学生在讨论中相互启发,共同思考和解决问题。
四、教学工具1.讲义和教材:准备高等工程热力学的讲义和教学参考教材,便于学生学习和复习。
2.多媒体设备:利用多媒体设备播放示意图、实验视频等,直观地展示热力学原理和实验过程。
3.计算工具:提供计算软件或计算器,方便学生进行数值计算。
五、教学过程1.导入:通过提问和讲解,引入高等工程热力学的概念和研究对象。
2.知识讲解:逐步讲解热力学的基本概念、基本原理和应用方法。
3.实例分析:提供一些实际工程问题,引导学生应用热力学知识解决问题。
4.小组讨论:组织学生进行小组讨论,让学生相互启发、共同思考和解决问题。
北京理工工程热力学电子教案第一章:工程热力学概述1.1 热力学的定义与发展历程1.2 工程热力学的研究对象与内容1.3 工程热力学的基本定律1.4 工程热力学的应用领域第二章:热力学系统与状态参数2.1 热力学系统的分类2.2 状态参数的概念与定义2.3 状态参数的测量与表示方法2.4 热力学状态图的应用第三章:热力学第一定律3.1 能量守恒定律3.2 内能的概念与计算3.3 热量与功的传递3.4 热力学第一定律的应用实例第四章:热力学第二定律4.1 热力学第二定律的表述4.2 熵的概念与计算4.3 熵增原理与过程自发进行条件4.4 热力学第二定律的应用实例第五章:热力学第三定律5.1 热力学第三定律的表述5.2 绝对零度的概念5.3 物体的热容量与熵变5.4 热力学第三定律的应用实例第六章:热力学循环与效率6.1 循环的概念与分类6.2 卡诺循环及其效率6.3 实际热机循环的特点与效率分析6.4 热力学循环在工程中的应用第七章:热力学势与状态方程7.1 自由能与吉布斯自由能7.2 亥姆霍兹自由能与朗肯循环7.3 状态方程的定义与分类7.4 常用状态方程及其应用第八章:多组分系统热力学8.1 多组分系统的平衡条件8.2 相律与相图8.3 杠杆规则与相律的应用8.4 多组分系统热力学在工程中的应用第九章:非平衡热力学9.1 非平衡热力学的基本概念9.2 熵产生与熵流9.3 非平衡热力学在工程中的应用9.4 非平衡热力学与可持续发展第十章:工程热力学数值方法10.1 数值方法的基本概念10.2 有限差分法在热力学中的应用10.3 有限元法在热力学中的应用10.4 工程热力学数值方法的发展趋势重点和难点解析一、热力学第一定律重点:内能的概念与计算、热量与功的传递难点:热量与功的转换关系、热力学第一定律在实际工程中的应用二、热力学第二定律重点:熵的概念与计算、熵增原理与过程自发进行条件难点:熵增原理的理解与应用、热力学第二定律在工程实践中的应用三、热力学第三定律重点:绝对零度的概念、物体的热容量与熵变难点:热力学第三定律的深层含义、绝对零度的实验测定方法四、热力学循环与效率重点:卡诺循环及其效率、实际热机循环的特点与效率分析难点:热力学循环的优化、提高热机效率的途径五、热力学势与状态方程重点:自由能与吉布斯自由能、状态方程的定义与分类难点:自由能的转换与守恒、状态方程在不同条件下的应用六、多组分系统热力学重点:多组分系统的平衡条件、相律与相图难点:相律的应用、多组分系统热力学在工程中的应用七、非平衡热力学重点:非平衡热力学的基本概念、熵产生与熵流难点:非平衡热力学在工程中的应用、熵产生与熵流的测量和控制八、工程热力学数值方法重点:数值方法的基本概念、有限差分法在热力学中的应用难点:有限元法在热力学中的应用、工程热力学数值方法的发展趋势本教案涵盖了工程热力学的基本概念、定律、循环与效率、状态方程、多组分系统热力学、非平衡热力学以及数值方法等多个方面。
工程热力学课程教案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】《工程热力学》课程教案*** 本课程教材及主要参考书目教材:沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册:严家騄、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书:华北电力大学动力系编,热力实验指导书,2001参考书:曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12王加璇等编着,工程热力学,华北电力大学,1992年。
朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。
曾丹苓等编着,工程热力学(第一版),高教出版社,2002年全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿着郭航、孙嗣莹等译,工程热力学,科学出版社,2002年。
何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4概论(2学时)1. 教学目标及基本要求从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。
2. 各节教学内容及学时分配0-1 热能及其利用(0.5学时)0-2 热力学及其发展简史(0.5学时)0-3 能量转换装置的工作过程(0.2学时)0-4 工程热力学研究的对象及主要内容(0.8学时)3. 重点难点工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法4. 教学内容的深化和拓宽热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。
5. 教学方式讲授,讨论,视频片段6. 教学过程中应注意的问题特别注意:本课程作为热能与动力工程专业学生进入专业学习的第一门课程(专业基础课),要引导学生的学习兴趣和热情。
北京理工工程热力学电子教案第一章:热力学基本概念1.1 温度、热量和内能1.2 热力学第一定律1.3 热力学第二定律1.4 熵及其应用第二章:热力学性质计算与图表2.1 热力学基本性质计算2.2 状态方程的应用2.3 热力学性质图表的绘制2.4 热力学性质表和图的应用第三章:热传递过程3.1 导热过程3.2 对流换热过程3.3 辐射换热过程3.4 热传递过程的数值模拟第四章:热能利用与节能技术4.1 热机原理与性能评价4.2 热能利用技术4.3 节能技术及其应用4.4 热能利用与节能技术的未来发展第五章:热工测量与自动控制5.1 热工测量原理与方法5.2 热工测量仪表及其应用5.3 热工自动控制原理5.4 热工自动控制系统的设计与应用第六章:火箭发动机热力学6.1 火箭发动机概述6.2 火箭发动机的热力学原理6.3 火箭发动机的性能评价6.4 火箭发动机的热力学设计及优化第七章:航空发动机热力学7.1 航空发动机简介7.2 喷气发动机的热力学原理7.3 航空发动机的性能评价与优化7.4 航空发动机的热环境保护与节能第八章:内燃机热力学8.1 内燃机的基本工作原理8.2 内燃机的排放控制与环保技术8.3 内燃机的性能优化与评价8.4 内燃机的节能与减排技术研究第九章:锅炉热力学9.1 锅炉的基本原理与类型9.2 锅炉的热力学分析与设计9.3 锅炉的自动控制与监测技术9.4 锅炉的环保与节能技术第十章:空调热力学10.1 空调系统的基本原理与分类10.2 空调热力学性能评价与优化10.3 空调系统的自动控制技术10.4 空调系统的节能与环保技术第十一章:热力学在能源转换与存储中的应用11.1 能源转换的基本原理11.2 热电转换技术11.3 热泵技术及其应用11.4 能源存储技术及其热力学问题第十二章:热力学在材料科学中的应用12.1 材料的热力学性质12.2 相变与相图12.3 材料的热处理与热加工12.4 热力学在材料设计与制备中的应用第十三章:热力学在环境科学与可持续发展中的应用13.1 环境热力学基础13.2 热力学在环境保护与治理中的应用13.3 热力学在可持续发展中的作用第十四章:热力学在生物医学工程中的应用14.1 生物体的热力学特性14.2 生物医学热力学14.3 热力学在生物材料与医疗器械中的应用14.4 热力学在医学治疗与康复技术中的应用第十五章:热力学的现代发展与前沿探索15.1 热力学在高科技领域的应用15.2 热力学与量子力学的关系15.3 热力学在纳米技术中的应用15.4 热力学的未来挑战与研究方向重点和难点解析本文档涵盖了一个完整的工程热力学电子教案,共分为十五个章节。
化学化工系教案课程名称:工程热力学总学时数:72 学时讲授时数:72学时实践(实验、技能、上机等)时数:0学时授课班级:主讲教师:使用教材:大连理工大学《工程热力学》毕明树《工程热力学》课程教案说明:1、授课类型:指理论课,实验课,实践课,技能课,习题课等;2、教学方法:指讲授、讨论、示教、指导等;3、教学手段:指板书、多媒体、网络、模型、挂图音像等教学工具;4、首次开课的青年教师的教案应由导师审核;5、讲稿内容附后。
绪论(2学时)一、基本知识1.什么是工程热力学从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。
电能一一机械能锅炉一一烟气一一水一一水蒸气一一(直接利用) 供热锅炉一一烟气一一水一一水蒸气一一汽轮机一一 (间接利用)发电冰箱一一-(耗能) 制冷2.能源的地位与作用及我国能源面临的主要问题3. 热能及其利用(1).热能:能量的一种形式(2).来源:一次能源:以自然形式存在,可利用的能源。
如风能,水力能,太阳能、地热能、化学能和核能等。
二次能源:由一次能源转换而来的能源,如机械能、机械能等。
(3).利用形式:直接利用:将热能利用来直接加热物体。
如烘干、采暖、熔炼(能源消耗比例大)间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能,4..热能动力转换装置的工作过程5.热能利用的方向性及能量的两种属性过程的方向性:如:由高温传向低温能量属性:数量属性、,质量属性 (即做功能力)注意:数量守衡、质量不守衡提高热能利用率:能源消耗量与国民生产总值成正比。
6.本课程的研究对象及主要内容研究对象:与热现象有关的能量利用与转换规律的科学。
研究内容:(1).研究能量转换的客观规律,即热力学第一与第二定律。
(2).研究工质的基本热力性质。
(3).研究各种热工设备中的工作过程。
(4).研究与热工设备工作过程直接有关的一些化学和物理化学问题。
北京理工工程热力学电子教案第一章:工程热力学简介1.1 课程背景本章主要介绍工程热力学的基本概念、研究对象和内容,使学生对工程热力学有一个整体的认识。
1.2 教学目标(1)了解工程热力学的基本概念和研究对象;(2)掌握工程热力学的基本定律和原理;(3)理解工程热力学在工程技术中的应用。
1.3 教学内容1.3.1 工程热力学的基本概念1.3.2 工程热力学的研究对象和内容1.3.3 工程热力学的基本定律和原理1.4 教学方法与手段采用讲授、互动、案例分析等教学方法,结合多媒体课件、动画等教学手段,帮助学生更好地理解和掌握工程热力学的基本概念和原理。
1.5 教学评估通过课堂问答、作业、小组讨论等方式,评估学生对工程热力学基本概念和原理的掌握情况。
第二章:热力学定律与工质性质2.1 课程背景本章主要介绍工程热力学的基本定律,如能量守恒定律、热力学第一定律、热力学第二定律等,以及工质的性质,如比热容、比焓等。
2.2 教学目标(1)掌握工程热力学的基本定律;(2)了解工质的性质及其在工程热力学中的应用;(3)能够运用热力学定律和工质性质解决实际问题。
2.3 教学内容2.3.1 能量守恒定律2.3.2 热力学第一定律2.3.3 热力学第二定律2.3.4 工质的性质2.4 教学方法与手段采用讲授、互动、案例分析等教学方法,结合多媒体课件、动画等教学手段,帮助学生理解和掌握热力学定律和工质性质。
2.5 教学评估通过课堂问答、作业、小组讨论等方式,评估学生对热力学定律和工质性质的掌握情况。
第三章:热力学系统与状态参数3.1 课程背景本章主要介绍热力学系统的分类、状态参数及其定义和表示方法,如压力、温度、比容等。
3.2 教学目标(1)了解热力学系统的分类及特点;(2)掌握状态参数的定义和表示方法;(3)能够运用状态参数描述热力学系统。
3.3 教学内容3.3.1 热力学系统的分类及特点3.3.2 状态参数的定义和表示方法3.3.3 状态参数在工程热力学中的应用3.4 教学方法与手段采用讲授、互动、案例分析等教学方法,结合多媒体课件、动画等教学手段,帮助学生理解和掌握热力学系统的分类、状态参数及其应用。
工程热力学课程设计参考一、教学目标本课程旨在让学生掌握工程热力学的基本概念、理论和方法,能够运用工程热力学的知识解决实际问题。
通过本课程的学习,学生应达到以下目标:1.理解热力学系统的基本概念,如孤立系统、闭系统和开放系统。
2.掌握能量守恒定律和熵增原理,理解热力学第一定律和第二定律。
3.熟悉热力学状态量,如温度、压力、体积和熵等,并掌握状态方程的推导和应用。
4.学习热力学过程,如等压过程、等温过程和绝热过程等,并了解其特点和应用。
5.掌握热力机的原理和工作过程,如卡诺循环和朗肯循环等。
6.能够运用热力学的知识和方法分析实际工程问题,如热能转换和热能利用等。
7.能够运用热力学公式和图表进行计算和分析,如热力学状态方程的求解和热力图的绘制等。
8.能够运用热力学的原理和模型进行工程设计和优化,如热机效率的计算和热交换器的 design 等。
情感态度价值观目标:1.培养学生的科学思维和逻辑思维能力,提高学生分析和解决问题的能力。
2.培养学生对工程热力学的兴趣和热情,激发学生对工程热力学研究的热情。
3.培养学生对工程热力学应用的实际意义和价值的认识,提高学生对工程热力学的社会责任感和使命感。
二、教学内容本课程的教学内容主要包括以下几个部分:1.热力学基本概念:热力学系统、能量守恒定律、熵增原理等。
2.热力学状态量:温度、压力、体积、熵等,状态方程的推导和应用。
3.热力学过程:等压过程、等温过程、绝热过程等,特点和应用。
4.热力机:卡诺循环、朗肯循环等,原理和工作过程。
5.热力学应用:热能转换、热能利用等实际工程问题的分析和解决。
6.热力学基本概念:第一周,2 课时。
7.热力学状态量:第二周,3 课时。
8.热力学过程:第三周,4 课时。
9.热力机:第四周,4 课时。
10.热力学应用:第五周,3 课时。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等。