高考数学二轮复习考点解析7:数列的综合考查
- 格式:doc
- 大小:856.75 KB
- 文档页数:17
山东高考数列知识点梳理1. 引言数列是高中数学中的重要内容,也是高考考试中的常见题型。
在山东高考中,数列相关的知识点经常出现,掌握好这些知识点对于提高数学成绩至关重要。
本文将梳理山东高考数列的知识点,帮助同学们更好地理解和应用数列。
2. 数列的概念数列是指按照一定规律排列的一串数。
在数列中,每个数称为项,用字母a表示,而项的位置称为索引,用自然数n表示。
数列可以分为等差数列、等比数列以及其他特殊数列。
3. 等差数列等差数列是指相邻项之间具有相同差值的数列。
在山东高考中,等差数列相关的考点较多,主要包括以下内容:- 公式推导:根据等差数列的定义,可以推导出等差数列的通项公式和前n项求和公式。
深入理解这些公式的推导过程可以帮助同学们更好地掌握等差数列的性质和应用。
- 应用题:山东高考中常常出现一些应用题,要求同学们通过等差数列的知识解决实际问题。
这类题目需要同学们能够灵活运用等差数列的概念和公式,从中提取关键信息,进行合理推断和计算。
4. 等比数列等比数列是指相邻项之间具有相同比值的数列。
在山东高考中,等比数列也是一个重要的考点,主要包括以下内容:- 公式推导:与等差数列类似,等比数列也有通项公式和前n项求和公式。
同学们需要通过公比来推导出这些公式,掌握它们的推导过程,便于在解题时应用。
- 应用题:等比数列在实际问题中的应用也是经常出现的。
同学们需要学会识别等比数列,并能够根据题目中的条件和要求,灵活运用等比数列的概念和公式解决问题。
5. 其他特殊数列除了等差数列和等比数列,山东高考中还会考察一些其他特殊的数列,如斐波那契数列、等差(等比)数列的混合数列等。
同学们需要了解这些数列的定义和特点,并熟悉它们的应用。
6. 总结在山东高考中,数列是一个常见且重要的考点。
同学们需要掌握数列的概念和性质,熟练运用等差数列和等比数列的公式,灵活应用数列解决实际问题。
此外,同学们还需了解其他特殊数列的定义和特点。
通过系统学习和练习,相信同学们一定能够在山东高考中取得好成绩!以上简要梳理了山东高考数列的知识点,希望对同学们的学习有所帮助。
数列的高考知识点总结数列是高中数学中的一个重要知识点,也是高考考试中常常出现的题型。
掌握好数列的概念、性质以及解题方法,对于高考取得较好的成绩非常重要。
本文将对数列的相关知识进行总结归纳,希望对高中生进行复习和备考提供一定的帮助。
一、概念与性质数列是由一系列按照一定规律排列的数所组成的。
数列中的每个数称为数列的项,用$a_n$表示第n项。
数列中的规律可以通过数列的通项公式来表示。
1.1 等差数列等差数列的特点是每一项与它的前一项的差值都相等。
设首项为$a_1$,公差为$d$,则等差数列的通项公式为$a_n=a_1+(n-1)d$。
1.2 等比数列等比数列的特点是每一项与它的前一项的比值都相等。
设首项为$a_1$,公比为$q$,则等比数列的通项公式为$a_n=a_1q^{(n-1)}$。
1.3 递推数列递推数列是指根据前几项的值,通过某种规律得到后面的项。
递推数列的通项公式一般比较复杂,常见的有斐波那契数列、阶乘数列等。
1.4 序列极限当$n$趋向于无穷大时,数列可能会趋向于某个常数或无穷大。
这个常数或无穷大就是数列的极限。
数列的极限有正无穷大、负无穷大以及存在有限极限三种情况。
二、数列求和求和是数列相关题目中的常见题型,也是高中数学考试必考的内容之一。
对于等差数列和等比数列,求和的方法有所不同。
2.1 等差数列求和对于首项为$a_1$,公差为$d$的等差数列,前n项的和可以通过以下公式求得:$S_n=\frac{n}{2}(a_1+a_n)$。
其中,$a_n$为第n项的值。
2.2 等比数列求和对于首项为$a_1$,公比为$q$的等比数列,当$q \neq 1$时,前n项的和可以通过以下公式求得:$S_n=\frac{a_1(1-q^n)}{1-q}$。
当$q =1$时,等比数列求和的公式为$S_n=na_1$。
三、数列的应用数列的应用非常广泛,它可以用于解决很多实际问题。
3.1 约瑟夫环问题约瑟夫环问题是数列应用的一个典型例子。
数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n 项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n 中,已知a 1=2,a n +1-a n =2n ,则a 50等于()A.2451B.2452C.2449D.24502.(等比累加法)已知数列a n 满足a 1=2,a n +1-a n =2n ,则a 9=()A.510B.512C.1022D.10242024年高考数学专项复习数列求和与递推综合归类 (解析版)【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +12.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【变式演练】1.数列{a n}中,a1=1,a2=3,a n+1=a n-a n-1(n≥2,n∈N*),那么a2019=()A.1B.2C.3D.-32.数列a n的首项a1=3,且a n=2-2a n-1n≥2,则a2021=()A.3B.43C.12D.-2题型四【二阶等比数列型递推【典例分析】1.已知数列a n满足a1=2,且a n=2a n-1-1(n≥2,n∈N+),则a n=______________【变式演练】1.已知数列a n中,a1=1,a n=3a n-1+4(n∈N∗且n≥2),则数列a n通项公式a n为() A.3n-1 B.3n+1-2 C.3n-2 D.3n2.已知数列{a n}满足:a n+1=2a n-n+1(n∈N*),a1=3.(1)证明数列b n=a n-n(n∈N*)是等比数列,并求数列{a n}的通项;(2)设c n=a n+1-a na n a n+1,数列{c n}的前n项和为{S n},求证:S n<1.【典例分析】1.在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N*),则22019是这个数列的第________________项.【变式演练】1.已知数列a n满足a1=1,a n+1=2a na n+2.记C n=2na n,则数列Cn的前n项和C1+C2+...+Cn=.2.数列a n满足:a1=13,且na n=2a n-1+n-1a n-1(n∈N*,n≥2),则数列a n的通项公式是a n=.题型六前n项积型递推【典例分析】1.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a7a8>1,a7-1a8-1<0.则下列结论正确的是(多选题)A.0<q<1B.a7a9<1C.T n的最大值为T7D.S n的最大值为S7【技法指引】类比前n项和求通项过程来求数列前n项积:1.n=1,得a12.n≥2时,a n=T n T n-1所以a n=T1,(n=1) T nT n-1,(n≥2)【变式演练】1.若数列a n满足a n+2=2⋅a n+1a n(n∈N*),且a1=1,a2=2,则数列a n的前2016项之积为()A.22014B.22015C.22016D.220172.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并满足条件a1>1,且a2020a2021> 1,a2020-1a2021-1<0,下列结论正确的是(多选题)A.S2020<S2021B.a2020a2022-1<0C.数列T n无最大值 D.T2020是数列T n中的最大值题型七“和”定值型递推【典例分析】1.若数列a n满足a n+2a n+1+a n+1a n=k(k为常数),则称数列a n为等比和数列,k称为公比和,已知数列a n是以3为公比和的等比和数列,其中a1=1,a2=2,则a2019=______.【变式演练】1.已知数列{a n}满足a n+a n+1=12(n∈N*),a2=2,S n是数列{a n}的前n项和,则S21为()A.5B.72C.92D.1322.知数列{a n}满足:a n+1+a n=4n-3(n∈N*),且a1=2,则a n=.题型八分段型等差等比求和【典例分析】1.已知数列a n满足a1=2,a n+1=32a n,n为奇数2a n,n为偶数 .(1)记b n=a2n,写出b1,b2,并求数列b n的通项公式;(2)求a n的前12项和.【变式演练】1.已知数列a n满足a1=1,a n+1=a n+1,n=2k-1, a n,n=2k.(1)求a2,a5的值;(2)求a n的前50项和S50.题型九函数中心型倒序求和【典例分析】1.已知A x 1,y 1 ,B x 2,y 2 是函数f (x )=2x 1-2x,x ≠12-1,x =12的图象上的任意两点(可以重合),点M为AB 的中点,且M 在直线x =12上.(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n,求S n ;(3)若在(2)的条件下,存在n 使得对任意的x ,不等式S n >-x 2+2x +t 成立,求t 的范围.【变式演练】2.已知a n 为等比数列,且a 1a 2021=1,若f x =21+x2,求f a 1 +f a 2 +f a 3 +⋯+f a 2021 的值.题型十分组求和型【典例分析】1.已知等比数列a n 的公比大于1,a 2=6,a 1+a 3=20.(1)求a n 的通项公式;(2)若b n =a n +1log 3a n +12log 3a n +22,求b n 的前n 项和T n .【技法指引】对于a n +b n 结构,利用分组求和法【变式演练】1.设S n 为数列a n 的前n 项和,已知a n >0,a 2n +2a n =4S n +3n ∈N *,若数列b n 满足b 1=2,b 2=4,b 2n +1=b n b n +2n ∈N *(1)求数列a n 和b n 的通项公式;(2)设c n =1S n,n =2k -1,k ∈N * b n,n =2k ,k ∈N *求数列c n 的前n 项的和T n .【典例分析】1.已知数列a n 满足a 1=2,且a n +1-3 ⋅a n +1 +4=0,n ∈N *.(1)求证:数列1a n -1是等差数列;(2)若数列b n 满足b n =2n +1a n -1,求b n 的前n 项和.【技法指引】对于a n b n 结构,其中a n 是等差数列,b n 是等比数列,用错位相减法求和;思维结构结构图示如下【变式演练】1.已知等比数列a n 的首项a 1=1,公比为q ,b n 是公差为d d >0 的等差数列,b 1=a 1,b 3=a 3,b 2是b 1与b 7的等比中项.(1)求数列a n 的通项公式;(2)设b n 的前n 项和为S n ,数列c n 满足nc n =a 2n S n ,求数列c n 的前n 项和T n .【典例分析】1.已知数列a n各项均为正数,且a1=2,a n+12-2a n+1=a n2+2a n.(1)求a n的通项公式(2)设b n=-1n a n,求b1+b2+b1+⋯+b20.【变式演练】1.设等差数列a n的前n项和为S n,已知a3+a5=8,S3+S5=10. (1)求a n的通项公式;(2)令b n=(-1)n a n,求数列b n的前n项和T n.题型十三无理根式型裂项相消求和【典例分析】1.设数列a n的前n项和为S n,且满足2S n=3a n-3.(1)求数列a n的通项公式:(2)若b n=a n3,n为奇数1log3a n+log3a n+2,n为偶数,求数列和b n 的前10项的和.【变式演练】1.设数列a n的前n项和S n满足2S n=na n+n,n∈N+,a2=2,(1)证明:数列a n是等差数列,并求其通项公式﹔(2)设b n=1a n a n+1+a n+1a n,求证:T n=b1+b2+⋯+b n<1.题型十四指数型裂项相消【典例分析】1.已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n ;(2)设b n =a n a n +1-1 ⋅a n +2-1 ,求数列b n 的前n 项和T n .【变式演练】1.数列a n 满足:a 1+2a 2+3a 3+⋅⋅⋅+n -1 a n -1=2+n -2 ⋅2n n ≥2 .(1)求数列a n 的通项公式;(2)设b n =a n a n -1 a n +1-1,T n 为数列b n 的前n 项和,若T n <m 2-3m +3恒成立,求实数m 的取值范围.题型十五等差指数混合型裂项【典例分析】1.已知数列a n 满足S n =n a 1+a n 2,其中S n 是a n 的前n 项和.(1)求证:a n 是等差数列;(2)若a 1=1,a 2=2,求b n =2n 1-a n a n a n +1的前n 项和T n .【变式演练】2.已知等比数列a n 的各项均为正数,2a 5,a 4,4a 6成等差数列,且满足a 4=4a 23,数列S n 的前n 项之积为b n ,且1S n +2b n=1.(1)求数列a n 和b n 的通项公式;(2)设d n =b n +2⋅a n b n ⋅b n +1,若数列d n 的前n 项和M n ,证明:730≤M n <13.【典例分析】1.已知数列a n 的满足a 1=1,a m +n =a m +a n m ,n ∈N * .(1)求a n 的通项公式;(2)记b n =(-1)n ⋅2n +1a n a n +1,数列b n 的前2n 项和为T 2n ,证明:-1<T 2n ≤-23.【技法指引】正负相间型裂和,裂项公式思维供参考:-1 n ⋅pn +q kn +b k (n +1)+b=-1 n ⋅t 1kn +b +1k (n +1)+b【变式演练】1.记正项数列a n 的前n 项积为T n ,且1a n =1-2T n .(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅4n +4T n T n +1,求数列b n 的前2n 项和S 2n .【典例分析】1.已知等差数列a n 的前n 项和为S n ,若S 8=4a 4+20,且a 5+a 6=11.(1)求a n 的通项公式;(2)设b n =n 2+n +1a n a n +1,求b n 的前n 项和T n .【变式演练】1.已知等差数列a n 的通项公式为a n =2n -c c <2 ,记数列a n 的前n 项和为S n n ∈N * ,且数列S n 为等差数列.(1)求数列a n 的通项公式;(2)设数列4S n a n a n +1的前n 项和为T n n ∈N * ,求T n 的通项公式.好题演练好题演练1.(山东省泰安市2023届高三二模数学试题)已知数列a n 的前n 项和为S n ,a 1=2,a n ≠0,a n a n +1=4S n .(1)求a n ;(2)设b n =-1 n ⋅3n -1 ,数列b n 的前n 项和为T n ,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,求实数λ的范围.2.(2023·全国·模拟预测)已知正项数列a n 满足a 1=1,a n +1a n =1+1n.(1)求证:数列a 2n 为等差数列;(2)设b n =1a 2n a n +1+a n a 2n +1,求数列b n 的前n 项和T n .3.(2023·全国·学军中学校联考二模)设数列a n 满足a n +1=3a n -2a n -1n ≥2 ,a 1=1,a 2=2.(1)求数列a n 的通项公式;(2)在数列a n 的任意a k 与a k +1项之间,都插入k k ∈N * 个相同的数(-1)k k ,组成数列b n ,记数列b n 的前n 项的和为T n ,求T 27的值.4.(2023·全国·长郡中学校联考二模)已知正项数列a n 的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ∈N *且n ≥2).(1)求数列a n 的通项公式;(2)设数列a n +22n a n a n +1 的前n 项和为T n ,求证:T n <1.5.(2023·四川攀枝花·统考三模)已知等差数列a n的公差为d d≠0,前n项和为S n,现给出下列三个条件:①S1,S2,S4成等比数列;②S4=32;③S6=3a6+2.请你从这三个条件中任选两个解答下列问题.(1)求数列a n的通项公式;(2)若b n-b n-1=2a n n≥2,且b1=3,设数列1b n的前n项和为Tn,求证:13≤T n<12.6.(2023春·江西抚州·高二金溪一中校联考期中)已知数列a n满足a1=2,a n+1= 2a n+2,n为奇数,1 2a n+1,n为偶数.(1)记b n=a2n,证明:数列b n为等差数列;(2)若把满足a m=a k的项a m,a k称为数列a n中的重复项,求数列a n的前100项中所有重复项的和.7.(河北省2023届高三下学期大数据应用调研联合测评(Ⅲ)数学试题)已知数列a n 满足:a 1=12,3a n +1a n =1+a n +11+a n.(1)求证:1a n +1 是等比数列,并求出数列a n 的通项公式;(2)设b n =3n ⋅a n a n +1,求数列b n 的前n 项和S n .8.(2023·全国·模拟预测)已知数列a n 的前n 项和S n 满足S n =n 2-1+a n .(1)求a 1及a n ;(2)令b n =4S n a n a n +1,求数列b n 的前n 项和T n .数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练 29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n中,已知a1=2,a n+1-a n=2n,则a50等于()A.2451B.2452C.2449D.2450【答案】B【详解】由a n+1-a n=2n得:a n-a n-1=2n-1,a n-1-a n-2=2n-2,⋯⋯,a3-a2=2×2,a2-a1=2×1,各式相加可得:a n-a1=2×1+2+⋅⋅⋅+n-1=2×n n-12=n n-1,又a1=2,∴a n=2+n n-1=n2-n+2,∴a50=2500-50+2=2452.故选:B.2.(等比累加法)已知数列a n满足a1=2,a n+1-a n=2n,则a9=()A.510B.512C.1022D.1024【答案】B【详解】由a1=2,a n+1-a n=2n得a2-a1=2,a3-a2=22,a4-a3=23,⋮a n -a n -1=2n -1,以上各式相加得,a n -a 1=2+22+⋯+2n -1=21-2n -11-2=2n -2,所以a n =2n -2+a 1=2n ,所以a 9=29=512.故选:B .【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +1【答案】A【分析】根据题意设a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,所以1,1+3d ,1+24d 构成等比数列,即1+3d 2=1×1+24d ,求出d 即可求解.【详解】设等差数列a n 的公差为d d >0 ,所以a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,又a 1、数列a 2n 的第2项、数列a n 2的第5项恰好构成等比数列,即1,1+3d ,1+24d 构成等比数列,所以1+3d 2=1×1+24d ,解得d =2,d =0(舍去),所以a n =2n -1.故选:A .2.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.【答案】a n =n n +12【分析】由S n =n +23a n ,变形可得则S n -1=n +13a n -1,两式相减变形可得a n a n -1=n +1n -1,又由a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a2a 1×a 1,计算可得a n =n (n +1)2,验证a 1即可得答案.【详解】根据题意,数列{a n }中,a 1=1,S n =n +23a n (n ∈N *),S n =n +23a n ①,S n -1=n +13a n -1②,①-②可得:a n =(n +2)a n 3-(n +1)a n -13,变形可得:a n a n -1=n +1n -1,则a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a 2a 1×a 1=n +1n -1 ×n n -2 ×⋯⋯×31 ×1=n (n +1)2;n =1时,a 1=1符合a n =n (n +1)2;故答案为:a n =n (n +1)2.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【答案】C【详解】令b n =na n ,则b n +1-b n =2n +1,又a 1=13,所以b 1=13,b 2-b 1=3,b 3-b 2=5,⋯,b n -b n -1=2n -1,所以累加得b n =13+n -1 3+2n -1 2=n 2+12,所以a n =b n n =n 2+12n =n +12n,所以a n +1-a n =n +1 +12n +1-n +12n =n -3 n +4 n n +1,所以当n <3时,a n +1<a n ,当n =3时,a n +1=a n ,即a 3=a 4,当n >3时,a n +1>a n ,即a 1>a 2>a 3=a 4<a 5<⋯<a n ,所以数列a n 的最小项为a 3和a 4,故选:C .【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n【答案】D【详解】由题意得,a n +1n +1=a n n +ln n +1n ,则a n n =a n -1n -1+ln n n -1,a n -1n -1=a n -2n -2+lnn -1n -2⋯,a 22=a 11+ln 21,由累加法得,a n n =a 11+ln n n -1+ln n -1n -2⋯+ln 21,即a n n =a 1+ln n n -1⋅n -1n -2⋅⋯⋅21,则an n=2+ln n ,所以a n =2n +n ln n ,故选:D2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n 2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【答案】(1)a n =n +n2n ;(2)1,2,3,4 .【详解】(1)因为a n =n n -1a n -1-n 2n ,所以a n n -a n -1n -1=-12n .因为a 22-a 11=-122,a33-a 22=-123,⋯,a n n -a n -1n -1=-12n ,所以a n n -a 11=-122+123+⋯+12n=-1221-12 n -11-12=12n-12,于是a n=n+n 2n .当n=1时,a1=1+12=32,所以a n=n+n2n.(2)因为S n-S n-1=a n=n+n2n >0,所以S n是递增数列.因为a1=1+12=32,a2=2+24=52,a3=3+323=278,a4=4+424=174,a5=5+525=16532,所以S1=32,S2=4,S3=598,S4=938<12,S5=53732>12,于是所有正整数n的取值集合为1,2,3,4.题型三周期数列型递推【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【答案】-6【解析】由已知有a2=1+a11-a1=-3,a3=1-31+3=-12,a4=1-121+12=13,a5=1+131-13=2,所以a5=a1=2,所以数列a n是周期数列,且周期为4,a1a2a3a4=a5a6a7a8=⋯=a2005a2006a2007a2008=1,而a2009a2010= a1a2=2×(-3)=-6,所以a1a2a3⋯a2010=-6。
城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
数列的综合应用能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系,往往用到转化与化归的思想方法.考向一等差、等比数列的综合应用解决等差数列与等比数列的综合问题,关键是理清两个数列的关系:(1)如果同一数列中部分项成等差数列,部分项成等比数列,则要把成等差数列和成等比数列的项分别抽出来,研究这些项与序号之间的关系;(2)如果两个数列是通过运算综合在一起的,就要从分析运算入手,把两个数列分割开,再根据两个数列各自的特征进行求解.典例1已知各项均为正数的数列{}n a 是公差为2的等差数列,若数列141231,,,,,,,,n a a b b b b 成等比数列,则32b a =A .27B .81C .275D .2435【答案】D【解析】由141,,a a 成等比数列,得2141a a =⨯,又因为正数的数列{}n a 是公差为2的等差数列,所以214116a a a =⨯=+,解得31=a 或12a =-(舍去),所以2325a =+=,因为数列1411,,,,a a b 23,,,,n b b b 成等比数列,设其公比为q ,则131a q ==,所以5313243b =⨯=,所以322435b a =.故选D .【名师点睛】本题考查了等比、等差数列的通项公式的应用,属于基础题.求解时,由141231,,,,,,,,n a a b b b b 成等比数列,结合{}n a 是公差为2的等差数列,得31=a ,进而求出23,a b ,即可得答案.典例2已知等差数列{}n a 中,1242,16a a a =+=.(1)设2n a n b =,求证:数列{}n b 是等比数列;(2)求{}n n a b +的前n 项和.【答案】(1)见解析;(2)()3231142277n n n +++⋅-.【解析】(1)设等差数列{}n a 的公差为d ,由2416a a +=,可得()()11316a d a d +++=,即12416a d +=.又由12a =,可得3d =.故()()1121331n a a n d n n =+-=+-⋅=-,依题意,312n n b -=,因为323131222n n n n b b ++-==(常数),故{}n b 是首项为4,公比8q =的等比数列.(2)因为{}n a 的前n 项和为()()13122n n a a n n ++=,{}n b 的前n 项和为31332142214211877n n n b b q q -+--⋅==⋅---,故{}n n a b +的前n 项和为()3231142277n n n +++⋅-.【名师点睛】本题主要考查了等差数列和等比数列的通项公式,以及等差、等比数列的求和的应用,其中熟记等差、等比数列的通项公式和求和公式是解答的关键,着重考查了推理与运算能力,属于基础题.求解本题时,(1)设{}n a 的公差为d ,由题意求得3d =,即可求得数列的通项公式,进而得到数列{}n b 的通项公式,利用等比数列的定义,即可作出证明;(2)由(1)可得{}n a 的前n 项和和{}n b 的前n 项和,即可得到数列{}n n a b +的前n 项和.1.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和.考向二数列与函数、不等式等的综合应用1.数列可看作是自变量为正整数的一类函数,数列的通项公式相当于函数的解析式,所以我们可以用函数的观点来研究数列.解决数列与函数综合问题的注意点:(1)数列是一类特殊的函数,其定义域是正整数集,而不是某个区间上的连续实数,所以它的图象是一群孤立的点.(2)转化为以函数为背景的条件时,应注意题中的限制条件,如函数的定义域,这往往是非常容易忽视的问题.(3)利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化.2.数列与不等式的综合问题是高考考查的热点.考查方式主要有三种:(1)判断数列问题中的一些不等关系;(2)以数列为载体,考查不等式的恒成立问题;(3)考查与数列问题有关的不等式的证明问题.在解决这些问题时,要充分利用数列自身的特点,例如在需要用到数列的单调性的时候,可以通过比较相邻两项的大小进行判断.在与不等式的证明相结合时,注意构造函数,结合函数的单调性来证明不等式.典例3已知函数()x f x a =的图象过点11,2⎛⎫ ⎪⎝⎭,且点()*21,n a n n n ⎛⎫-∈ ⎪⎝⎭N 在函数()x f x a =的图象上,又{}n b 为等比数列,3144,b a b a ==.(1)求数列{}n a 及{}n b 的通项公式;(2)若()31n n n n a b c n +⋅⋅=,数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:4n S <.【答案】(1)212n n n a -=,32n n b -=;(2)见解析.【解析】(1) 函数()x f x a =的图象过点11,2⎛⎫ ⎪⎝⎭,()11,22x a f x ⎛⎫∴== ⎪⎝⎭.又点()*21,n a n n n ⎛⎫-∈ ⎪⎝⎭N 在函数()x f x a =的图象上,从而2112n n a n -=,即212n n n a -=,∴31441,2,b a b a ====∴公比2,q =3332n n n b b q --∴=⋅=.(2)()()()231312313124n n n n n n n n a b n n c n n --+⋅⋅+⋅⋅+⋅===,()()141211111112124313313313331n c n n n n n n n n n n ⎛⎫⎛⎫⎛⎫∴===<-=- ⎪ ⎪ ⎪+⋅++++⎝⎭⎝⎭⎝⎭,121111111114141422311n n S c c c n n n ⎛⎫⎛⎫∴=+++<-+++-=-< ⎪++⎝⎭⎝⎭.【名师点睛】本题考查了通过点在函数图象上求出函数解析式、以及考查求等比数列的通项公式、利用裂项相消法求数列的前n 项和.2.已知数列{}n a 为等比数列,数列{}n b 为等差数列,且111b a ==,212b a a =+,3326a b =-.(1)求数列{}n a ,{}n b 的通项公式;(2)设21n n n c b b +=,数列{}n c 的前n 项和为n T ,证明:1153n T ≤<.考向三等差、等比数列的实际应用1.数列实际应用中的常见模型①等差模型:增加或减少的量是一个固定的常数c ,c 是公差;②等比模型:后一个量与前一个量的比是一个固定的常数q ,q 是公比;③递推数列模型:题目中给出的前后两项之间的关系不固定,随项的变化而变化,由此列递推关系式.2.解答数列实际应用题的步骤①审题:仔细阅读题干,认真理解题意;②建模:将已知条件翻译成数学语言,将实际问题转化为数学问题;③求解:求出该问题的数学解;④还原:将所求结果还原到实际问题中.在实际问题中建立数学模型时,一般有两种途径:①从特例入手,归纳猜想,再推广到一般结论;②从一般入手,找到递推关系,再进行求解.典例4某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年比上一年增加4万美元,每年销售蔬菜收入50万美元,设f (n )表示前n 年的纯利润(f (n )=前n 年的总收入-前n 年的总支出-投资额).(1)从第几年开始获得纯利润?(2)若五年后,该台商为开发新项目,决定出售该厂,现有两种方案:①年平均利润最大时,以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂.问哪种方案较合算?【解析】由题意,知每年的经费构成了以12为首项,4为公差的等差数列,则f (n )=50n-[12n+()12n n -×4]-72=-2n 2+40n-72.(1)获得纯利润就是要求f (n )>0,即-2n 2+40n-72>0,解得2<n <18.又n ∈N *,故从第三年开始获得纯利润.(2)①年平均利润为op =40-2(n+36)=16-2(-2≤16,当且仅当n =6时取等号.故此方案获利6×16+48=144万美元,此时n =6.②f (n )=-2n 2+40n-72=-2(n-10)2+128,当n =10时,f (n )max =128.故此方案共获利128+16=144万美元.比较两种方案,在获利相同的前提下,第①种方案只需六年,第②种方案需要十年,故选择第①种方案.3.某人的月工资由基础工资和绩效工资组成,2010年每月的基础工资为2100元、绩效工资为2000元,从2011年起每月基础工资比上一年增加210元,绩效工资为上一年的110%.照此推算,此人2019年的年薪为______万元(结果精确到0.1).考向四数列中的探索性问题对于数列中的探索性问题主要表现为存在型,解答此类问题的一般策略是:(1)先假设所探求对象存在或结论成立,以此假设为前提进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在;(2)若推不出矛盾,能求得符合题意的数值或取值范围,则能得到肯定的结论,即得到存在的结果.典例5已知数列{}满足1=0,218a =,且对任意,∈∗都有()221211324m n m n a a a m n --+-+=+-.(1)求3,5;(2)设=2r1−2K1(∈∗).①求数列{}的通项公式;②设数列11n n b b +⎧⎫⎨⎬⎩⎭的前项和为,是否存在正整数,,且1<<,使得1,,成等比数列?若存在,求出,的值,若不存在,请说明理由.【解析】(1)由题意,令=2,=1,则()231232214a a a +=+-,解得3=1.令=3,=1,则()251332314a a a +=+-,解得5=5.(2)①以+2代替,得2r3+2K1=22r1+3.则[2(r1)+1−2(r1)−1]−(2r1−2K1)=3,即r1−=3.所以数列{}是以3为公差的等差数列.1=3−1=1,∴=1+(−1)×3=3−2.②因为()()111111323133231n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭,所以11111111113447323133131n n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,则1=14,=3r1,=3r1.因为1,,成等比数列,所以2131431p q p q ⎛⎫=⋅ ⎪++⎝⎭,即26134p q p q ++=.又1<<,所以34433q q q +=+>,则2613p p +>,解得3333p -+<<.又1<,且∈∗,则=2,=16.所以存在正整数=2,=16,使得1,,成等比数列.4.已知公差不为零的等差数列{}n a 满足11a =,2a 是1a 与5a 的等比中项.(1)求数列{}n a 的通项公式;(2)设2n an b =,判断数列{}n b 是否为等比数列.如果是,求数列{}n b 的前n 项和n S ,如果不是,请说明理由.考向五数列的求和求数列的前n 项和,根据数列的不同特点,通常有以下几种方法:(1)公式法,即直接利用等差数列、等比数列的求和公式求解;(2)倒序相加法,即如果一个数列的前n 项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前n 项和.(3)裂项相消法,即将数列的通项拆成结构相同的两式之差,然后消去相同的项求和.使用此方法时必须注意消去了哪些项,保留了哪些项,一般未被消去的项有前后对称的特点.常见的裂项方法有:(4)错位相减法,若数列{}n a 是等差数列,{}n b 是等比数列,且公比为(1)q q ≠,求{}n n a b ⋅的前n 项和时,常用错位相减法求和.基本步骤是:列出和式,两边同乘以公比,两式相减并求和.在写出n S 与n qS 的表达式时,要将两式“错项对齐”,便于准确写出n n S qS -的表达式.在运用错位相减法求和时需注意:①合理选取乘数(或乘式);②对公比q 的讨论;③两式相减后的未消项及相消项呈现的规律;④相消项中构成数列的项数.(5)分组求和法,如果一个数列可写成n n n c a b =±的形式,而数列{}n a ,{}n b 是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法.典例6已知等比数列的前n 项和为,且满足.(1)求的值及数列的通项公式;(2)若数列满足,求数列的前n 项和.【解析】(1)由题意知1122222,2n n n n n n a S S p p n +-=-=+--=³,则234,8a a ==,又1142a S p ==+,且{}n a 成等比数列,则48424p =+,解得1p =-.则112,222n n n a a -==⨯=.(2)由1(3),2n n a b n a p +=+可得2n n n b =,则212222n n n T =+++ ,2311122222n n n T +=+++ ,两式相减得231111(1)11111221222222212n n n n n n n T ++-=++++-=-- ,则11222n n n n T -=--.典例7已知数列{}n a 是公差不为0的等差数列,12a =,且2a ,3a ,41a +成等比数列.(1)求数列{}n a 的通项公式;(2{}n b 的前n 项和n S .【解析】(1)设数列{}n a 的公差为d ,由12a =和2a ,3a ,41a +成等比数列,得,解得,或.当时,,与成等比数列矛盾,舍去,,即数列的通项公式为(2)=,1211111111223111n n n S b b b n n n n =+++=-+-++=-=+++.5.设数列{}n a 满足*123232()n n a a na a n ⋅⋅⋅⋅=∈ N .(1)求{}n a 的通项公式;(2)求数列122n n a +⎧⎫+⎨⎬⎩⎭的前n 项和n S .1.在等差数列{}n a 中,11a =,且21a a -,31a a -,41a a +成等比数列,则5a =A .7B .8C .9D .102.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则A .10a d >,40dS >B .10a d <,40dS <C .10a d >,40dS <D .10a d <,40dS >3.已知等比数列{}n a 中,23a =,581a =,3log n n b a =,数列{}n b 的前n 项和为n T ,则8T =A .36B .28C .45D .324.在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做“等和数列”,这个数叫做数列的公和.已知等和数列{a n }中,12a =,公和为5,则18=a A .2B .﹣2C .3D .﹣35.中国人在很早就开始研究数列,中国古代数学著作《九章算术》、《算法统宗》中都有大量古人研究数列的记载.现有数列题目如下:数列{}n a 的前n 项和214n S n =,*n ∈N ,等比数列{}n b 满足112b a a =+,234b a a =+,则3b =A .4B .5C .9D .166.如图所示的三角形数阵满足:其中第一行共有一项:02,第二行共有二项:12,22,第三行共有三项:32,42,52,依此类推,第n 行共有n 项,若该数阵的第15行中的第5个数是2m ,则m =A .105B .109C .110D .2157.已知数列{}n a 的通项公式)*11n a n n n =∈++N ,数列{}n a 的前n 项和n S 满足()*9n S n >∈N ,则n 的最小值为A .98B .99C .100D .1018.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足:100010182πa a +=,620122b b =,则2201632015tan 1a a b b +=+__________.9.在等比数列{}n a 中,14a ,42a ,7a 成等差数列,则35119a a a a +=+_______.10.已知函数2()cos(π)f n n n =,且()(1)n a f n f n =++,则1220a a a +++= __________.11.设n S 为数列{}n a 的前n 项和,已知37a =,()12222n n a a a n -=+-≥.(1)证明:{}1n a +为等比数列;(2)求{}n a 的通项公式,并判断n ,n a ,n S 是否成等差数列?12.已知等比数列{}n a 的前n 项和为n S ,公比0q >,2222S a =-,342S a =-.(1)求等比数列{}n a 的通项公式;(2)设2log n n b a =,求11{}n n b b +的前n 项和n T .13.已知数列{}n a 的前n 项和为n S ,点()()*,n n S n ∈N在函数2()2f x x x =+的图象上.(1)求数列{}n a 的通项公式;(2)设12n a n n b a -=,求数列{}n b 的前n 项和n T .14.设等差数列{}n a 的前n 项和为n S ,且534,,2S S S 成等差数列,521322a a a =+-.(1)求数列{}n a 的通项公式;(2)设12n n b -=,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T .15.已知正项数列{}n a 的前n 项和为n S,1n a =-.(1)求1a 的值,并求数列{}n a 的通项公式n a ;(2)设2n an n b a =+,数列{}n b 的前n 项和为n T ,求使不等式2626n n T n <+- 成立的正整数n 组成的集合.1.(2018浙江)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>2.(2017新课标全国Ⅲ理科)等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .24-B .3-C .3D .83.【2017年高考全国I 卷理数】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A .440B .330C .220D .1104.(2017北京理科)若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =___________.5.(2019年高考全国II 卷理数)已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列;(2)求{a n }和{b n }的通项公式.6.(2017天津理科)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列221{}n n a b -的前n 项和()n *∈N .7.(2019年高考浙江卷)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n c n *=∈N证明:12+.n c c c n *++<∈N8.(2019年高考天津卷理数)设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n k k c n c b n +=⎧<<=⎨=⎩其中*k ∈N .(i )求数列(){}221n n a c -的通项公式;(ii )求()2*1ni i i a c n =∈∑N .变式拓展1.【答案】(1)21,3n n n a n b =+=;(2)()331(2)2n n n -++.【解析】(1)由11a b =,42a b =,得4212341223()()12S T a a a a b b a a -=+++-+=+=,设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =.所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3n n b =.(2)由(1)知(21)3n n n a b n +=++,所以{}n n a b +的前n 项和为1212()()n n a a a b b b +++++++ 2(3521)(333)n n =++++++++ (321)3(13)213n n n ++-=+-3(31)(2)2n n n -=++.【名师点睛】本题主要考查等差数列与等比数列,熟记通项公式、前n 项和公式即可,属于常考题型.(1)先由题中条件得到422312S T a a -=+=,再设等差数列{}n a 的公差为d ,结合题中数据求出公差,进而可得{}n a 的通项公式;设等比数列{}n b 的公比为q ,求出公比,即可得出{}n b 的通项公式;(2)先由(1)的结果,得到(21)3n n n a b n +=++,再由分组求和法,结合等差数列与等比数列前n 项和公式,即可得出结果.2.【答案】(1)12,21n n n a b n -==-;(2)1153n T ≤<.【解析】(1)设数列{}n a 的公比为q ,数列{}n b 的公差为d ,由题意得11d q +=+,()22126q d =+-,解得2d q ==,所以12,21n n n a b n -==-.(2)因为21n n n c b b +=()()1111212342123n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以111111111453723212123n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111432123342123n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭,因为111042123n n ⎛⎫+> ⎪++⎝⎭,所以13n T <,又因为{}n T 在[)1,+∞上单调递增,所以当1n =时,n T 取最小值115T =,所以1153n T ≤<.【名师点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是熟悉式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k⎛⎫=- ⎪++⎝⎭;(21k =;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦.此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.3.【答案】10.4【解析】由题意可得,基础工资构成以2100元为首项,以210元公差的等差数列,绩效工资构成以2000元为首项,以公比为1.1的等比数列,则此人2019年每月的基础工资为()21002101013990+⨯-=元,每月的绩效工资为92000 1.14715.90⨯≈元,则此人2019年的年薪为()1239904715.9010.4⨯+≈万元,故答案为:10.4.【名师点睛】本题考查了等差数列和等比数列在实际生活中的应用,属于中档题.4.【答案】(1)21n a n =-;(2)是,()2413n n S =⨯-.【解析】(1)设等差数列{}n a 的公差为()d d ≠0,则由11a =得21511;414a a d d a a d d =+=+=+=+,因为2a 是1a 与5a 的等比中项,所以2215a a a =⋅,即2(1)14d d +=+,解得0d =(舍)或2d =,故数列{}n a 的通项公式为1(1)21n a a n d n =+-⋅=-.(2)由2n a n b =,得①当1n =时,11220a b ==≠;②当2n ≥时,12123122422n n a n n a n n b b ----===,故数列{}n b 是以2为首项,4为公比的等比数列,所以()111422411143n n n n q S b q --=⋅=⋅=⨯---.【名师点睛】本题主要考查等差数列与等比数列,熟记等差数列与等比数列的通项公式以及求和公式即可,属于常考题型.(1)先设等差数列{}n a 的公差为()d d ≠0,根据题中条件求出公差,即可得到通项公式;(2)根据2n an b =,结合等比数列的定义,可判断出{}n b 为以2为首项,4为公比的等比数列,进而可求出结果.5.【答案】(1)2n a n =;(2)()()111222n n n n ++-⋅++.【解析】(1)由n =1得12a =,因为*123232()n n a a na a n ⋅⋅⋅⋅=∈ N ,所以当n ≥2时,()()1123123122n n a a a n a n --⋅⋅⋅⋅-=≥ ,由两式作商得:2n a n=(n >1且n ∈N *),又因为1a =2符合上式,所以2n a n=(n ∈N *).(2)设122n n nb a ++=,则b n =n +n ·2n ,所以S n =b 1+b 2+…+b n =(1+2+…+n )+23122232(1)22n n n n -⎡⎤+⋅+⋅++-+⋅⎣⎦设T n =2+2·22+3·23+…+(n -1)·2n -1+n ·2n ,①所以2T n =22+2·23+…+(n -2)·2n -1+(n -1)·2n +n ·2n +1,②①-②得:-T n =2+22+23+…+2n -n ·2n +1,所以T n =(n -1)·2n +1+2.所以()12n n n n S T +=+,即()()111222n n n n S n ++=-⋅++.【名师点睛】本题主要考查了赋值法及方程思想,还考查了分组求和法及乘公比错位相减法求和,考查计算能力及转化能力,属于中档题.求解时,(1)在*123232()n n a a na a n ⋅⋅⋅⋅=∈ N 中,将1n -代n 得:()()1123123122n n a a a n a n --⋅⋅⋅⋅-=≥ ,由两式作商得:2n a n=,问题得解.(2)利用(1)中结果求得b n =n +n ·2n ,分组求和,再利用等差数列前n 项和公式及乘公比错位相减法分别求和即可得解.专题冲关1.【答案】C【解析】设等差数列{}n a 的公差为d ,由213141,,a a a a a a --+成等比数列,得()()()2312141a a a a a a -=-+,即()()2223d d d =⋅+,解得2d =或0d =(舍去),所以5141429a a d =+=+⨯=,故选C.【名师点睛】本题主要考查了等比中项的应用,以及等差数列通项公式的应用,着重考查了运算与求解能力,属于基础题.由213141,,a a a a a a --+成等比数列,求得2d =,再由等差数列的通项公式,即可求解.2.【答案】B【解析】()()()224381111327530a a a a d a d a d d a =⨯⇒+=++⇒+=,不妨令15a =-,3d =,42S =-.故选B.【名师点睛】本小题主要考查等比中项的性质,考查等差数列基本量的计算,属于基础题.根据等比中项列方程,然后利用基本元的思想,将已知转化为1,a d 的形式,用特殊值法选出正确选项.3.【答案】B【解析】由题可得:352273a q q a ==⇒=,所以2212333n n n n a a q ---==⋅=,故13log 31n n b n -==-,所以{}n b 是以公差为1的等差数列,故()1888282b b T +==,故选B .【名师点睛】本题考查等比数列和等差数列的通项和前n 项和,先求出q =3,得到等比数列的通项是解题的关键,属于基础题.根据23a =,581a =可以先求出公比q ,然后根据等比数列通项公式得到n a ,从而得到{}n b 为等差数列,再根据等差求和公式即可.4.【答案】C【解析】根据题意,等和数列{a n }中,12a =,公和为5,则125a a +=,可得23a =,又由a n −1+a n =5,则n a 23n n ⎧=⎨⎩,为奇数,为偶数,则18=a 3.故选C .【名师点睛】本题主要考查了新概念知识,考查理解能力及转化能力,还考查了数列的周期性,属于中档题.5.【答案】C【解析】由题意可得:211221214b a a S =+==⨯=,22234421142344b a a S S =+=-=-⨯=,则等比数列的公比21331b q b ===,故32339b b q ==⨯=.本题选择C 选项.6.【答案】B【解析】由题中三角形数阵中可知,第一行有1个数字,第二行有2个数字,第三行由3个数字, ,第n 行有n 个数字,由等差数列的前n 项和公式可得前14行共有()141141052⨯+=个数字,即第14行的最后一个数字为1042,所以第15行的第1个数字为1052,第15行的第5个数字为1092,故选B .【名师点睛】本题主要考查了数表、数阵数列的应用,其中根据数表、数阵数列的数字排列规律,合理利用等差、等比数列的通项公式和前n 项和公式求解是解答的关键,着重考查了分析问题和解答问题的能力,以及转化与化归思想的应用.解本题时,根据三角形数阵的数字的排列规律,利用等差数列的求和公式,可计算得出第14行的最后一个数字,从而求得第15行的第5个数字的值.7.【答案】C【解析】化简n a,得到通项公式为:n a =n a =-,1n a -=,11a =,则有1n S =10>99n ⇒>,则n 的最小值为100.故选C.【名师点睛】本题考查累加法求和,属于基础题.对于本题,化简n a ,利用累加法直接求n S 得值即可.8.【答案】【解析】∵数列{}n a 是等差数列,数列{}n b 是等比数列,∴10001018100922πa a a +==,即1009πa =;26201210092b b b ⋅==.∴220161009232015100922πtantan tan 113a a ab b b +===++.故答案为.9.【答案】14【解析】14a ,42a ,7a 成等差数列,17444a a a ∴+=,即6311144a a q a q +=,解得:32q =,243511108611911114a a a q a q a a a q a q q ++∴===++.本题正确结果:14.【名师点睛】本题考查等差数列和等比数列的综合应用问题,关键是能够求解出等比数列的基本量,属于基础题.求解时,根据三项成等差数列可构造方程求得等比数列的公比q 满足32q =,将所求式子化为1a 和q 的形式,化简可得结果.10.【答案】20-【解析】当n 为奇数时,()()1n a f n f n =++()()()()2222cos π1cos 1π121n n n n n n n -⎡⎤==++=+⎣⎦++.当n 为偶数时,()()1n a f n f n =++()()()()2222cos π1cos 1π121n n n n n n n ⎡⎤=+-=-+++⎣⎦-=.()21,21n n n a n n 为奇数,为偶数+⎧⎪∴=⎨-+⎪⎩.所以1220357911133941a a a +++=-+-+-++- ()()()()()35791113394121020-+-+-++-=-⨯=-= .【名师点睛】本题主要考查了分类思想及分组求和方法,考查计算能力,属于中档题.求解时,对n 的取值分奇数、偶数求得n a ,再利用分组求和法求和即可.11.【答案】(1)见解析;(2)见解析.【解析】∵37a =,3232a a =-,∴23a =,∴121n n a a -=+,∴11a =,()1111222211n n n n a a n a a ---++==≥++,∴{}1n a +是首项为2,公比为2的等比数列.(2)由(1)知,12nn a +=,∴21nn a =-,∴11222212n n n S n n ++-=-=---,∴()12222210n n n n n S a n n ++-=+----=,∴2n n n S a +=,即n ,n a ,n S 成等差数列.【思路点拨】(1)根据条件构造等比数列:1121n n a a -+=+(),再根据等比数列的定义给予证明;(2)先根据等比数列通项公式求得12nn a +=,即得{}n a 的通项公式,再根据分组求和法得n S ,最后判断2n n n S a +=是否成立.12.【答案】(1)2nn a =;(2)1n nT n =+.【解析】(1)等比数列{}n a 的前n 项和为n S ,公比0q >,2222S a =-①,342S a =-②.②﹣①,得3422a a a =-,则220q q --=,又0q >,所以2q =,因为2222S a =-,所以12222a a a +=-,所以12a =,所以2n n a =.(2)由(1)得22log log 2nn n b a n ===,所以11111(1)1n n b b n n n n +==-++,所以11{}n n b b +的前n 项和11111111223111n n T n n n n =-+-++-=-=+++ .【名师点睛】裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.【答案】(1)21n a n =+()*n ∈N ;(2)1614499n n n T ++=-.【解析】(1)把点()()*,n n S n ∈N 代入2()2f x xx =+得22n S n n =+,*n ∈N ,则1n =时,13a =,2n ≥时,2212(1)2(1)21n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦,经验证,1n =也满足21n a n =+()*n ∈N ,所以21n a n =+()*n ∈N .(2)由(1)得21n a n =+,所以12(21)4n a n n n b a n -==+,则123434547494(21)4nn T n =⨯+⨯+⨯+⨯+++ ,①23414345474(21)4(21)4n n n T n n +=⨯+⨯+⨯++-++ ,②①-②得1234133424242424(21)4n n n T n +-=⨯+⨯+⨯+⨯++⨯-+ ()124144(21)414n n n +⨯-=+-+-故1614499n n n T ++=-.【名师点睛】本题主要考查了数列通项的求法,以及数列前n 项和的方法.求数列通项常用的方法有:累加法、累乘法、定义法、配凑法等.求数列前n 项和常用的方法有:错位相减、裂项相消、公式法、分组求和等.属于中等题.14.【答案】(1)a n =2n −1;(2)12362n n n T -+=-.【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,由534,,2S S S 成等差数列,可知345S S S +=,即120,a d -=①由521322a a a =+-得:1420a d --=,②联立①②解得11,2a d ==.因此,()*21n a n n =-∈N.(2)令()11212n n n n a c n b -⎛⎫==- ⎪⎝⎭,则12n n T c c c =+++ ,∴()21111113521222n n T n -⎛⎫⎛⎫=⋅+⋅+⋅++-⋅ ⎪ ⎝⎭⎝⎭,③()23111111352122222nn T n ⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-⋅ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,④③−④,得()2111111122122222n nn T n -⎡⎤⎛⎫⎛⎫⎛⎫=+⋅+++--⋅⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 111212n -⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()1212n n ⎛⎫--⋅ ⎪⎝⎭=2332nn +-,所以12362n n n T -+=-.【名师点睛】本题主要考查等差数列的公差及首项的求法,是中档题,解题时要认真审题,注意等差数列的性质、错位相减法的合理运用.15.【答案】(1)11,21n a a n ==-;(2){}1,2.【解析】(1)由1n a =-,得当1n =时,11a =;当2n时,1n n n a S S -=-,代入已知有11n n S S -=-+,即211)n S -=-.又0n a >,1=-(舍)1=-1(2)n -=,由定义得是以1为首项,1为公差的等差数列,n =,则21n a n =-.(2)由题得212=212n an n n b a n -=+-+,所以数列{}n b 的前n 项和212122222=(121)233n n n n T n n ++--+-+=+.因为2626nn T n <+- ,所以2(2)9280,n n -⋅+<即128n <<,所以03n <<.所以正整数n 组成的集合为{1,2}.【名师点睛】本题主要考查数列的通项,考查等差、等比数列求和,考查数列分组求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.求解时,(1)由数列递推式求出首项,进一步得到是以1为首项,1为公差的等差数列,求出等差数列的通项公式可得n S ,代入1n a =求得数列{}n a 的通项公式;(2)先求出212223n n T n +-=+,再代入不等式解不等式即得解.直通高考1.【答案】B 【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意;若公比1q ≤-,则()()212341110,a a a a a q q+++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230ln a a a a a a a +++≤<++,不合题意;因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥2.【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A .【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.3.【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=,所以对应满足条件的最小整数293054402N ⨯=+=,故选A.【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.4.【答案】1【解析】设等差数列的公差和等比数列的公比分别为d 和q ,则3138d q -+=-=,求得2,3q d =-=,那么221312a b -+==.【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.5.【答案】(1)见解析;(2)1122n n a n =+-,1122n n b n =-+.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+.又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列.(2)由(1)知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【名师点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.6.【思路分析】(1)根据等差数列和等比数列通项公式及前n 项和公式列方程求出等差数列的首项1a 和公差d 及等比数列的公比q ,即可写出等差数列和等比数列的通项公式;(2)利用错位相减法即可求出数列221{}n n a b -的前n 项和.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以2nn b =.由3412b a a =-,可得138d a -=①.由114=11S b ,可得1516a d +=②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,故23245484(31)4nn T n =⨯+⨯+⨯++-⨯ ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯ 112(14)4(31)414n n n +⨯-=---⨯-1(32)48n n +=--⨯-,即1328433n n n T +-=⨯+,所以数列221{}n n a b -的前n 项和为1328433n n +-⨯+.【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和.7.【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析.【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N .所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-.所以2*,n b n n n =+∈N .(2)*n c n ===∈N .我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++< .那么,当1n k =+时,121k k c c c c +++++<<<=-=.即当1n k =+时不等式也成立.根据(i )和(ii),不等式12n c c c +++< 对任意*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.8.【答案】(1)31n a n =+;32n n b =⨯;(2)(i )()221941n n na c -=⨯-;(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N .【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n n n n a n n b -=+-⨯=+=⨯=⨯.所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.。
高考数学二轮复习数列多选题知识点总结及答案一、数列多选题1.已知等差数列{}n a 的前n 项和为n S ,若831a =,10210S =,则( )A .19919S a =B .数列{}22na 是公比为8的等比数列C .若()1nnnb a =-⋅,则数列{}n b 的前2020项和为4040D .若11n n n b a a +=,则数列{}n b 的前2020项和为202024249【答案】CD 【分析】由等差数列性质可判断A ;结合已知条件可求出等差数列的公差,从而可求出通项公式以及22n a ,结合等比数列的定义可判断B ;写出n b ,由定义写出2020T 的表达式,进行分组求和即可判断C ;11144143n b n n ⎛⎫=- ⎪-+⎝⎭,裂项相消即可求和.【详解】由等差数列的性质可知,191019S a =,故A 错误;设{}n a 的公差为d ,则有811017311045210a a d S a d =+=⎧⎨=+=⎩,解得13a =,4d =,故41n a n =-,28122na n -=, 则数列{}22na 是公比为82的等比数列,故B 错误;若()()()1141nnnn b a n =-⋅=-⋅-,则{}n b 的前2020项20203711158079410104040T =-+-+-⋅⋅⋅+=⨯=,故C 正确; 若()()1111414344143n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,则{}n b 的前2020项和2020111111120204377118079808324249T ⎛⎫=-+-+⋅⋅⋅+-=⎪⎝⎭,故D 正确. 故选:CD . 【点睛】 方法点睛:求数列的前n 项和常见思路有:1、对于等差和等比数列,直接结合求和公式求解;2、等差数列±等比数列时,常采取分组求和法;3、等差数列⨯等比数列时,常采取错位相减法;4、裂项相消法.2.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误; 故选:BC.3.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( ) A.若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.4.已知等差数列{}n a 中,59a a =,公差0d >,则使得前n 项和n S 取得最小值的正整数n 的值是( ) A .5 B .6C .7D .8【答案】BC 【分析】分析出数列{}n a 为单调递增数列,且70a =,由此可得出结论. 【详解】在等差数列{}n a 中,59a a =,公差0d >,则数列{}n a 为递增数列,可得59a a <,59a a ∴=-,可得5975202a a a a +==>,570a a ∴<=,所以,数列{}n a 的前6项均为负数,且70a =, 因此,当6n =或7时,n S 最小. 故选:BC. 【点睛】方法点睛:本题考查等差数列前n 项和最大值的方法如下:(1)利用n S 是关于n 的二次函数,利用二次函数的基本性质可求得结果; (2)解不等式0n a ≥,解出满足此不等式的最大的n 即可找到使得n S 最小.5.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n na2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.6.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 【答案】BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确; 若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确.故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.7.已知数列{}n a ,下列结论正确的有( ) A .若12a =,11n n a a n +++=,则20211a =.B .若11132n n a a a ++=,=,则71457a =C .若12nn S =3+,则数列{}n a 是等比数列 D .若11212n n n a a a a ++=,=()*n N ∈,则15215a = 【答案】AB 【分析】直接利用叠加法可判断选项A ,从而判断,利用构造新数列可求出B,D 中数列的通项公式,可判断,选项C 求出数列的前3项从而可判断. 【详解】选项A. 由11n n a a n +=++,即11n n a a n +-=+ 则()()()()19191818120207121a a a a a a a a a a =-+-+-++-+20191822211=+++++=故A 正确.选项B. 由132n n a a +=+,得()1311n n a a +=++,所以数列{}1n a +是以112a +=为首项,3为公比的等比数列.则1123n n a -+=⨯,即1231n n a -=⨯-,所以672311457a =⨯-=,故B 正确.选项C. 由12nn S =3+,可得当1n =时,11722a =+=3 当2n =时,得2211193622a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 当3n =时,得332112791822a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 显然2213a a a ≠,所以数列{}n a 不是等比数列,故C 错误. 选项D. 由122nn n a a a +=+,可得11112n n a a +-= 所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,12为公差的等差数列. 所以()1111122n n n a +=+-=,则1511826a ==,即1518a =,故D 错误. 故选:AB 【点睛】关键点睛:本题考查利用递推关系求数列的通项公式,解答的关键是掌握求数列通项公式的常见方法,由叠加法可得()()()()19191818120207121a a a a a a a a a a =-+-+-++-+,利用构造新数列()1311n n a a +=++,11112n n a a +-=解决问题,属于中档题.8.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n nF n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .()1122n n F n ⎡⎤⎛⎛⎫⎥=+ ⎪ ⎪⎥⎝⎭⎝⎭⎦【答案】BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥,所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭为公比的等比数列, 所以()()1nF n n +-=⎝⎭115()n -=+, 令1nn n F b-=⎝⎭,则11n n b ++,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭以510-32-为公比的等比数列, 所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.二、平面向量多选题9.下列关于平面向量的说法中正确的是( )A .已知,a b 均为非零向量,若//a b ,则存在唯一的实数λ,使得λabB .已知非零向量(1,2),(1,1)a b ==,且a 与a λb +的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭C .若a c b c ⋅=⋅且0c ≠,则a b =D .若点G 为ABC 的重心,则0GA GB GC ++= 【答案】AD 【分析】由向量共线定理可判断选项A ;由向量夹角的的坐标表示可判断选项B ;由数量积的运算性质可判断选项C ;由三角形的重心性质即向量线性运算可判断选项D. 【详解】对于选项A : 由向量共线定理知选项A 正确;对于选项B :()()()1,21,11,2a b λλλλ+=+=++,若a 与a λb +的夹角为锐角,则()()122530a a b λλλλ⋅+=+++=+>解得53λ>-,当a 与a λb +共线时,()221λλ+=+,解得:0λ=,此时(1,2)a =,()1,2a b λ+=,此时a b =夹角为0,不符合题意,所以实数λ的取值范围是()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭,故选项B 不正确; 对于选项C :若a c b c ⋅=⋅,则()0c a b ⋅-=,因为0c ≠,则a b =或c 与a b -垂直, 故选项C 不正确;对于选项D :若点G 为ABC 的重心,延长AG 与BC 交于M ,则M 为BC 的中点,所以()1222AG GM GB GC GB GC ==⨯⨯+=+,所以0GA GB GC ++=,故选项D 正确.故选:AD 【点睛】易错点睛:两个向量夹角为锐角数量积大于0,但数量积大于0向量夹角为锐角或0,由向量夹角为锐角数量积大于0,需要检验向量共线的情况. 两个向量夹角为钝角数量积小于0,但数量积小于0向量夹角为钝角或π.10.已知直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,线段AB 是圆()()22:114C x y +++=的一条动弦,G 为弦AB 的中点,23AB =( )A .弦AB 的中点轨迹是圆B .直线12,l l 的交点P 在定圆()()22222x y -+-=上 C .线段PG 长的最大值为421 D .PA PB ⋅的最小值642+ 【答案】ABC 【分析】对于选项A :设()00,G x y ,利用已知条件先求出圆心到弦AB 的距离CG ,利用两点之间的距离公式即可得到结论;对于选项B :联立直线的方程组求解点P 的坐标,代入选项验证即可判断;对于选项C :利用选项A B 结论,得到圆心坐标和半径,利用1112max PG PG r r =++求解即可;对于选项D :利用平面向量的加法法则以及数量积运算得到23PA PB PG ⋅==-,进而把问题转化为求1112min PG PG r r =--问题,即可判断.【详解】对于选项A :设()00,G x y ,23AB =G 为弦AB 的中点, 3GB ∴=,而()()22:114C x y +++=, 半径为2,则圆心到弦AB 的距离为()22231CG =-=,又圆心()1,1C --,()()2200111x y ∴+++=,即弦AB 的中点轨迹是圆. 故选项A 正确; 对于选项B : 由310310mx y m x my m --+=⎧⎨+--=⎩,得222232113211m m x m m m y m ⎧++=⎪⎪+⎨-+⎪=⎪+⎩, 代入()()2222x y -+-整理得2, 故选项B 正确;对于选项C :由选项A 知:点G 的轨迹方程为:()()22111x y +++=,由选项B 知:点P 的轨迹方程为:()()22222x y -+-=,()()11121,1,1,2,2,G r P r ∴--=所以线段1112max 11PG PG r r =++=+=,故选项C 正确; 对于选项D :()()PA PB PG GA PG GB ⋅=+⋅+ ()2PG PG GA GB GA GB =+⋅++⋅ 22203PG PG GB PG =+⋅-=-,故()()2minmin3PA PBPG ⋅=-,由选项C知:1112min 11PG PG r r =--=-=,所以()()2min136PA PB⋅=-=-,故选项D 错误; 故选:A B C. 【点睛】关键点睛:本题考查了求圆的轨迹问题以及两个圆上的点的距离问题.把两个圆上的点的距离问题转化为两个圆的圆心与半径之间的关系是解决本题的关键.。
高考数学二轮复习数列多选题知识归纳总结及解析一、数列多选题1.各项均为正数的等比数列{}n a 的前n 项积为n T ,若11a >,公比1q ≠,则下列命题正确的是( )A .若59T T =,则必有141T =B .若59T T =,则必有7T 是n T 中最大的项C .若67T T >,则必有78T T >D .若67T T >,则必有56T T >【答案】ABC 【分析】根据题意,结合等比数列的通项公式、等差数列的前n 项和公式,以及等比数列的性质,逐项分析,即可求解. 【详解】由等比数列{}n a 可知11n n a a q -=⋅,由等比数列{}n a 的前n 项积结合等差数列性质可知:()1211212111111123n n n n n n n n a a q a q a qa a T a a a q a q--+++-=⋅⋅⋅==⋅=对于A ,若59T T =,可得51093611a q a q =,即42611a q =,()71491426211141a q q T a ∴===,故A 正确;对于B ,若59T T =,可得42611a q =,即13211a q=,又11a >,故1q <,又59T T =,可知67891a a a a =,利用等比数列性质知78691a a a a ==,可知67891,1,1,1a a a a >><<,故7T 是n T 中最大的项,故B 正确;对于C ,若67T T >,则61572111a q a q >,即611a q <,又10a >,则1q <,可得76811871T T a a q a q <=<=,故78T T >,故C 正确; 对于D ,若67T T >,则611a q <,56651T a T a q ==,无法判断其与“1”的大小关系,故D 错误. 故选:ABC 【点睛】关键点点睛:本题主要考查了等比数列的通项公式及等差数列前n 项和公式,以及等比数列的性质的应用,其中解答中熟记等比数列的通项公式和性质及等差数列的求和公式,准确运算是解答的关键,着重考查了学生的推理与运算能力,属于较难题.2.设{}n a 是无穷数列,若存在正整数()2k k ≥,使得对任意n *∈N ,均有n k n a a +>,则称{}n a 是“间隔递增数列”,k 是{}n a 的“间隔数”,下列说法正确的是( ) A .公比大于1的等比数列一定是“间隔递增数列” B .若()21nn a n =+-,则{}n a 是“间隔递增数列”C .若(),2n ra n r r n*=+∈≥N ,则{}n a 是“间隔递增数列”且“间隔数”的最小值为r D .已知22021n a n tn =++,若{}n a 是“间隔递增数列”且“间隔数”的最小值为3,则54t -<≤-【答案】BCD 【分析】利用新定义,逐项验证是否存在正整数()2k k ≥,使得0n k n a a +->,即可判断正误. 【详解】选项A 中,设等比数列{}n a 的公比是()1q q >,则()1111111n k n n n k k n a a a a q q q a q +---+=-=--,其中1k q >,即()110n k q q -->,若10a <,则0n k n a a +-<,即n k n a a +<,不符合定义,故A 错误;选项B 中,()()()()()21212111n kn n k n k n a a n k n k ++⎡⎤⎡⎤⎡⎤++--+-=+---⎣⎦-=⎣⎦⎣⎦,当n 是奇数时,()211kn k n a a k +=---+,则存在1k时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义;当n 是偶数时,()211kn k n a a k +-=+--,则存在2k ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义.综上,存在2k ≥时,对任意n *∈N ,均有n k n a a +>,符合定义,故B 正确;选项C 中,()()1n k n r r kr r a a n k n k k n k n n k n n k n +⎡⎤-⎛⎫⎛⎫++-+=+=-⎢⎥ ⎪ ⎪+++⎝⎭⎝⎭⎢⎣-⎦=⎥()2n kn r k n k n +-=⋅+,令2()f n n kn r =+-,开口向上,对称轴02k -<,故2()f n n kn r =+-在n *∈N 时单调递增,令最小值(1)10f k r =+->,得1k r >-,又k *∈N ,2k ≥,,2r r *∈≥N ,故存在k r ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义,“间隔数”的最小值为r ,故C 正确;选项D 中,因为22021n a n tn =++,是“间隔递增数列”,则()()()2222021202012n k n a a n k t n k kn k t n n k t +⎡⎤-=-=++>⎣++++⎦++,即20k n t ++>,对任意n *∈N 成立,设()2g n k n t =++,显然在n *∈N 上()g n 递增,故要使()20g n k n t =++>,只需(1)20g k t =++>成立,即2t k --<. 又“间隔数”的最小值为3,故存在3k ≥,使2t k --<成立,且存在k 2≤,使2t k --≥成立,故23t --<且22t --≥,故54t -<≤-,故D 正确.故选:BCD. 【点睛】本题的解题关键在于读懂题中“间隔递增数列”的定义,判断是否存在正整数()2k k ≥,使0n k n a a +->对于任意的n *∈N 恒成立,逐项突破难点即可.3.(多选)在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .1q =B .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】BC 【分析】 计算可得2q,故选项A 错误;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误.【详解】 ∵142332,12,a a a a =⎧⎨+=⎩∴23142332,12,a a a a a a ==⎧⎨+=⎩ 解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩, ∵{}n a 为递增数列, ∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 错误; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项,B C 正确; 又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:BC. 【点睛】方法点睛:证明数列的性质,常用的方法有:(1)定义法;(2)中项公式法.要根据已知灵活选择方法证明.4.数列{}n a 满足11a =,且对任意的*n ∈N 都有11n n a a a n +=++,则下列说法中正确的是( )A .(1)2n n n a +=B .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为20202021 C .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为40402021 D .数列{}n a 的第50项为2550 【答案】AC 【分析】用累加法求得通项公式,然后由裂项相消法求1n a ⎧⎫⎨⎬⎩⎭的和即可得. 【详解】因为11n n a a a n +=++,11a =, 所以11n n a a n +-=+, 所以2n ≥时,121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=, 11a =也适合此式,所以(1)2n n n a +=, 501275a =,A 正确,D 错误, 12112()(1)1n a n n n n ==-++, 数列1n a ⎧⎫⎨⎬⎩⎭的前2020项和为202011111404021223202020212021S ⎛⎫=-+-++-=⎪⎝⎭,B 错,C 正确. 故选:AC . 【点睛】本题考查用累加法数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.5.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 【答案】BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.6.已知数列{}n a ,{}n b 满足:12n n n a a b +=+,()*1312lnn n n n b a b n N n++=++∈,110a b +>,则下列命题为真命题的是( )A .数列{}n n a b -单调递增B .数列{}n n a b +单调递增C .数列{}n a 单调递增D .数列{}n b 从某项以后单调递增【答案】BCD 【分析】计算221122ln 2a b a b a b -=--<-,知A 错误;依题意两式相加{}ln +-n n a b n 是等比数列,得到()1113ln -+=+⋅+n n n a b a b n ,知B 正确;结合已知条件,计算10n n a a +->,即得C 正确;先计算()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-,再结合指数函数、对数函数增长特征知D 正确. 【详解】由题可知,12n n n a a b +=+①,1312lnn n n n b a b n++=++②,①-②得,1131lnn n n n n a b a b n+++-=--,当1n =时,2211ln 2a b a b -=--,∴2211-<-a b a b ,故A 错误.①+②得,()113ln(1)3ln n n n n a b a b n n +++=+++-,()11ln(1)3ln n n n n a b n a b n +++-+=+-,∴{}ln +-n n a b n 是以11a b +为首项,3为公比的等比数列,∴()111ln 3-+-=+⋅n n n a b n a b ,∴()1113ln -+=+⋅+n n n a b a b n ,③又110a b +>,∴B 正确.将③代入①得,()()11113ln n n n n n n a a a b a a b n -+=++=++⋅+,∴()11113ln 0n n n a a a b n -+-=+⋅+>,故C 正确.将③代入②得,()()11113311ln 3ln ln n n n n n n n n b b a b b a b n n n -+++=+++=++⋅++,∴()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-.由110a b +>,结合指数函数与对数函数的增长速度知,从某个()*n n N∈起,()1113ln 0n a b n -+⋅->,又ln(1)ln 0n n +->,∴10n n b b +->,即{}n b 从某项起单调递增,故D 正确. 故选:BCD . 【点睛】判定数列单调性的方法:(1)定义法:对任意n *∈N ,1n n a a +>,则{}n a 是递增数列,1n n a a +<,则{}n a 是递减数列;(2)借助函数单调性:利用()n a f n =,研究函数单调性,得到数列单调性.7.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式n nn a ⎡⎤⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB. 【点睛】关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.8.已知等比数列{}n a 满足11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>.( )A .数列{}n a 的公比为pB .数列{}n a 为递增数列C .1r p =--D .当14p r-取最小值时,13-=n n a 【答案】BD 【分析】先结合已知条件,利用1n n n a S S -=-找到,p q 的关系,由11p q =-判断选项A 错误,由11pq p+=>判断B 正确,利用{}n a 通项公式和前n 项和公式代入已知式计算r p =-判断C 错误,将r p =-代入14p r-,利用基本不等式求最值及取等号条件,判断D 正确. 【详解】依题意,等比数列{}n a ,11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>,设公比是q ,2n ≥时,11n n n n S pa rS pa r+-=+⎧⎨=+⎩,作差得,1n n n pa a pa +-=,即()11n n p a pa +=+,故11n n a p a p ++=,即1p q p +=,即11p q =-. 选项A 中,若公比为p ,则11p q q ==-,即210q q --=,即12p q +==时,数列{}n a 的公比为p ,否则数列{}n a 的公比不为p ,故错误;选项B 中,由0p >知,1111p q p p +==+>,故111111n n n n a a q q p ---=⋅==⎛⎫+ ⎪⎝⎭是递增数列,故正确;选项C 中,由1n n S pa r +=+,11n n q S q-=-,11p q =-,1nn a q +=知,1111111n n n n q p q q a qr S p q +--=-⋅=-=---=,故C 错误;选项D 中, 因为r p =-,故()1111444p p p r p p -=-=+≥=⋅-,当且仅当14p p =,即12p =时等号成立,14p r-取得最小值1,此时13p q p +==,113n n n a q --==,故正确.故选:BD. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解;2、当两个正数,a b的积为定值,要求这两个正数的和式的最值时,可以使用基本不等式a b +≥,当且仅当a b =取等号.二、平面向量多选题9.定义空间两个向量的一种运算sin ,a b a b a b ⊗=⋅,则关于空间向量上述运算的以下结论中恒成立的有( ) A .()()a b a b λλ⊗=⊗ B .a b b a ⊗=⊗C .()()()a b c a c b c +⊗=⊗+⊗D .若()11,a x y =,()22,b x y =,则122a b x y x y ⊗=- 【答案】BD 【分析】对于A,B,只需根据定义列出左边和右边的式子即可,对于C,当λab 时,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin ,sin,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然不会恒成立. 对于D,根据数量积求出cos ,a b ,再由平方关系求出sin ,a b 的值,代入定义进行化简验证即可. 【详解】解:对于A :()()sin ,a b a b a b λλ⊗=⋅,()sin ,a b a b a bλλλ⊗=⋅,故()()a b a b λλ⊗=⊗不会恒成立;对于B ,sin ,a b a b a b ⊗=⋅,=sin ,b a b a b a ⊗⋅,故a b b a ⊗=⊗恒成立; 对于C ,若λab ,且0λ>,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin,sin ,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然()()()a b c a c b c +⊗=⊗+⊗不会恒成立; 对于D ,1212cos ,x x y y a b a b+=⋅,212sin ,1a b a b ⎛ ⎪=- ⎪⋅⎭,即有222121212121x x y y x x y y a b a b a b a a b ⎛⎫⎛⎫++ ⎪⊗=⋅⋅-=⋅- ⎪ ⎪ ⎪⋅⎭⎭22222121211222211x x y y x y x y x y ⎛⎫+ ⎪=++- ⎪+⎝⎭()()()22222222211221212122112122xy x y x x y y x y x y x x y y =++-+=+-1221x y x y =-.则1221a b x y x y ⊗=-恒成立. 故选:BD. 【点睛】本题考查向量的新定义,理解运算法则正确计算是解题的关键,属于较难题.10.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的为( )A .当0x =时,[]2,3y ∈B .当P 是线段CE 的中点时,12x =-,52y =C .若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x y -的最大值为1- 【答案】BCD 【分析】利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP ,求出x ,y 判断出B 对,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则OP ON OM =+,然后可判断出D 正确. 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故A 错当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ 1153(2)222OB OB AB OA OB =+-+=-+,故B 对 x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则:OP ON OM =+;又OP xOA yOB =+;0x ∴,1y ;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故D 正确 故选:BCD【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.。
湖北黄岗中学高考数学二轮复习考点解析7:数列的综合考查数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
(文科考查以基础为主,有可能是压轴题)一、知识整合1.在掌握等差数列、等比数列的定义、性质、通项公式、前n 项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, 进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法. 二、方法技巧1.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。
(2)通项公式法: ①若 =+(n-1)d=+(n-k )d ,则{}n a 为等差数列;②若,则{}n a 为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当1a >0,d<0时,满足10m m a a +≥⎧⎨≤⎩的项数m 使得m S 取最大值.(2)当1a <0,d>0时,满足10m m a a +≤⎧⎨≥⎩的项数m 使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、注意事项1.证明数列{}n a 是等差或等比数列常用定义,即通过证明11-+-=-n n n n a a a a 或11-+=n n n n a aa a 而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意n s 与n a 之间关系的转化。
如:n a =1100nn S S S -≤⎧⎨-≥⎩ 21≥=n n , n a =∑=--+nk k k a a a 211)(.4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路. 5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略. 四.典型考例【问题1】等差、等比数列的项与和特征问题P 49 例1 3。
P 50 例2 P 56 例1 P 59 T 6. 【注1】文中所列例题如末给题目原文均为广州市二轮复习资料上例题例(四川卷)数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥(Ⅰ)求{}n a 的通项公式;(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T本小题主要考察等差数列、等比数列的基础知识,以及推理能力与运算能力。
满分12分。
解:(Ⅰ)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥又21213a S =+= ∴213a a = 故{}n a 是首项为1,公比为3得等比数列 ∴13n n a -=(Ⅱ)设{}n b 的公比为d 由315T =得,可得12315b b b ++=,可得故可设135,5b d b d =-=+ 又1231,3,9a a a ===由题意可得()()()2515953d d -+++=+ 解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴()213222n n n T n n n-=+⨯=+1.设等差数列{a n }的首项a 1及公差d 都为整数,前n 项和为S n . (Ⅰ)若a 11=0,S 14=98,求数列{a n }的通项公式;(Ⅱ)若a 1≥6,a 11>0,S 14≤77,求所有可能的数列{a n }的通项公式2.(上海卷)设数列{}n a 的前n 项和为n S ,且对任意正整数n ,4096n n a S +=。
(1)求数列{}n a 的通项公式?(2)设数列2{log }n a 的前n 项和为n T ,对数列{}n T ,从第几项起509n T <-?.解(1) ∵a n + S n =4096, ∴a 1+ S 1=4096, a 1 =.当n ≥2时, a n = S n -S n -1=(4096-a n )-(4096-a n -1)= a n -1-a n ∴1-n n a a =21 a n =(21)n-1.(2) ∵log 2a n =log 2[(21)n -1]=12-n, ∴T n =21(-n 2+23n ). 25b =由T n <-509,解得n>2460123+,而n 是正整数,于是,n ≥46. ∴从第46项起T n <-509.3. (全国卷Ⅰ) 设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。
(Ⅰ)求{}n a 的通项;(Ⅱ)求{}n nS 的前n 项和n T 。
解:(Ⅰ)由 0)12(21020103010=++-S S S 得 ,)(21020203010S S S S -=-即,)(220121*********a a a a a a +++=+++可得.)(220121*********10a a a a a a q +++=+++⋅因为0>n a ,所以 ,121010=q 解得21=q ,因而 .,2,1,2111 ===-n q a a n n n (Ⅱ)因为}{n a 是首项211=a 、公比21=q 的等比数列,故 .2,211211)211(21n n n n n n n nS S -=-=--= 则数列}{n nS 的前n 项和 ),22221()21(2n n n n T +++-+++= ).2212221()21(212132++-+++-+++=n n n nn n T 前两式相减,得122)212121()21(212+++++-+++=n n n nn T 12211)211(214)1(++---+=n n n n n 即 .22212)1(1-+++=-n n nn n n T 【问题2】等差、等比数列的判定问题.P 53 T 7 例P 54 T 9[例]P 54 T 9(上海卷)已知有穷数列{n a }共有2k 项(整数k ≥2),首项1a =2.设该数列的前n 项和为n S ,且1+n a =n S a )1(-+2(n =1,2,┅,2k -1),其中常数a >1. (1)求证:数列{n a }是等比数列;(2)若a =2122-k ,数列{n b }满足n b =)(log 1212n a a a n⋅⋅⋅(n =1,2,┅,2k ),求数列{n b }的通项公式;(3)若(2)中的数列{n b }满足不等式|1b -23|+|2b -23|+┅+|12-k b -23|+|k b 2-23|≤4,求k 的值.(1) [证明] 当n=1时,a 2=2a,则12a a =a ; 2≤n≤2k -1时, a n+1=(a -1) S n +2, a n =(a -1) S n -1+2, a n+1-a n =(a -1) a n , ∴nn a a 1+=a, ∴数列{a n }是等比数列. (2) 解:由(1) 得a n =2a1-n , ∴a 1a 2…a n =2n a )1(21-+++n =2n a2)1(-n n =212)1(--+k n n n ,b n =1121]12)1([1+--=--+k n k n n n n(n=1,2,…,2k).(3)设b n ≤23,解得n≤k+21,又n 是正整数,于是当n≤k 时, b n <23;当n≥k+1时, b n >23.原式=(23-b 1)+(23-b 2)+…+(23-b k )+(b k+1-23)+…+(b 2k -23)=(b k+1+…+b 2k )-(b 1+…+b k )=]12)10(21[]12)12(21[k k kk k k k k k +--+-+--+=122-k k . 当122-k k ≤4,得k 2-8k+4≤0, 4-23≤k≤4+23,又k≥2,∴当k=2,3,4,5,6,7时,原不等式成立.4.[例],已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列;⑵设数列),2,1(,2 ==n a c nnn ,求证:数列{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和。
分析:由于{b n }和{c n }中的项都和{a n }中的项有关,{a n }中又有S 1n +=4a n +2,可由S 2n +-S1n +作切入点探索解题的途径.【注2】本题立意与高考题文科20题结构相似.解:(1)由S 1n +=4a 2n +,S 2n +=4a 1n ++2,两式相减,得S 2n +-S 1n +=4(a 1n +-a n ),即a 2n +=4a 1n +-4a n .(根据b n 的构造,如何把该式表示成b 1n +与b n 的关系是证明的关键,注意加强恒等变形能力的训练)a 2n +-2a 1n +=2(a 1n +-2a n ),又b n =a 1n +-2a n ,所以b 1n +=2b n ① 已知S 2=4a 1+2,a 1=1,a 1+a 2=4a 1+2,解得a 2=5,b 1=a 2-2a 1=3 ② 由①和②得,数列{b n }是首项为3,公比为2的等比数列,故b n =3·21n -.当n ≥2时,S n =4a 1n -+2=21n -(3n-4)+2;当n=1时,S 1=a 1=1也适合上式.综上可知,所求的求和公式为S n =21n -(3n-4)+2.说明:1.本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前n 项和。