直流电动机启动、调速控制电路实验.
- 格式:doc
- 大小:202.01 KB
- 文档页数:9
实验题目类型:设计型《电机与拖动》实验报告实验题目名称:直流电动机启动、调速控制电路实验室名称:电机及自动控制实验组号:X组指导教师:XXX报告人:XXX 学号:XXXXXXXXX 实验地点:XXXX 实验时间:20XX年XX月X日指导教师评阅意见与成绩评定一、实验目的掌握直流电动机电枢电路串电阻起动的方法;掌握直流电动机改变电枢电阻调速的方法;掌握直流电动机的制动方法;二、实验仪器和设备验内容(1)电动机数据和主要实验设备的技术数据四、实验原理直流电动机的起动:包括降低电枢电压起动与增加电枢电阻起动,降低电枢电压起动需要有可调节电压的专用直流电源给电动机的电枢电路供电,优点是起动平稳,起动过程中能量损耗小,缺点是初期投资较大;增加电枢电阻起动有有级(电机额定功率较小)、无极(电机额定功率较大)之分。
是在起动之前将变阻器调到最大,再接通电源,随着转速的升高逐渐减小电阻到零。
直流电动机的调速:改变Ra、Ua和∅中的任意一个使转子转速发生变化。
直流电动机的制动:使直流电动机停止转动。
制动方式有能耗制动:制动时电源断开,立即与电阻相连,使电机处于发电状态,将动能转化成电能消耗在电路内。
反接制动:制动时让E与Ua的作用方向一致,共同产生电流使电动机转换的电能与输入电能一起消耗在电路中。
回馈制动:制动时电机的转速大于理想空转,电机处于发电状态,将动能转换成电能回馈给电网。
五、实验内容(一)、实验报告经指导教师审阅批准后方可进入实验室实验(二)、将本次实验所需的仪器设备放置于工作台上并检查其是否正常运行,检验正常后将所需型号和技术数据填入到相应的表内(若是在检验中发现问题要及时调换器件)(三)、按实验前准备的实验步骤实验直流电动机的起动1、取来本次试验所用器件挂置在实验工作台上2、在试验台无电的前提下,按照实验原理图接线3、请老师查看接线,待老师检查所接线路无误、批准后执行以下操作4、用万用表检查线路的通断(三相可调变阻器),检查无误后方可通电5、按动电源总开关,将电源控制屏上的直流电压调制220V左右6、按下“启动”按钮,便接通了直流电源7、搬动励磁、电枢电源按钮,直流电机启动8、逐渐减少R1阻值,电动机达到额定转速(也可通过调节R1来进行调速)9、搬动励磁电源按钮,直流电机能耗制动停车,收线,整理试验台R2直流电动机的起动、调速、制动原理图直流电动机的起动、调速、制动接线图若在实验中发现问题及时的找出问题的原因,排查问题后方可继续进行试验三相可调变阻器的检查:将其与直流电源接通,串入直流电流表,并入直流电压表。
直流电动机控制电路一、直流电动机的启动1.并励直流电动机的启动并励直流电动机的启动控制电路如图1-15所示。
图中,KA1是过电流继电器,作直流电动机的短路和过载保护。
KA2欠电流继电器,作励磁绕组的失磁保护。
启动时先合上电源开关QS,励磁绕组获电励磁,欠电流继电器KA2线圈获电,KA2常开触点闭合,控制电路通电;此时时间继电器KT线圈获电,KT常闭触点瞬时断开。
然后按下启动按钮SB2,接触器KM1线圈获电,KM1主触点闭合,电动机串电阻器R启动;KM1的常闭触点断开,KT线圈断电,KT常闭触点延时闭合,接触器KM2线圈获电,KM2主触点闭合将电阻器R短接,电动机在全压下运行。
2. 他励直流电动机的启动(见图1-16)图1-15 并励直流电动机启动控制电路图1-16 他励直流电动机启动控制电路3. 串励直流电动机的启动(见图1-17)图1-17 串励直流电动机启动控制电路请注意,串励直流电动机不允许空载启动,否则,电动机的高速旋转,会使电枢受到极大的离心力作用而损坏,因此,串励直流电动机一般在带有20%~25%负载的情况下启动。
二、直流电动机的正、反转1.电枢反接法这种方法是改变电枢电流的方向,使电动机反转。
并励直流电动机的正、反转控制电路如图1-18所示。
启动时按下启动按钮SB2,接触器KM1线圈获电,KM1常开触点闭合,电动机正转。
若要反转,则需先按下SB1,使KM1断电,KM1连锁常闭触点闭合。
这时再按下反转按钮SB3,接触器KM2线圈获电,KM2常开触点闭合,使电枢电流反向,电动机反转。
2.磁场反接法这种方法是改变磁场方向(即励磁电流的方向)使电动机反转。
此法常用于串励电动机,因为串励电动机电枢绕组两端的电压很高,而励磁绕组两端的电压很低,反转较容易,其控制电路如图1-19所示。
其工作原理同上例相似,请自己分析。
图1-18并励直流电动机正,反转控制电路图1-19串励电动机正,反转控制电路三、直流电动机的制动在实际生产中有时要求机械能迅速停转,这就要求直流电动机可以制动。
直流电动机实验报告电机实验报告课程名称:______电机实验_________指导老师:___ _____成绩:__________________实验名称:_______直流并励电动机___________实验类型:________________同组学生姓名:一、实验目的和要求1.掌握用实验方法测取直流并励电机的工作特性和机械特性。
2.掌握直流并励电机的调速方法。
二、主要仪器设备D17直流并励电动机,测功机,实验工作台三、实验步骤与内容1.记录名牌数据:额定电压220V,额定电流1.1A,额定功率185W,额定转速1600r/min,额定励磁电流 <0.16A特性和机械特性<1> 电动机启动前,将R1最大,Rf调至最小,测功机常规负载旋钮调至零,直流电压调至零,各个测量表均调至最大量程处。
<2> 接通实验电路,将直流电压源调至25伏左右,在电动机转速较慢的情况下,判断其转向是否与测功机上箭头所示方向一致。
若不一致,则将电枢绕组或励磁绕组反接。
<3> 将R1调至零,调节直流电压源旋钮,使U=220V,转速稳定后将测功机转矩调零。
同时调节直流电源旋钮,测功机的加载旋钮和电动机的磁场调节电阻Rf,使U=UN=220V,I=IN=1.1A,n=nN=1600r/min,记录此时励磁电流If,即为额定励磁电流IfN。
<4> 在保持U=UN=220V,If=IfN=0.071A及R1=0不变的条件下,逐次减小电动机的负载,测取电动机输入电流I,转速n和测功机转矩M,其中必要测量额定点和空载点。
<5> 根据公式 P2=0.105*n*M2,P1=U*I η= P2/ P1*100% Ia=I-IfN, 计算出Ia、P2、η4.调速特性(1)改变电枢端电压的调速<1> 直流电动机启动后,将电枢调节电阻R1调至0,同时调节测功机、直流电源及电阻Rf,使U=UN=220V,M2=500mN.m,If=IfN=0.071A<2> 保持此时的M2和If=IfN,逐次增加R1的阻值,即降低电枢两端的电压Ua,测取Ua,n, I (2)改变励磁电流的调速<1> 直流电动机启动后,将电阻R1和Rf调至0,同时调节测功机、直流电源,使电动机U=UN=220V,M2=500mN.m。
一、实习目的通过本次实习,使学生了解直流调速系统的基本原理、组成和运行方式,掌握直流调速系统的设计、调试和运行方法,提高学生动手实践能力和实际工程应用能力。
二、实习内容1. 直流调速系统基本原理直流调速系统是一种广泛应用于工业领域的电力拖动控制系统,其基本原理是利用晶闸管整流电路将交流电源转换为直流电源,通过调节直流电源的电压来控制直流电动机的转速。
2. 直流调速系统组成直流调速系统主要由以下几部分组成:(1)晶闸管整流电路:将交流电源转换为直流电源。
(2)平波电抗器:抑制整流电路输出的直流电压中的纹波。
(3)调节器:根据转速反馈信号和给定转速信号,调节晶闸管整流电路的控制角,从而实现直流电动机转速的调节。
(4)直流电动机:将电能转换为机械能,实现负载的拖动。
(5)转速反馈装置:将直流电动机的实际转速转换为电信号,反馈给调节器。
3. 直流调速系统设计(1)选择合适的晶闸管整流电路:根据负载要求,选择合适的整流电路,如三相桥式整流电路。
(2)设计调节器:根据转速反馈信号和给定转速信号,设计合适的调节器,如PI调节器。
(3)设计转速反馈装置:根据直流电动机的实际转速,设计合适的转速反馈装置,如测速发电机。
(4)设计平波电抗器:根据整流电路的输出电流和负载要求,设计合适的平波电抗器。
4. 直流调速系统调试(1)安装调试:将各个部件按照设计要求进行安装,并连接好电路。
(2)参数整定:根据实际负载要求,对调节器参数进行整定,使系统满足性能要求。
(3)系统调试:在负载条件下,对系统进行调试,确保系统运行稳定。
5. 直流调速系统运行(1)启动:按启动按钮,使直流电动机开始运行。
(2)调速:根据负载要求,调整给定转速信号,实现直流电动机转速的调节。
(3)停止:按停止按钮,使直流电动机停止运行。
三、实习总结1. 通过本次实习,使学生掌握了直流调速系统的基本原理、组成和运行方式。
2. 学生学会了直流调速系统的设计、调试和运行方法,提高了动手实践能力和实际工程应用能力。
并励直流电动机电枢回路串电阻起动与调速1.实验元件代号名称型号规格数量备注QS1 低压断路器DZ47 5A/3P 1QS2 低压断路器DZ47 3A/2P 1FU1 螺旋式熔断器RL1-15 配熔体3A 2FU2 瓷插式熔断器RC1-5A 2A 2KM1,KM2KM3,KA交流接触器CJX2-9/380 AC380V 4KT1,KT2 断电延时时间继电器JS7-3A AC380V 2R1,R2 电阻90Ω1.3A 2SA 万转开关LW5-16/H1196 1KI1 过电流继电器JL14-11Z 2.5A 1KI2 欠电流继电器DL-13 0.08-0.16A 1M 并励直流电动机220V1.1A185W 1600r/min1V 二极管2CZ 1000V5A 1 R3 电阻BX7D-1/6 1800Ω 1 2.实验电路图3.实验过程电枢回路串电阻器的起动与调速控制电路工作过程如下:1)起动前的准备工作状态将主令开关SA手柄放在零位,电枢电源的开关合上,接通直流电压220V,再合上控制电路的开关,因为直流电动机并励直流绕组中流过额定电流,欠电流继电器KI2线圈通电吸合,零位继电器KA 回路中KI2的常开触头闭合,主回路过电流继电器KI1不动作,通过SA①②使KA线圈通电,并触头自锁。
与此同时,时间继电器KT1、KT2的线圈也通电,其延时闭合动断触头立即分开,以保证起动电阻R1与R2都串入。
2)起动。
起动时可将SA手柄由零位直接板到3位,这时KM1通电,主触头闭合,接通电动机电枢电路,电动机在电枢串有两段起动电阻R1与R2的情况下开始起动。
在电动机开始起动的同时,KM1的常闭触头使KT1,KT2同时断电。
KT2经过一段延时后,其延时闭合的动断触头闭合,切除起动电阻R1,电动机进一步加速。
另外KT1,经过一定延时,其延时闭合的动断点闭合,接通加速接触器KM3的线圈回路,KM3的常开主触头闭合,切除最后一段电阻R2,电动机进入全电压进行,起动过程结束。
直流电动机调速实验报告摘要:本次实验通过对直流电动机调速系统的设计与搭建,探索了采用不同控制方法对电动机进行调速的效果与特性。
通过实验验证,得出了电流调速和电压调速方法在直流电动机调速中的应用特点和优缺点。
一、引言直流电动机是一种广泛应用于工业生产中的电动机,其具有调速范围广、响应快、工作可靠等特点。
直流电动机调速是工业自动控制系统中的常见问题,其调速性能直接影响到生产设备的工作效率和质量。
因此,对直流电动机调速系统进行研究与实验具有重要的意义。
二、实验目的1.熟悉直流电动机的基本结构和工作原理;2.掌握电流调速和电压调速在直流电动机调速中的应用特点;3.进行实验验证,分析电流调速和电压调速的优缺点。
三、实验原理直流电动机的调速方法主要包括电流调速和电压调速两种。
电流调速通过改变电机的输入电流来调节电机的转速,而电压调速则是通过改变电机的输入电压来调节电机的转速。
电流调速适用于负载变化较大的场合,而电压调速适用于负载稳定的场合。
四、实验设备与材料1.直流电动机;2.调速器;3.控制器;4.多用表;5.实验电路板等。
五、实验步骤1.搭建电流调速实验电路,连接电动机、调速器和控制器;2.按照实验要求调节控制器的参数;3.打开电源,设置控制器的输入信号;4.在实验过程中记录电机的转速、电流和输出功率等参数;5.将实验数据整理并进行分析。
六、实验结果与讨论根据实验数据,绘制了电流调速和电压调速的转速-负载特性曲线。
分析实验数据发现,电流调速方法在负载变化较大时,保持了较稳定的转速,且响应速度较快。
而电压调速方法在负载较稳定时能够保持较好的速度稳定性,但对于负载变化较大的情况,则转速会有较大波动。
七、结论通过本次实验研究发现,电流调速和电压调速方法在直流电动机调速中具有不同的应用特点和优缺点。
电流调速适用于负载变化较大的场合,能够保持转速的稳定性和响应速度;而电压调速适用于负载较稳定的场合,能够保持较好的转速稳定性。
实验一 实验二 实验三 实验四 实验五实验五实验五 双闭环直流调速系统实验双闭环直流调速系统实验一.实验目的一.实验目的⒈ 熟悉双闭环直流调速系统的组成、工作原理、调试方法。
⒉ 了解双闭环直流调速系统的静态和动态特性。
二.实验设备二.实验设备⒈ MCL –⒈ MCL – 31 31 31 低压控制电路及仪表。
低压控制电路及仪表。
低压控制电路及仪表。
⒉ MCL –⒉ MCL – 32 32 32 电源控制屏。
电源控制屏。
电源控制屏。
⒊ MCL –⒊ MCL – 33 33 33 触发电路及晶闸管主回路。
触发电路及晶闸管主回路。
触发电路及晶闸管主回路。
⒋ MEL –⒋ MEL – 0303 03 三相可调电阻器。
三相可调电阻器。
三相可调电阻器。
⒌ MEL –⒌ MEL – 11 11 11 电容箱。
电容箱。
电容箱。
⒍ 直流电动机–发电机–测速机组。
⒍ 直流电动机–发电机–测速机组。
⒎ 万用表。
⒎ 万用表。
⒏ 双踪示波器。
⒏ 双踪示波器。
三.三. 实验原理实验原理在双闭环直流调速系统中设置了两个调节器,转速调节器的输出当作电流调节器的输入,电流调节器的输出控制晶闸管整流器的 触发装置。
触发装置。
电流调节器在里面称作内环,转速调节器在外面称作外环,这样就形成转速、电流双闭环调速系统。
双闭环直流调速系统原理图如下图所示。
速系统原理图如下图所示。
为了获得良好的静、动态性能,转速和电流两个调节器都采用采用 PI PI PI 调节器。
转速调节器是调速系统的主导调节器,它使转速跟随其给定电压变调节器。
转速调节器是调速系统的主导调节器,它使转速跟随其给定电压变化,稳态时实现转速无静差,对负载变化起抗扰作用,其输出限幅值决定电机允许的最大电流。
最大电流。
电流调节器电流调节器 使 电流紧紧跟随其电流紧紧跟随其 给定电压变化,对电网电压的波动起及时抗扰作用,在 转速动态过程中能够获得电动机允许的最大电流,从而加快动态过程, 当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。
计算机控制技术综合性设计实验实验课程:直流电机转速控制实验设计报告学生姓名:学生姓名:学生姓名:学生姓名:指导教师:牛国臣实验时间:年月日直流电机转速控制实验设计报告一、实验目的:1.掌握电机的工作原理。
2.掌握直流电机驱动控制技术。
3.掌握增量式编码器位置反馈原理。
4.熟悉单片机硬件电路设计及编程。
5.实现直流电机的转速控制。
二、实验内容:已知某一直流永磁有刷伺服电机参数如下:设计直流电机转速控制系统。
要求:表1 直流伺服电机参数1.分析并建立电机的数学模型,分别得出在连续控制系统和离散控制系统中对应的传递函数;2.基于MATLAB软件对直流电机进行仿真,并通过PID控制器的参数整定对直流电机进行闭环控制,3.设计直流电机控制硬件电路,主要包括主控模块、电机驱动模块、编码器反馈模块、通信模块、电源模块、显示模块等。
4.对各模块进行单元调试,设计数字PID控制器,并基于A VR单片机编制程序,进行系统联调。
5.最终完成直流电机控制硬件平台的设计、搭建及软件调试,要求有速度设置、显示功能,速度控制误差在1%以内,具有与上位机通讯的接口,能通过上位机方便进行参数设置、速度控制等操作。
三、 实验步骤:1、建立电机的数学模型,得出控制统的传递函数;由直流电机得来的三个方程:n k dt di Li R s u E m m ++=)( i k T M m =f L m T dtdw J T T ++= 、 进行拉式变换得:)()()()(s n k s LSI s I R s U E m m ++=)(s I k T M m =f L m T s JS T T +Ω+=)(带入数据在进行z 变换得: 521039.19252.01394.0459.1)(-⨯+-+=z z z z G 2、.基于MATLAB 软件对直流电机进行仿真(1)连续系统阶跃响应程序为:>> num=[1]num =1>> den=[0.0000000542,0.00061,0.0468]den =0.0000 0.0006 0.0468>> G=tf(num,den)Transfer function:1----------------------------------5.42e-008 s^2 + 0.00061 s + 0.0468>> step(G)>> Gz=c2d(G,0.01,'zoh')Transfer function:11.43 z + 0.06868-----------------z^2 - 0.4618 zSampling time: 0.01>> step(Gz)阶跃响应曲线如图1所示:图1 阶跃响应曲线(2)离散系统的单位阶跃响应程序如下:>> num=[52.756.913];>> den=[1 -0.8009 0.0005123];>> sys=[num,den,0.001];>> dstep(num,den,100)离散系统的阶跃响应曲线如图2所示(T=1ms):图2 离散系统的阶跃响应曲线(3)PID参数整定1)设D(z)=错误!未找到引用源。
第一章直流电机调速系统实验实验一单闭环不可逆直流调速系统实验一、实验目的(1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握晶闸管直流调速系统的一般调试过程。
(3)认识闭环反馈控制系统的基本特性。
二、实验所需挂件及附件三、实验线路及原理为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。
在单闭环系统中,转速单闭环使用较多。
在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“转速变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。
电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。
这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。
在电流单闭环中,将反映电流变化的电流互感器输出电压信号作为反馈信号加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U ct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电流负反馈闭环系统。
电机的最高转速也由电流调节器的输出限幅所决定。
同样,电流调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。
当“给定”恒定时,闭环系统对电枢电流变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电流能稳定在一定的范围内变化。
电机学实验一直流电机实验1实验目的: 理解掌握直流机发电、电动工作特性。
2实验电路:图 1 直流电机实验系统结构图3 实验内容与步骤3.1系统基本连接与参数调节--由教师完成:(1)连接电路实线部分。
直流机按正转接线, 交流机按反转接线。
(2)电流调节器调最大Uc为1V。
调电流反馈: Ui/Ia=2V/0.5A。
(3)直流稳压源限流值调到1.5A。
3.2直流机发电实验--交流机作同步恒速运行, 驱动直流机发电, 电流闭环控制整流调压器吸收其电流。
3.2.1实验准备(1) 完成直流机电枢回路、励磁回路连接, 励磁开关Kf断开, RA.RB置最大。
(2)整流器:Uct只接电流调节器输出Uc!Ublf断开, 整流器先关闭。
(3)交流机RC调最大。
直流稳压源断开Kz, 通电调到Uz=15V。
(4)实验台通电。
(5)给定电路置“负”, 并调输出0V。
--注:电流调节器的运放“反相”, 故给定为负, 反馈为正3.2.2 启动交流机(1)接通主电路。
(2)减RC起动交流机反转到~1000rpm, 接通直流稳压源Kz, RC回最大。
使交流机进入同步恒速(1500rpm)运行, 驱动直流机发电。
3.2.3直流发电机空载Uf-E特性(即if -φ磁化特性)实验断Kf使Uf=0, 测量记录对应的直流机剩磁发电电势E(|Ua|)。
接通Kf后调RA+RB使Uf= 90, 160, 220V。
测量记录E。
3.2.4 直流发电机负载特性实验--用电流闭环恒定吸收直流机发电电流, 并转为交流功率送电网。
(1)调RA+RB保持励磁Uf=220V。
(2)测Ud应为负!(否则查改直流机电枢接线)。
整流器Ubf接通, 允许其工作。
(3)加负载: 用负给定电位器调-Ui*到Ia=(0), 0.3, 0.6A, 测量记录Ia、Ua。
*(4) 可用RA+RB降Uf=200V, 测量记录Ia、Ua—观察电流环恒流效果。
(5) 停车:先用-Ui*减Ia到0, 再断开Kz, 电机停车后断主电路。
实验项目一:直流电动机的起动及开环调速实验实验日期:2020年5月25日一、实验目的(1)了解开环环直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握晶闸管直流调速系统的一般调试过程。
二、实验原理直流电动机的起动:包括降低电枢电压起动与增加电枢电阻起动,降低电枢电压起动需要有可调节电压的专用直流电源给电动机的电枢电路供电,优点是起动平稳,起动过程中能量损耗小,缺点是初期投资较大;增加电枢电阻起动有有级(电机额定功率小)、无极(电机额定功率较大)之分。
是在起动之前将变阻器调到最大,再接通电源,随着转速的升高逐渐减小电阻到零。
直流电动机的调速:改变Ra、Ua和∅中的任意一个使转子转速发生变化。
三、实验内容(1)开环环直流调速系统的基本单元的仿真建模与参数设置。
(2)直流电动机开环特性的仿真。
四、实验所需仪器安装Matlab仿真软件的PC机五、实验步骤系统仿真图如下:图1.1六、实验结果图1.2七、实验小结通过本次试验不仅对直流电机有了一-定的了解和认识。
从仿真结果上看,转速迅速上升,当2s负载由50上升到100时,由于开环无法起到调节作用,转速下降。
在整个过程中,思考的问题较少。
对三相对称电压源建模和参数设置、三相对称电压源参数设置、晶闸管整流桥的建模和主要参数设置、平波电抗器的建模和参数设置、直流电动机的建模和参数设置等等,还有控制电路的建模与仿真知识的迁移以及应用方面有所欠缺。
八、思考题1.如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?答:确定随机一路为基准,观察其中两路脉冲的位置,以选择基准为参考,固定不动,另一探头分别观察其他两路波形,即可确定三相脉冲相序。
不能任意改变。
2.触发角与整流桥输出电压、直流电动机转速的关系是什么?答:电压一定时,负载扭矩越大,转速越低,近似反比关系;而负载一定时,电压越高,转速越高(在额定范围内),而且近似为平方关系,触发角增大,输出电压和转速都减小。
电流电机驱动、调速及过流保护实验报告学院:电子信息学院班级:组长:组员:实验课题:直流电机驱动、调速及过流保护目录1、项目描述 (3)2、设计原理 (3)3、设计过程 (4)3.1、硬件设计 (4)3.2、软件设计 (6)4、系统功能调试 (10)4.1、调试软件介绍 (10)4.2、电路运行结果 (11)5、总结 (12)1、项目描述本项目将通过proteus仿真电路模拟电机的驱动,并实现调速和转向控制。
项目将应用一个简单的电路,使用Arduino和L298N IC控制直流电机的速度和方向。
使用PWM信号和L298N(H桥)的组合来控制简单直流电机的功能,即速度和转向控制。
本项目基本完成了驱动,调速及转向控制功能。
2、设计原理 0直流电机是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
它是能实现直流电能和机械能互相转换的电机。
当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。
直流电机的工作原理是里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。
直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向)。
导体受力的方向用左手定则确定。
这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。
如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。
直流电机的实验报告2-2直流发电机一、实验目的1、掌握用实验方法测定直流发电机的各种运行特性,并根据所测得的运行特性评定该被试电机的有关性能。
2、通过实验观察并励发电机的自励过程和自励条件。
二、预习要点1、什么是发电机的运行特性?在求取直流发电机的特性曲线时,哪些物理量应保持不变,哪些物理量应测取。
2、做空载特性实验时,励磁电流为什么必须保持单方向调节?3、并励发电机的自励条件有哪些?当发电机不能自励时应如何处理?4、如何确定复励发电机是积复励还是差复励?三、实验项目1、他励发电机实验(1)测空载特性保持n=n N使I L=0,测取U0=f(I f)。
(2)测外特性保持n=n N使I f=I fN,测取U=f(I L)。
(3)测调节特性保持n=n N使U=U N,测取I f=f(I L)。
2、并励发电机实验(1)观察自励过程(2)测外特性保持n=n N使R f2=常数,测取U=f(I L)。
3、复励发电机实验积复励发电机外特性保持n=n N使R f2=常数,测取U=f(I L)。
四、实验设备及挂件排列顺序1、实验设备2、屏上挂件排列顺序D55-4,D31、D44、D31、D42、D51五、实验方法1、他励直流发电机(必做)按图1-2-1接线。
图中直流发电机G选用DJ13,其额定值PN=100W,UN =200V,IN=0.5A,nN=1600r/min。
直流电动机DJ23-1作为G的原动机(按他励电动机接线)。
涡流测功机、发电机及直流电动机由联轴器同轴联接。
开关S选用D51组件上的双刀双掷开关。
Rf1选用D44的1800Ω变阻器,Rf2 选用D42的900Ω变阻器,并采用分压法接线。
R1选用D44的180Ω变阻器。
R2为发电机的负载电阻选用D42,采用串并联接法(900Ω与900Ω电阻串联加上900Ω与900Ω并联),阻值为2250Ω。
当负载电流大于0.4 A时用并联部分,而将串联部分阻值调到最小并用导线短接。
一欧陆514C直流调速控制实验一、实验目的1、了解欧陆514C型直流调速控制系统的原理、组成及各主要单元部件的原理。
2、熟悉实验装置的结构及使用方法。
3、掌握欧陆514C型直流调速控制系统系统的接线、调试、参数的整定。
4、逻辑无环流控制可逆直流调速系统机械特性的测定。
二、实验装置与工作原理1、514C型装置的概况欧陆514C型控制系统是英国欧陆驱动器器件公司生产的一种以运算放大器作为调节元件的模拟式逻辑无环流控制直流可逆调速系统。
作为一种使用于工业环境中的控制设备,514C型采用了一种开放式的框架结构,整个控制器以散热器为基座,两组反并联连接的晶闸管模块直接固定在散热器上;另外一块驱动电源印刷电路板、一块控制电路印刷电路板和一块面板以层叠式结构装在散热器上面,整个装置不需特殊工具就可很方便地进行拆卸。
控制器整体尺寸为160mm×240mm×130mm(宽×高×厚)。
实际使用时应将控制器垂直安装,并镶嵌在电气控制箱内。
514C型用于对他励式直流电动机或永磁式直流电动机的速度进行控制,能控制电动机的转速在全部4个象限中运行(正、反向的电动运行和制动运行)。
514C型使用单相交流电源,主电源可以为110~480V,50Hz或60Hz,根据实际负载需要可外接整流变压器以提供与电机相适应的电源电压;另外,需要使用一个交流辅助电源,电压为110/120V或220/240V,根据市电情况可由一个开关进行选择。
直流电动机的速度是通过一个带反馈的线性闭环系统来实现控制的。
反馈信号来源可通过一个开关进行选择:可以使用测速反馈(需外接测速发电机),也可使用电枢电压反馈(已包含在控制器内部)。
当使用电枢电压反馈时,系统可同时使用电流补偿,即电压负反馈加电流正反馈。
514C型是一个以逻辑切换装置进行脉冲选触的逻辑无环流可逆调速控制系统。
控制回路是一个双闭环调速系统:外环是速度环,内环是电流环。
实验题目类型:设计型
《电机与拖动》实验报告
实验题目名称:直流电动机启动、调速控制电路
实验室名称:电机及自动控制
实验组号:X组指导教师:XXX
报告人:XXX 学号:XXXXXXXXX 实验地点:XXXX 实验时间:20XX年XX月X日指导教师评阅意见与成绩评定
一、实验目的
掌握直流电动机电枢电路串电阻起动的方法;
掌握直流电动机改变电枢电阻调速的方法;
掌握直流电动机的制动方法;
二、实验仪器和设备
三、实验内容
(1)电动机数据和主要实验设备的技术数据
四、实验原理
直流电动机的起动:包括降低电枢电压起动与增加电枢电阻起动,降低电枢电压起动需要有可调节电压的专用直流电源给电动机的电枢电路供电,优点是起动平稳,起动过程中能量损耗小,缺点是初期投资较大;增加电枢电阻起动有有级(电机额定功率较小)、无极(电机额定功率较大)之分。
是在起动之前将变阻器调到最大,再接通电源,随着转速的升高逐渐减小电阻到零。
直流电动机的调速:改变Ra、Ua和∅中的任意一个使转子转速发生变化。
直流电动机的制动:使直流电动机停止转动。
制动方式有能耗制动:制动时电源断开,立即与电阻相连,使电机处于发电状态,将动能转化成电能消耗在电路内。
反接制动:制动时让E与Ua的作用方向一致,共同产生电流使电动机转换的电能与输入电能一起消耗在电路中。
回馈制动:制动时电机的转速大于理想空转,电机处于发电状态,将动能转换成电能回馈给电网。
五、实验内容
(一)、实验报告经指导教师审阅批准后方可进入实验室实验
(二)、将本次实验所需的仪器设备放置于工作台上并检查其是否正常运行,检验正常后将所需型号和技术数据填入到相应的表内(若是在检验中发现
问题要及时调换器件)
(三)、按实验前准备的实验步骤实验
直流电动机的起动
1、取来本次试验所用器件挂置在实验工作台上
2、在试验台无电的前提下,按照实验原理图接线
3、请老师查看接线,待老师检查所接线路无误、批准后执行以下操作
4、用万用表检查线路的通断(三相可调变阻器),检查无误后方可通电
5、按动电源总开关,将电源控制屏上的直流电压调制220V左右
6、按下“启动”按钮,便接通了直流电源
7、搬动励磁、电枢电源按钮,直流电机启动
8、逐渐减少R1阻值,电动机达到额定转速(也可通过调节R1来进行调速)
9、搬动励磁电源按钮,直流电机能耗制动停车,收线,整理试验台
R2 直流电动机的起动、调速、制动原理图
直流电动机的起动、调速、制动接线图
若在实验中发现问题及时的找出问题的原因,排查问题后方可继续进行试验
三相可调变阻器的检查:将其与直流电源接通,串入直流电流表,并入直流电压
表。
通过调节其阻值,记录并计算变阻器的好坏。
在本次试验中,实验室的并励电动机也可以充当他励使用,连接时只需将电机绕组与励磁输出电压相连。
他励电动机的起动与调速与并励电动机一样,但他励电动机在制动时则不同。
在停车时,先关闭电枢输出电压则电动机完成制动,若先关闭励磁输出电压则会出现飞车的现象。
六、实验注意事项
1、通电试车前,要认真检查励磁回路的接线,必须保证连接可靠,以防止电动机运行时出现因励磁回路断路失磁引起“飞车”事故。
2、起动时,应使调速变阻器R 短接,使电动机在满磁情况下起动,起动变阻器R 要逐级切换,不可越级切换。
3、通电试车时,必须有指导教师在现场监护。
七、实验故障及原因
1、在调速过程中,将三相可调变阻的电阻阻值调节迅速,引起报警 答:电动机在起动情况下,起动变阻器R 要逐级切换,不可越级切换。
2、在断电后将电枢输出电压端短接,制动时间没发生变化
答:没能完全解读好此电路图,在原电路断电的情况下,以使其构成能耗制动,不用再加额外电阻。
八、实验数据处理
电动机起动:1、减小1ST R ,观察转速的变化。
数据为表1
表1
电动机调速:2、增加 1ST R ,观察转速的变化以及同时增加 1r R ,观察转速的变化。
数据为表2
表2 折线图
直流电动机1M 空载起动时转速n 与电枢电压之间的关系
图一
直流电动机1M 调速时转速n 与电枢电压之间的关系
图二
直流电动机1M调速时转速n与励磁电流之间的关系
图三
九、实验结果陈述与总结
1.实验结论
本次实验由于准备时为了解到实验室设备的问题,未能完成既定实验目的,但是在老师指点下将直流串励电动机的电枢绕组和励磁绕组分别用一独立电源供电即可改接成他励电动机,接线合理,数据真实,小组成员积极配合,但只达到实验的部分目的。
首先按照实验步骤和实验注意事项测出电动机起动时的数据和电动机调速时的数据,对本次实验所得到的数据利用画图软件辅助分析电动机在起动时的转速
与电枢电压的关系以及电动机在调速状态下的转速与电枢电压、励磁电流的关系。
起动时,保持励磁电压不变,缓慢调节1ST R ,使1ST R 的电阻慢慢减小,使电枢电压每次增加将近20 V ,得到如图1的关系。
电动机的转速基本与电枢电压成正比,但随着1ST R 的减小,励磁电流有微小的的变化以及电枢电流亦有微小的变化。
调速时,将1ST R 、1r R 同时往大调,得到电动机的转速与电枢电压、励磁电流的关系如图2、3
通过调节电枢电压和励磁电流都可以实现调节电动机的转速,电动机的转速与电压和励磁电流成一定的线性关系。
另外在整个实验中不能出现励磁电压断路或者停机时先断励磁电压,否则电动机转速会爆增。
2.收获与不足
通过本次试验不仅对直流电机有了一定的了解和认识,还在实验上有了提高,提高动手能力,更重要的是开发了自己对实验的兴趣和实验过程的锻炼,增加了动手的次数。
在整个过程中,思考的问题较少。
对知识的迁移以及应用方面有所欠缺,没有想到串励直流电动机可以用作他励直流电动机,以至于开始时因为缺少他励电动机没有做成实验。
十、参考文献(资料)
1.唐介. 电机与拖动. 第三版. 高的教育出版社,2015年 2.电机教学实验台实验指导书. 杭州教仪设备有限公司,2011年。