linux内核的配置编译与移植
- 格式:ppt
- 大小:854.00 KB
- 文档页数:25
内核升级前的准备工作:Linux系统进行内核升级或定制内核时需要安装GCC编译工具、make编译器,同时变异内核需要root权限。
安装GCC编译环境参考:/rhelinux/248.html操作系统:RHEL 5.5开始安装:按照以下顺序安装所需要的包就可以完成GCC的安装了1. rpm -ivh kernel-headers-2.6.18-194.el5.i386.rpm2. rpm -ivh glibc-headers-2.5-49.i386.rpm3. rpm -ivh glibc-devel-2.5-49.i386.rpm4. rpm -ivh libgomp-4.4.0-6.el5.i386.rpm5. rpm -ivh gcc-4.1.2-48.el5.i386.rpm6. rpm -ivh libstdc++-devel-4.1.2-48.el5.i386.rpm7. rpm -ivh gcc-c++-4.1.2-48.el5.i386.rpm8. rpm -ivh ncurses-5.5-24.20060715.i386.rpm9. rpm -ivh ncurses-devel-5.5-24.20060715.i386.rpm注意:在升级编译完内核,重启后提示如下错误信息:RedHat nash Version 5.1.19.6 startingrver(2.6.33.3)mount: could not find filesystem …/dev/root‟setuproot: moving /dev failed: No such file or directorysetuproot: error mounting /proc: No such file or directorysetuproot: error mounting /sys: No such file or directoryswitchroot: mount failed: No such file or directoryKernel panic – not syncing: Attempted to kill init![Linux-initrd @ 0x1fc37000,0x228585 bytes]于是在网上找了很多,也尝试了很多加模块、重编译了N次、改fstab等方法,都不行。
1,获得源码,解压,进入解压后的目录;命令;2,修改makefile;为了能让此目录被执行所以在顶级目录的makefile中同时也进行修改;3,得到.config文件;命令;编译内核时对.config文件的依赖比较大,我们需要一个自己的.config文件,又因为我们的板子和smdk2410的很像,仅需将smdk2410的.config 文件复制到顶级目录即可不用修改;4;修改nandflash 分区;此系统启动时从nandflash 中启动而我们的板子不是的所以对其进行必要的修改;5,添加网卡驱动;arch/arm/mach-s3c2410/mach-smdk2410.c开发板上已经配置要的相应的网卡,并且内核中也有相应的实现代码我们只需做一下简单的修改;6添加yaffz文件系统支持将yaffz 源码包考到和linux-2.6.24 同一级目录下解压;在给内核打上补丁;命令是;7、配置和编译内核到现在,一个简单的内核就准备好了,我们还需要做一些配置,然后编译,内核才能正常使用。
在内核源代码的根目录下运行make menuconfig命令,进入配置界面:8,用u-boot启动内核;编译U-Boot时在源代码的tools目录下会生成一个mkimage可执行文件,用这个工具可以对前面编译内核时生成的zImage进行处理,以供U-Boot启动。
cd linux-2.6.24.4/arch/arm/bootcp /up-Star2410/kernel/linux-2.6.24.4/mkimage . 获取mkimage工具./mkimage -A arm -T kernel -C none -O linux -a 0x30008000 -e 0x30008040 -d zImage -n 'Linux-2.6.24' uImage9,最后把生成的uimage 放到主机tftp同目录下,启动开发板;用u-boot的tftp命令下载到sdram;。
实验5 linux内核的裁剪移植一、实验目的:学习利用menuconfig配置文件进行裁减内核,编译内核并移植到开发板上。
二、实验内容一、开发环境宿主机:ubuntu10.04开发板:tiny6410编译器:4.3.2二、内核移植1.下载源码ftp:///pub/linux/kernel/v2.6/linux-2.6.38.tar.bz2此实验所需的文件放到/home/embedded/11目录下:linux-2.6.38.tar.bz2, yaffs2.tar.bz2s3c_nand.c , s3c_nand_mlc.fo ,nand_base.c ,Kconfig ,regs-nand.h2.解压(进入根目录下的/home/poplar/expr4/kernel目录,解压源码)# cd /home# mkdir poplar/expr4/kernel –p# cd /home/poplar/expr4/kernel# cp /home/embedded/11/linux-2.6.38.tar.bz2 ./tar xvfj /home/poplar/expr4/kernel/linux-2.6.38.tar.bz23.修改架构,编译器(需要在arm上运行,所以用交叉编译器)解压完进入解压出来的linux-2.6.38目录#cd linux-2.6.38#vi Makefile (或者用gedit)191行改为ARCH ?= arm //191行CROSS_COMPILE ?= /usr/local/arm/4.3.2/bin/arm-linux- (找到其交叉编译环境,把路径加全) //192行4.生成默认配置文件#cp arch/arm/configs/s3c6400_defconfig .config如省略这个操作的话 后面会找不到System Type Linux内核中已经自带了关于我们6410开发板的配置。
Linux2.6内核移植系列教程第一:Linux 2.6内核在S3C2440平台上移植此教程适合2.6.38之前的版本,其中2.6.35之前使用同一yaffs补丁包,2.6.36--2.6.28 yaffs文件系统有所改变,2.6.39之后的暂时不支持,源码下载请到:/1.解压linux-2.6.34.tar.bz2源码包#tar jxvf linux-2.6.34.tar.bz22.修改linux-2.6.34/Makefile文件,在makefile中找到以下两条信息并做修改ARCH ? =armCROSS_COMPILE?=/usr/local/arm/4.3.2/bin/arm-linux-注意:交叉编译器的环境变量也需要改为4.3.2#export PATH=/usr/local/arm/4.3.2/bin/:$PATH其中ARCH变量用来决定:配置、编译时读取Linux源码arch目录下哪个体系结构的文件PATH 用来决定交叉编译器版本3.修改机器类型ID号Linux源码中支持多种平台的配置信息,内核会根据bootloader传进来的mach-types决定那份平台的代码起作用,本人手里的板子是仿照三星公司官方给出的demo板改版而来,所以采用arch/arm/mach-s3c2440/mach-smdk2440.c此配置文件,打开此文件,翻到最后,有以下信息:MACHINE_START(S3C2440, "SMDK2440")/* Maintainer: Ben Dooks <ben@> */.phys_io= S3C2410_PA_UART,.io_pg_offst= (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,.boot_params= S3C2410_SDRAM_PA + 0x100,.init_irq= s3c24xx_init_irq,.map_io= smdk2440_map_io,.init_machine= smdk2440_machine_init,.timer= &s3c24xx_timer,MACHINE_ENDMACHINE_START(S3C2440, "SMDK2440")决定了此板子的mach-types,可以在以下文件中找到S3C2440对应的具体数字,"arch/arm/tools/mach-types"文件查找S3C2440,362,这里刚好与我们的bootloader相同,所以不用做修改,直接保存退出即可,如果不同则根据bootloader的内容修改此文件,或根据此文件修改boorloader的内容(在vivi中可通过param show查看,u-boot在Y:\test\u-boot_src\u-boot_edu-2010.06\board\samsung\unsp2440\unsp2440.c文件:gd->bd->bi_arch_number = MACH_TYPE_S3C2440;中决定)。
下载,解压在/usr/sr c中,有dir名为linux-2.6.14.2.在/usr/src,建立l n,ln -s li nux-2.6.14 linux-2.63.在/usr/include中,rm -rf asm linux scsi(分别地),ln -s /usr/sr c/linx u-2.6.14/include/a sm-i386 asmln -s /usr/sr c/linx u-2.6.14/include/linux linuxln -s /usr/sr c/linx u-2.6.14/include/scsi scsi (why?)有人说可以不需要4.在目录/usr/sr c/linux-2.6.14下,(一定要在这个目录下,否则会有错误出现),make mrpr oper, make menuconfig,这个可能出现些错误,HOSTCC scripts/basic/split-includeIn file included from /usr/include/linux/errno.h:4,from /usr/include/bits/errno.h:25,from /usr/include/errno.h:36,from scripts/basic/split-include.c:26:/usr/include/asm/errno.h:4:31: asm-ge neric/errno.h: 没有那个文件或目录make[1]: *** [scripts/basic/split-include] Err or 1make: *** [scripts_ba sic] Error 2改:手动改了两个文件把原有的路径改成绝对路径了vi /usr/include/asm/errno.h#ifndef _I386_ERRNO_H#define _I386_ERRNO_H#include <asm-generic/errno.h>改成我的路径</usr/src/linux/include/asm-generic/errno.h>#endif再改一下这个文件vi /usr/sr c/linux/include/asm-generic/errno.hifndef _AS M_GENERIC_ERRNO_H#define _ASM_GENERIC_ERRNO_H#include <asm-generic/errno-base.h>改成我的路径</usr/src/linux/include/asm-generic/errno-base.h>这样以后就可能成功运行make menuconfig了。
Linux的内核编译和内核模块的管理一、内核的介绍内核室操作系统的最重要的组件,用来管理计算机的所有软硬件资源,以及提供操作系统的基本能力,RED hatenterpriselinux的许多功能,比如软磁盘整列,lvm,磁盘配额等都是由内核来提供。
1.1内核的版本与软件一样内核也会定义版本的信息,以便让用户可以清楚的辨认你用得是哪个内核的一个版本,linux内核以以下的的语法定义版本的信息MAJOR.MINOR.RELEASE[-CUSTOME]MAJOR:主要的版本号MINOR:内核的次版本号,如果是奇数,表示正在开发中的版本,如果是偶数,表示稳定的版本RELEASE:修正号,代表这个事第几次修正的内核CUSTOME 这个是由linux产品商做定义的版本编号。
如果想要查看内核的版本使用uname 来查看语法#uname [选项]-r --kernel-release 只查看目前的内核版本号码-s --kernel-name 支持看内核名称、-n --nodename 查看当前主机名字-v --kernel-version 查看当前内核的版本编译时间-m --machine 查看内核机器平台名称-p --processor 查看处理器信息-I --hard-platform 查看硬件平台信息-o --operating-system 查看操作系统的名称-a 查看所有1.2内核的组件内核通常会以镜像文件的类型来存储在REDHAT ENTERPRISE LINUX 中,当你启动装有REDHAT ENTERPRISE linux的系统的计算机时,启动加载器bootloader 程序会将内核镜像文件直接加载到程序当中,已启动内核与整个操作系统一般来说,REDHAT ENTERPRISE LINUX 会把内核镜像文件存储在/boot/目录中,文件名称vmlinuz-version或者vmlinux-version 其中version就是内的版本号内核模块组成linux内核的第二部分是内核模块,或者单独成为内核模块。
描述Linux内核的移植过程
Linux内核的移植过程可以分为以下几个步骤:
1. 确定目标平台:首先需要确定要将Linux内核移植到哪个目标平台上,这个平台可以是嵌入式设备、服务器、桌面电脑等。
2. 获取源代码:从Linux官网或其他开源代码库获取Linux内核的源代码。
3. 配置内核:根据目标平台的硬件特性和需求,对内核进行配置。
可以使用make menuconfig、make xconfig或make config等命令进行配置。
4. 编译内核:使用交叉编译工具链对内核进行编译。
交叉编译工具链是一组针对特定平台的编译器、链接器、调试器等工具,可以在开发主机上编译生成目标平台上的可执行文件。
5. 生成镜像文件:将编译生成的内核、设备树、启动程序等文件打包成一个镜像文件。
镜像文件的格式可以是uImage、zImage、vmlinux等。
6. 烧录镜像文件:将生成的镜像文件烧录到目标平台的存储设备上,例如闪存、SD卡、硬盘等。
可以使用dd、fastboot、flash等命令进行烧录。
7. 启动内核:将目标平台连接到开发主机,通过串口或网络连接进行调试和启动。
可以使用bootloader或者直接从存储设备启动内核。
8. 调试内核:在目标平台上运行内核时,可能会遇到各种问题,例如驱动不兼容、内存泄漏、死锁等。
需要使用调试工具对内核进行调试,例如gdb、kgdb、strace等。
以上就是Linux内核的移植过程,需要根据具体的目标平台和需求进行调整和优化。
linux移植的一般过程
1.硬件平台的分析:对要移植的硬件平台进行分析,了解其处理器架构、内存结构、设备接口等硬件特性。
2. 内核选择和配置:根据硬件平台的特性选择相应的Linux内核版本,并进行配置,包括启用或禁用某些功能、添加驱动程序等。
3. 引导程序开发:根据硬件平台的启动方式,开发或适配引导程序(bootloader),负责加载内核和设备驱动程序。
4. 设备驱动程序的开发或适配:根据硬件平台的设备特性,开发或适配相应的设备驱动程序,使其能够被内核识别和使用。
5. 文件系统的制作:根据硬件平台的存储设备特性,制作相应的文件系统,包括文件系统类型、文件系统结构、文件系统大小等。
6. 应用程序的移植:根据硬件平台的特性,移植相应的应用程序,确保其能够正常运行。
7. 调试和优化:进行测试和调试,解决可能出现的问题,并优化系统性能。
8. 发布和维护:完成移植后,进行发布和维护工作,包括文档编写、系统更新等。
- 1 -。
基于ARM的嵌入式linux内核的裁剪与移植前言嵌入式系统一直是计算机行业中的领域之一。
在许多应用程序中,嵌入式系统越来越流行。
嵌入式系统通常使用嵌入式芯片,如ARM芯片,并且它们通常运行Linux内核。
Linux内核是一个开放源代码的操作系统内核。
在嵌入式领域,Linux 内核可以被用于实现各种应用程序。
本文将重点介绍如何基于ARM平台的嵌入式Linux内核进行裁剪和移植。
ARM平台ARM处理器是一种RISC(Reduced Instruction Set Computer)处理器。
这种类型的处理器可用于嵌入式系统开发,因为它具有较低的功耗和高效的性能。
ARM处理器有许多版本,其中包括ARMv6和ARMv7。
ARMv6通常用于嵌入式系统,而ARMv7则用于智能手机和平板电脑等高端设备。
Linux内核的裁剪在嵌入式系统中,Linux内核需要进行裁剪,以适应嵌入式设备的需求。
与桌面计算机相比,嵌入式系统拥有更少的资源,包括RAM、闪存和存储空间。
因此,在将Linux内核移植到嵌入式系统之前,必须将内核进行裁剪。
在裁剪内核之前,您必须确定哪些内核模块是必需的。
一些模块可以从内核中移除,以减少内核的大小。
通常,将不必要的模块和其他功能从内核中移除可以使内核变得更小并具有更好的性能。
另外,裁剪内核时应确保其他组件与内核兼容。
例如,在新内核中可能需要更改驱动程序或实用程序以适应修改后的内核。
裁剪内核可能是一项比较困难的工作,需要深刻了解Linux内核的各个方面,以确保正确地裁剪内核。
移植Linux内核到ARM移植内核是将Linux内核适应新硬件的过程。
在开始移植内核之前,您必须了解嵌入式设备的硬件架构以及所需的内核组件。
移植Linux内核到ARM可以分为以下步骤:1.选择合适的ARM平台和处理器并确定所需的内核选项。
2.下载最新的内核源代码。
3.配置内核选项,并使其适应新硬件。
4.使用交叉编译器编译内核。
Linux编译安装新的核心内容要求:1、概述:描述有关概念;2、实验步骤:即查找、下载、编译、安装核心的完整步骤;3、问题及其解决:实验中碰到的问题,解决问题的办法;4、小结:包括如何分工合作,以及解决问题的心得,供今后参考。
)第一概念:在编译内核之前我们先来了解几个相关的概念,这将有助于我们更好的完成这次实验1.内核,是一个操作系统的核心。
它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。
(内核源程序都可以在/usr/src/linux下找到)我们可以针对自己的情况,量体裁衣,定制适合自己的系统,这样就需要重新编译内核. 2.内核版本号:由于Linux的源程序是完全公开的,任何人只要遵循GPL,就可以对内核加以修改并发布给他人使用。
Linux的开发采用的是集市模型(bazaar,与cathedral--教堂模型--对应),为了确保这些无序的开发过程能够有序地进行,Linux采用了双树系统。
一个树是稳定树(stable tree),另一个树是非稳定树(unstable tree)或者开发树(development tree)。
一些新特性、实验性改进等都将首先在开发树中进行。
如果在开发树中所做的改进也可以应用于稳定树,那么在开发树中经过测试以后,在稳定树中将进行相同的改进。
一旦开发树经过了足够的发展,开发树就会成为新的稳定树。
开发数就体现在源程序的版本号中;源程序版本号的形式为x.y.z:对于稳定树来说,y是偶数;对于开发树来说,y比相应的稳定树大一(因此,是奇数)。
到目前为止,稳定树的最高版本是2.2.16,最新发布的Redhat7.0所采用的就是2.2.16的内核;开发树的最新版本是2.3.99。
也许你已经发现和多网站上都有2.4.0-test9-pre7之类的内核,但是这并不是正式版本。
内核版本的更新可以访问。
3. 为什么重新编译内核Linux内核版本不断更新。
嵌入式Linux内核模块的配置与编译一、简介随着 Linux操作系统在嵌入式领域的快速发展,越来越多的人开始投身到这方面的开发中来。
但是,面对庞大的Linux内核源代码,开发者如何开始自己的开发工作,在完成自己的代码后,该如何编译测试,以及如何将自己的代码编译进内核中,所有的这些问题都直接和Linux的驱动的编译以及Linux的内核配置系统相关。
内核模块是一些在操作系统内核需要时载入和执行的代码,它们扩展了操作系统内核的功能却不需要重新启动系统,在不需要时可以被操作系统卸载,又节约了系统的资源占用。
设备驱动程序模块就是一种内核模块,它们可以用来让操作系统正确识别和使用使用安装在系统上的硬件设备。
Linux内核是由分布在全球的Linux爱好者共同开发的,为了方便开发者修改内核,Linux的内核采用了模块化的内核配置系统,从而保证内核扩展的简单与方便。
本文通过一个简单的示例,首先介绍了如何在Linux下编译出一个内核模块,然后介绍了Linux内核中的配置系统,讲述了如何将一个自定义的模块作为系统源码的一部分编译出新的操作系统,注意,在这里我们介绍的内容均在内核2.6.13.2(也是笔者的开发平台的版本)上编译运行通过,在2.6.*的版本上基本上是可以通用的。
二、单独编译内核模块首先,我们先来写一个最简单的内核模块:#include <linux/module.h>#include <linux/kernel.h>#include <linux/errno.h>#define DRIVER_VERSION "v1.0"#define DRIVER_AUTHOR "RF"#define DRIVER_DESC "just for test"MODULE_AUTHOR(DRIVER_AUTHOR);MODULE_DESCRIPTION(DRIVER_DESC);MODULE_LICENSE("GPL");staticintrfmodule_init(void){printk("hello,world:modele_init");return 0;}static void rfmodule_exit(void){printk("hello,world:modele_exit");}module_init (rfmodule_init);module_exit (rfmodule_exit);这个内核模块除了在载入和卸载的时候打印2条信息之外,没有任何其他功能,不过,对于我们这个编译的例子来讲,已经足够了。