实验9ARMLinux内核配置编译
- 格式:ppt
- 大小:2.69 MB
- 文档页数:43
kernel 编译参数在编译 Linux 内核时,可以使用多种参数来配置和优化内核。
以下是一些常用的参数:1. `make menuconfig`:这是一个基于文本的用户界面,用于配置内核的各个选项。
用户可以选择要包含或排除的功能,并保存配置以便以后使用。
2. `make xconfig`:这是一个基于图形界面的工具,用于配置内核选项。
它使用 Qt 库来创建用户界面,使得配置更加直观和易于使用。
3. `make oldconfig`:如果已经有一个旧的 `.config` 文件,可以使用此参数来快速配置新内核。
它只会询问新内核中与旧配置不同的选项。
4. `make defconfig`:此参数将使用默认配置来编译内核。
这通常是一个针对特定目标硬件的配置,但也可以根据需要手动修改。
5. `make allnoconfig`:此参数将禁用所有启用的内核选项,只启用必需的核心功能。
6. `make allyesconfig`:此参数将启用所有内核选项,不进行任何禁用或排除。
7. `make localmodconfig`:此参数将只启用当前系统上已加载的内核模块。
8. `make localyesconfig`:此参数将启用当前系统上已加载的内核模块,并且不进行任何禁用或排除。
9. `make install`:此参数将编译并安装新内核。
它还会将必要的内核模块和文件复制到相应的目录中,以便在启动时加载新内核。
10. `make -j`:此参数用于并行编译内核,以加快编译速度。
可以指定一个数字来指定要使用的并行进程数。
这些参数可以单独使用,也可以组合使用,具体取决于要执行的操作和目标硬件配置。
在使用 `make` 命令进行内核编译时,建议仔细阅读相关文档以了解更多选项和参数。
编译linux实验报告
编译Linux实验报告
在计算机科学领域,Linux操作系统一直被广泛使用。
它是一个开放源代码的操作系统,具有稳定性和安全性。
在本次实验中,我们将学习如何编译Linux内核,并撰写实验报告以记录我们的实验过程和结果。
实验目的:
1. 了解Linux内核的编译过程
2. 熟悉编译工具和技术
3. 掌握编译过程中可能遇到的问题和解决方法
实验步骤:
1. 下载Linux内核源代码
2. 解压源代码并配置编译环境
3. 使用make命令编译内核
4. 安装编译后的内核
5. 测试新内核的稳定性和功能
实验结果:
经过一系列的操作,我们成功地编译了Linux内核,并将其安装到我们的计算机上。
新内核的稳定性和功能得到了验证,证明我们的编译过程是成功的。
实验总结:
通过本次实验,我们不仅了解了Linux内核的编译过程,还学习了如何使用编译工具和技术。
在实验过程中,我们遇到了一些问题,但通过查阅资料和尝试不同的解决方法,最终成功地完成了编译过程。
这次实验为我们提供了宝贵的
经验,也增强了我们对Linux操作系统的理解和掌握。
总的来说,编译Linux内核的实验是一次有意义的学习过程,我们通过实践提升了自己的技能和知识水平。
希望在未来的学习和工作中,能够运用这些经验和技能,为我们的计算机科学之路增添更多的成就和贡献。
LINUX内核模块编译步骤编译Linux内核模块主要包括以下步骤:1.获取源代码2.配置内核进入源代码目录并运行make menuconfig命令来配置内核。
该命令会打开一个文本菜单,其中包含许多内核选项。
在这里,你可以配置内核以适应特定的硬件要求和预期的功能。
你可以选择启用或禁用各种功能、设备驱动程序和文件系统等。
配置完成后,保存并退出。
3. 编译内核(make)运行make命令开始编译内核。
这将根据你在上一步中进行的配置生成相应的Makefile,然后开始编译内核。
编译的过程可能需要一些时间,请耐心等待。
4.安装模块编译完成后,运行make modules_install命令将编译好的模块安装到系统中。
这些模块被安装在/lib/modules/<kernel-version>/目录下。
5.安装内核运行make install命令来安装编译好的内核。
该命令会将内核映像文件(通常位于/arch/<architecture>/boot/目录下)复制到/boot目录,并更新系统引导加载程序(如GRUB)的配置文件。
6.更新GRUB配置文件运行update-grub命令来更新GRUB引导加载程序的配置文件。
这将确保新安装的内核在下次启动时可用。
7.重启系统安装完成后,通过重启系统来加载新的内核和模块。
在系统启动时,GRUB将显示一个菜单,你可以选择要启动的内核版本。
8.加载和卸载内核模块现在,你可以使用insmod命令来加载内核模块。
例如,运行insmod hello.ko命令来加载名为hello.ko的模块。
加载的模块位于/lib/modules/<kernel-version>/目录下。
如果你想卸载一个已加载的内核模块,可以使用rmmod命令。
例如,运行rmmod hello命令来卸载已加载的hello模块。
9.编写和编译模块代码要编写一个内核模块,你需要创建一个C文件,包含必要的模块代码。
内核升级前的准备工作:Linux系统进行内核升级或定制内核时需要安装GCC编译工具、make编译器,同时变异内核需要root权限。
安装GCC编译环境参考:/rhelinux/248.html操作系统:RHEL 5.5开始安装:按照以下顺序安装所需要的包就可以完成GCC的安装了1. rpm -ivh kernel-headers-2.6.18-194.el5.i386.rpm2. rpm -ivh glibc-headers-2.5-49.i386.rpm3. rpm -ivh glibc-devel-2.5-49.i386.rpm4. rpm -ivh libgomp-4.4.0-6.el5.i386.rpm5. rpm -ivh gcc-4.1.2-48.el5.i386.rpm6. rpm -ivh libstdc++-devel-4.1.2-48.el5.i386.rpm7. rpm -ivh gcc-c++-4.1.2-48.el5.i386.rpm8. rpm -ivh ncurses-5.5-24.20060715.i386.rpm9. rpm -ivh ncurses-devel-5.5-24.20060715.i386.rpm注意:在升级编译完内核,重启后提示如下错误信息:RedHat nash Version 5.1.19.6 startingrver(2.6.33.3)mount: could not find filesystem …/dev/root‟setuproot: moving /dev failed: No such file or directorysetuproot: error mounting /proc: No such file or directorysetuproot: error mounting /sys: No such file or directoryswitchroot: mount failed: No such file or directoryKernel panic – not syncing: Attempted to kill init![Linux-initrd @ 0x1fc37000,0x228585 bytes]于是在网上找了很多,也尝试了很多加模块、重编译了N次、改fstab等方法,都不行。
***学生实验报告一、实验目的(1)学习重新编译Linux内核的方法(2)理解Linux标准内核和发行版本内核的区别。
二、实验内容在Linux系统中下载同一发行版本的版本号较高的内核,编译之后运行自己编译的内核,并使用uname-r命令查看是否运行成功。
由于不同版本的内核在编译过程中可能出现不同的问题,本书推荐的内核版本为4.16.10。
从第7章开始的进阶实验篇,都可以选用该版本的内核。
三、实验设备Vmware上运行的linux ubuntu 5.11.0-43-generic实验成功:linux ubuntu 4.18.0-generic(Ubuntu18.04均可)实验成功的方法在最后四、实验过程和原理分析一、实验(一)准备工作:在这里我建议用一个全新的虚拟机,避免编译错误对原来常使用的虚拟机造成不可逆的影响,安装好后就先安装gcc、make等工具首先下载好Linux***内核文件解压至/usr/src 目录下,如下:确认安装好gcc、make等工具,后可直接运行命令sudo make menuconfig进行查看内核功能是否需要编译,如果遇到如下错误可以运行命令sudo apt bison 或sudo apt-get install fiex bison命令解决错误:解决:(不建议)(强烈建议)除此之外还可以直接运行,上一条命令解决不了就用下面这个:sudo apt-get install --reinstall bison libbison-dev flex libfl-dev解决上述错误(强烈建议)运行完上述命令后再次输入sudo make menuconfig便正常进入如下:见到这个界面后无需任何多余操作,使用键盘方向键选择<Save>回车再回车即可此时.config文件生成成功.config文件是隐藏文件记得加参数-a此外还有一个方法就是用cp 命令从原有系统的内核复制.config文件过来也可以命令:sudo cp /boot/config- 5.11.0-43-generic ./.config(二)编译内核为了避免多线程编译时同时出现过多错误,我们这里一开始只使用单线程编译在这里除了用make编译还可以用make-kpkg等工具,个人比较喜欢用make-kpkg但课本用make所以我接下来的实验也先用make完成。
编译Linux内核实验目的学习重新编译Linux内核,理解、掌握Linux内核和发行版本的区别。
实验内容重新编译内核是一件比你想像的还要简单的事情,它甚至不需要你对内核有任何的了解,只要你具备一些基本的Linux操作系统的知识就可以进行。
本次实验,要求你在RedHat Fedora Core 5的Linux系统里,下载并重新编译其内核源代码(版本号KERNEL-2.6.15-1.2054);然后,配置GNU的启动引导工具grub,成功运行你刚刚编译成功的Linux内核。
实验提示Linux是当今流行的操作系统之一。
由于其源码的开放性,现代操作系统设计的思想和技术能够不断运用于它的新版本中。
因此,读懂并修改Linux内核源代码无疑是学习操作系统设计技术的有效方法。
本实验首先介绍Linux内核的特点、源码结构和重新编译内核的方法,讲述如何通过Linux系统所提供的/proc虚拟文件系统了解操作系统运行状况的方法。
最后,对Linux编程环境中的常用工具也有简单介绍。
1.1查找并且下载一份内核源代码我们知道,Linux受GNU通用公共许可证(GPL)保护,其内核源代码是完全开放的。
现在很多Linux的网站都提供内核代码的下载。
推荐你使用Linux的官方网站: ,如图1-1。
在这里你可以找到所有的内核版本。
图1-1 Linux的官方网站由于作者安装的Fedora Core 5并不附带内核源代码,第一步首先想办法获取合适版本的Linux内核代码。
通过命令# uname –r2.6.15-1.2054_FC5这就是说,RedHat Fedora Core 5采用的内核版本是2.6.15-1.2054_FC5。
但是,官方网站/pub/linux/kernel/找不到对应版本。
请别着急,既然它是RedHat发布的,RedHat的官方网站总有吧。
浏览/pub/fedora/linux/core/5/source/SRPMS,我们发现果然有文件kernel-2.6.15-1.2054_FC5.src.rpm,这个rpm文件就是2.6.15-1.2054_FC5版的内核源代码了。
linux arm的编译命令摘要:1.Linux ARM 编译命令概述2.Linux ARM 编译器的安装3.Linux ARM 编译命令的使用4.编译命令的实例正文:1.Linux ARM 编译命令概述Linux ARM 编译命令是指在Linux 系统下,针对ARM 架构处理器进行编译的命令。
ARM 架构处理器广泛应用于嵌入式系统、移动设备等,因此在Linux 系统中进行ARM 编译是非常常见的任务。
2.Linux ARM 编译器的安装要在Linux 系统中使用ARM 编译器,首先需要安装相应的编译器。
一般情况下,我们可以通过以下命令来安装:```bashsudo apt-get install gcc-arm-linux-gnueabi```其中,`gcc`是GNU 编译器集合,`arm-linux-gnueabi`表示针对ARM 架构的Linux 系统。
安装完成后,您可以在终端中输入`gcc -v`来查看编译器的版本信息。
3.Linux ARM 编译命令的使用安装好编译器后,您可以开始编写源代码文件,例如`test.c`。
编写完成后,通过以下命令编译:```bashgcc -o test test.c```其中,`-o`选项用于指定编译后输出文件的名称,`test`是源代码文件名,`test.c`是源代码文件的扩展名。
编译成功后,您可以在当前目录下找到名为`test`的可执行文件。
4.编译命令的实例下面是一个具体的实例,展示如何使用Linux ARM 编译器编译一个简单的C 语言程序。
假设您有一个名为`hello.c`的源代码文件,内容如下:```c#include <stdio.h>int main() {printf("Hello, ARM!");return 0;}```要编译这个程序,您可以使用以下命令:```bashgcc -o hello hello.c```编译成功后,您将在当前目录下找到一个名为`hello`的可执行文件。
linux内核编译过程解释
Linux内核是操作系统的核心部分,它控制着系统的资源管理、任务调度、驱动程序等重要功能。
编译Linux内核是一项非常重要的任务,因为它决定了系统的性能、稳定性和可靠性。
下面我们来了解一下Linux内核的编译过程。
1. 下载内核源代码:首先,我们需要从官方网站上下载Linux
内核的源代码。
这里我们可以选择下载最新的稳定版本或者是开发版,具体取决于我们的需求。
2. 配置内核选项:下载完源代码后,我们需要对内核进行配置。
这一步通常需要使用make menuconfig命令来完成。
在配置过程中,我们需要选择系统所需的各种驱动程序和功能选项,以及定制化内核参数等。
3. 编译内核:配置完成后,我们可以使用make命令开始编译内核。
编译过程中会生成一些中间文件和可执行文件,同时也会编译各种驱动程序和功能选项。
4. 安装内核:编译完成后,我们可以使用make install命令将内核安装到系统中。
这一步通常需要将内核文件复制到/boot目录下,并更新系统的引导程序以便正确加载新内核。
5. 重启系统:安装完成后,我们需要重启系统以使新内核生效。
如果新内核配置正确,系统应该能顺利地启动并正常工作。
总的来说,Linux内核的编译过程是一个相对复杂的过程,需要一定的技术和操作经验。
但是,通过了解和掌握相关的编译技巧和命
令,我们可以轻松地完成内核编译工作,并为系统的性能和稳定性做出贡献。
基于ARM的嵌入式linux内核的裁剪与移植前言嵌入式系统一直是计算机行业中的领域之一。
在许多应用程序中,嵌入式系统越来越流行。
嵌入式系统通常使用嵌入式芯片,如ARM芯片,并且它们通常运行Linux内核。
Linux内核是一个开放源代码的操作系统内核。
在嵌入式领域,Linux 内核可以被用于实现各种应用程序。
本文将重点介绍如何基于ARM平台的嵌入式Linux内核进行裁剪和移植。
ARM平台ARM处理器是一种RISC(Reduced Instruction Set Computer)处理器。
这种类型的处理器可用于嵌入式系统开发,因为它具有较低的功耗和高效的性能。
ARM处理器有许多版本,其中包括ARMv6和ARMv7。
ARMv6通常用于嵌入式系统,而ARMv7则用于智能手机和平板电脑等高端设备。
Linux内核的裁剪在嵌入式系统中,Linux内核需要进行裁剪,以适应嵌入式设备的需求。
与桌面计算机相比,嵌入式系统拥有更少的资源,包括RAM、闪存和存储空间。
因此,在将Linux内核移植到嵌入式系统之前,必须将内核进行裁剪。
在裁剪内核之前,您必须确定哪些内核模块是必需的。
一些模块可以从内核中移除,以减少内核的大小。
通常,将不必要的模块和其他功能从内核中移除可以使内核变得更小并具有更好的性能。
另外,裁剪内核时应确保其他组件与内核兼容。
例如,在新内核中可能需要更改驱动程序或实用程序以适应修改后的内核。
裁剪内核可能是一项比较困难的工作,需要深刻了解Linux内核的各个方面,以确保正确地裁剪内核。
移植Linux内核到ARM移植内核是将Linux内核适应新硬件的过程。
在开始移植内核之前,您必须了解嵌入式设备的硬件架构以及所需的内核组件。
移植Linux内核到ARM可以分为以下步骤:1.选择合适的ARM平台和处理器并确定所需的内核选项。
2.下载最新的内核源代码。
3.配置内核选项,并使其适应新硬件。
4.使用交叉编译器编译内核。
linux内核裁剪及编译步骤Linux内核裁剪及编译步骤Linux操作系统的内核是其最重要和核心的组成部分。
用户可以根据自己的需要对内核进行裁剪以减少内核代码的大小,以及支持特定的硬件和功能。
Linux内核的裁剪和编译步骤相对来说比较复杂,需要一定的技术和安装环境的支持。
下面将介绍Linux内核裁剪及编译的具体步骤,以供参考。
一、准备工作在开始进行Linux内核的裁剪及编译之前,需要进行一些准备工作。
首先,需要安装Linux操作系统的开发环境。
其次,需要下载Linux内核的源代码,可以从Linux 的官方网站或者其他开源社区下载。
二、配置内核选项安装好开发环境和下载好源代码之后,就可以开始进行内核的裁剪和编译了。
首先需要进行内核选项的配置。
可以使用make menuconfig命令进入配置界面。
在这个界面中,用户可以对内核进行不同程度的裁剪,包括去掉多余的硬件支持和功能选项。
在配置选项中,用户需要选择一些基本的配置选项,包括文件系统类型、设备驱动、协议栈、安全选项、虚拟化等。
用户可以根据自己的需要,进行选项的选择和配置。
三、编译内核在完成了内核的配置之后,下一步就是进行内核的编译。
可以使用make命令进行编译。
编译过程中需要耗费一定的时间和资源,因此建议在空闲时刻进行编译。
如果出现编译错误,需要根据错误提示进行排查和解决。
编译错误很可能是由配置选项不当造成的,因此要仔细检查配置选项。
四、安装内核编译完成后,就可以安装内核。
可以使用make install命令进行安装。
安装完成后,可以重启系统,以使新的内核生效。
在重启时,需要手动选择新的内核,可以选择自己编译的内核或者系统默认的内核。
五、总结对于不同的用户,对内核的需求和选择是不同的。
因此,在对内核进行裁剪时,需要根据自己的需求进行适当的选择,以提高系统性能和稳定性。
同时,在进行内核的编译时,也需要仔细检查配置选项和随时记录日志以便排除可能出现的问题。
嵌入式Linux内核模块的配置与编译一、简介随着 Linux操作系统在嵌入式领域的快速发展,越来越多的人开始投身到这方面的开发中来。
但是,面对庞大的Linux内核源代码,开发者如何开始自己的开发工作,在完成自己的代码后,该如何编译测试,以及如何将自己的代码编译进内核中,所有的这些问题都直接和Linux的驱动的编译以及Linux的内核配置系统相关。
内核模块是一些在操作系统内核需要时载入和执行的代码,它们扩展了操作系统内核的功能却不需要重新启动系统,在不需要时可以被操作系统卸载,又节约了系统的资源占用。
设备驱动程序模块就是一种内核模块,它们可以用来让操作系统正确识别和使用使用安装在系统上的硬件设备。
Linux内核是由分布在全球的Linux爱好者共同开发的,为了方便开发者修改内核,Linux的内核采用了模块化的内核配置系统,从而保证内核扩展的简单与方便。
本文通过一个简单的示例,首先介绍了如何在Linux下编译出一个内核模块,然后介绍了Linux内核中的配置系统,讲述了如何将一个自定义的模块作为系统源码的一部分编译出新的操作系统,注意,在这里我们介绍的内容均在内核2.6.13.2(也是笔者的开发平台的版本)上编译运行通过,在2.6.*的版本上基本上是可以通用的。
二、单独编译内核模块首先,我们先来写一个最简单的内核模块:#include <linux/module.h>#include <linux/kernel.h>#include <linux/errno.h>#define DRIVER_VERSION "v1.0"#define DRIVER_AUTHOR "RF"#define DRIVER_DESC "just for test"MODULE_AUTHOR(DRIVER_AUTHOR);MODULE_DESCRIPTION(DRIVER_DESC);MODULE_LICENSE("GPL");staticintrfmodule_init(void){printk("hello,world:modele_init");return 0;}static void rfmodule_exit(void){printk("hello,world:modele_exit");}module_init (rfmodule_init);module_exit (rfmodule_exit);这个内核模块除了在载入和卸载的时候打印2条信息之外,没有任何其他功能,不过,对于我们这个编译的例子来讲,已经足够了。