2016河南中考名师猜押A卷(数学)参考答案及详解详析
- 格式:pdf
- 大小:339.84 KB
- 文档页数:4
2016年河南省中考原创押题数学试卷(一)一、选择题:本大题共8小题,每小题3分,共24分1.下面的数中,与﹣2的和为0的是()A. B.﹣C.2 D.﹣22.下列计算正确的是()A.2+4=6 B.=4 C.÷=3 D.=﹣33.发展工业是强国之梦的重要举措,如图所示零件的左视图是()A. B. C. D.4.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2= C.1+2x= D.1+2x=5.正比例函数y=6x的图象与反比例函数y=的图象的交点位于()A.第一象限 B.第二象限 C.第三象限 D.第一、三象限6.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1 B.2 C.3 D.47.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1+1,2a2+1,…,2a n+1的方差是()A.2 B.3 C.4 D.88.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C. D.二、填空题:每小题3分,共21分9.若实数a、b满足|3a﹣1|+b2=0,则a b的值为______.10.请写出一个二元一次方程组______,使它的解是.11.不等式组的非负整数解是______.12.点动成线,线动成面,面动成体,在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC 饶边AC所在的直线旋转一周得到圆锥,则该圆锥的表面积是______.13.反比例函数的图象经过点P(a,b),其中a、b是一元二次方程x2+kx+4=0的两根,那么点P的坐标是______.14.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为______.15.如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为______.三、解答题:本大题共8小题,共75分16.化简求值:,其中a=,b=.17.如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.18.如图所示,小明在自家楼顶上的点A处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部B处的仰角为45°,底部C处的俯角为26°,已知小明家楼房的高度AD=15米,求电梯楼的高度BC(结果精确到0.1米)(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)19.最近两年雾霾对我国北方大部分地区影响较严重,其中和越来越多的汽车尾气排放有极大的关系.据报道,历经一百天的调查研究,我市PM2.5的源解析已经通过专家论证,各种调查显示,机动车为PM2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物,校环保志愿小分队从环保局了解到我市100天的空气质量等级情况,并制成统计图和表:空气质量等级优良轻度污染中度污染重度污染严重污染天数(天)10a12825b(1)表中a=______,b=______,图中严重污染部分对应的圆心角n=______;(2)请你根据“2015年我市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的概率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米,已知我市2015年机动车保有量已突破200万辆,请你通过计算,估计2015年我市一天中出行的机动车至少要向大气里排放多少千克污染物?20.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22.王老师在组织一次数学教学中,扁拟了如下问题串【原题初探】如图1所示,在四边形ABCD中,AD∥BC,E为CD边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ADE;【变式猜想】如图2所示,在已知锐角∠AOB内有一定点P,过点P任意作一条直线MN,分别交射线OA,OB于点M,N,小明在将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,试问当MN在什么位置时,△MON的面积最小【拓展应用】如图3所示,一块四边形土地OABC,其中OA边长60米,AB边长30米,C点到OA边的距离为45米,使用测角器测得∠AOC=45°,OA⊥AB,OC⊥BC,机井P距离OA,AB 均是20米,过机井P画一条分割线将这块地分成两块四边形地块(与四边形土地OABC)的一组对边相交),则其中以点O为顶点的四边形地块的最大面积为______.23.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标.2016年河南省中考原创押题数学试卷(一)参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.下面的数中,与﹣2的和为0的是()A. B.﹣C.2 D.﹣2【考点】相反数.【分析】设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:C.2.下列计算正确的是()A.2+4=6 B.=4 C.÷=3 D.=﹣3【考点】实数的运算.【分析】A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.【解答】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.3.发展工业是强国之梦的重要举措,如图所示零件的左视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形平均分成2个,故选:C.4.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2= C.1+2x= D.1+2x=【考点】由实际问题抽象出一元二次方程.【分析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.【解答】解:设平均每天涨x.则90%(1+x)2=1,即(1+x)2=,故选B.5.正比例函数y=6x的图象与反比例函数y=的图象的交点位于()A.第一象限 B.第二象限 C.第三象限 D.第一、三象限【考点】反比例函数与一次函数的交点问题.【分析】根据反比例函数与一次函数的交点问题解方程组即可得到两函数的交点坐标,然后根据交点坐标进行判断.【解答】解:解方程组得或,所以正比例函数y=6x的图象与反比例函数y=的图象的交点坐标为(1,6),(﹣1,﹣6).故选:D.6.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1 B.2 C.3 D.4【考点】轴对称-最短路线问题.【分析】如图作点E关于直线CD的对称点E′,连接AE′与直线CD交于点F.此时△AEF 的周长最小.由CF∥AB,推出CF:AB=CE′:BE′=1:3,求出CF即可解决问题.【解答】解:如图作点E关于直线CD的对称点E′,连接AE′与直线CD交于点F.此时△AEF的周长最小.∵BE=EC=CE′=4,AB=CD=6,CF∥AB,∴CF:AB=CE′:BE′=1:3,∴CF=2,∴DF=CD﹣CF=4.故选D.7.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1+1,2a2+1,…,2a n+1的方差是()A.2 B.3 C.4 D.8【考点】方差.【分析】设已知数据的平均数为,根据数据的方差列出关系式,进而求出新数据的平均数,得出方差即可.【解答】解:∵一组数据a1,a2,…,a n的方差是2,平均数为,∴S2= [(a1﹣)2+(a2﹣)2+…+(a n﹣)2]=2,∵2a1+1,2a2+1,…,2a n+1的平均数为2+1,∴S′2= [(2a1+1﹣2﹣1)2+(2a2+1﹣2﹣1)2+…+(2a n+1﹣2﹣1)2]=2×22=8,故选:D8.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C. D.【考点】动点问题的函数图象.【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【解答】解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选:B.二、填空题:每小题3分,共21分9.若实数a、b满足|3a﹣1|+b2=0,则a b的值为 1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式,根据任何非0数的0次幂等于1进行计算即可得解.【解答】解:根据题意得,3a﹣1=0,b=0,解得a=,b=0,a b=()0=1.故答案为:1.10.请写出一个二元一次方程组此题答案不唯一,如:,使它的解是.【考点】二元一次方程组的解.【分析】根据二元一次方程解的定义,可知在求解时,应先围绕x=2,y=﹣1列一组算式,然后用x,y代换即可列不同的方程组.答案不唯一,符合题意即可.【解答】解:此题答案不唯一,如:,,①+②得:2x=4,解得:x=2,将x=2代入①得:y=﹣1,∴一个二元一次方程组的解为:.故答案为:此题答案不唯一,如:.11.不等式组的非负整数解是0 .【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.【解答】解:由不等式1﹣x>0得x<1,由不等式3x>2x﹣4得x>﹣4,所以其解集为﹣4<x<1,则不等式组的非负整数解是0.故答案为:0.12.点动成线,线动成面,面动成体,在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC 饶边AC所在的直线旋转一周得到圆锥,则该圆锥的表面积是36πcm2.【考点】圆锥的计算.【分析】先利用勾股定理计算出AB=5,由于以AC所在直线为轴,把△ABC旋转1周所得的圆锥的底面圆的半径为4,母线长为5,则可利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算圆锥的侧面积,然后加上底面积即可得到圆锥面积.【解答】解:∵∠C=90°,AC=3,BC=4,∴AB==5,以AC所在直线为轴,把△ABC旋转1周所得的圆锥的底面圆的半径为4,母线长为5,所以圆锥的全面积=π•42+•2π•4•5=36π(cm2).故答案为36πcm2.13.反比例函数的图象经过点P(a,b),其中a、b是一元二次方程x2+kx+4=0的两根,那么点P的坐标是(﹣2,﹣2).【考点】待定系数法求反比例函数解析式;根与系数的关系.【分析】先根据点P(a,b)是反比例函数的图象上的点,把点P的坐标代入解析式,得到关于a、b、k的等式ab=k;又因为a、b是一元二次方程x2+kx+4=0的两根,得到a+b=﹣k,ab=4,根据以上关系式求出a、b的值即可.【解答】解:把点P(a,b)代入y=得,ab=k,因为a、b是一元二次方程x2+kx+4=0的两根,根据根与系数的关系得:a+b=﹣k,ab=4,于是有:,解得,点P的坐标是(﹣2,﹣2).14.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.【考点】二次函数图象与几何变换.【分析】根据点O与点A的坐标求出平移后的抛物线的对称轴,然后求出点P的坐标,过点P作PM⊥y轴于点M,根据抛物线的对称性可知阴影部分的面积等于矩形NPMO的面积,然后求解即可.【解答】解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(﹣6,0),∴平移后的抛物线对称轴为x=﹣3,得出二次函数解析式为:y=(x+3)2+h,将(﹣6,0)代入得出:0=(﹣6+3)2+h,解得:h=﹣,∴点P的坐标是(﹣3,﹣),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=|﹣3|×|﹣|=.故答案为:.15.如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为 2 .【考点】平移的性质;等边三角形的性质.【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【解答】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为:2.三、解答题:本大题共8小题,共75分16.化简求值:,其中a=,b=.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=÷=•=,当a=,b=时,原式==﹣6.17.如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)AP=AB,PB=PC,∴∠ABC﹣∠PBC=∠DCB﹣∠PCB,即∠ABP=∠DCP,因此可证得两三角形全等.(2)有(1)∠CAD=45°,△PAD为等边三角形,可求得∠BAP=30°∠PAC=∠PAD﹣∠CAD=15°,因此可证的结论.【解答】(1)解:∵四边形ABCD是正方形,∴∠ABC=∠DCB=90°.∵PB=PC,∴∠PBC=∠PCB.∴∠ABC﹣∠PBC=∠DCB﹣∠PCB,即∠ABP=∠DCP.又∵AB=DC,PB=PC,∴△APB≌△DPC.(2)证明:∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°.∵△APB≌△DPC,∴AP=DP.又∵AP=AB=AD,∴DP=AP=AD.∴△APD是等边三角形.∴∠DAP=60°.∴∠PAC=∠DAP﹣∠DAC=15°.∴∠BAP=∠BAC﹣∠PAC=30°.∴∠BAP=2∠PAC.18.如图所示,小明在自家楼顶上的点A处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部B处的仰角为45°,底部C处的俯角为26°,已知小明家楼房的高度AD=15米,求电梯楼的高度BC(结果精确到0.1米)(参考数据:sin26°≈0.44,co s26°≈0.90,tan26°≈0.49)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE⊥BC于E,可得四边形ADCE是矩形,即可得CE=AD=15米,然后分别在Rt△ACE中,AE=与在Rt△ABE中,BE=AE•tan45°,即可求得BE的长,继而求得电梯楼的高度.【解答】解:过点A作AE⊥BC于E,∵AD⊥CD,BC⊥CD,∴四边形ADCE是矩形,∴CE=AD=15米,在Rt△ACE中,AE==≈30.6(米),在Rt△ABE中,BE=AE•tan45°=30.6(米),∴BC=CE+BE=15+30.6=45.6(米).答:电梯楼的高度BC为45.6米.19.最近两年雾霾对我国北方大部分地区影响较严重,其中和越来越多的汽车尾气排放有极大的关系.据报道,历经一百天的调查研究,我市PM2.5的源解析已经通过专家论证,各种调查显示,机动车为PM2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物,校环保志愿小分队从环保局了解到我市100天的空气质量等级情况,并制成统计图和表:空气质量等级优良轻度污染中度污染重度污染严重污染天数(天)10a12825b(1)表中a= 25 ,b= 20 ,图中严重污染部分对应的圆心角n= 72°;(2)请你根据“2015年我市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的概率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米,已知我市2015年机动车保有量已突破200万辆,请你通过计算,估计2015年我市一天中出行的机动车至少要向大气里排放多少千克污染物?【考点】扇形统计图;用样本估计总体;概率公式.【分析】(1)根据优的天数和所占的百分比求出总天数,再乘以良和严重污染所占的百分比,求出a,b,再用360°乘以严重污染所占的百分比求出严重污染部分对应的圆心角的度数;(2)用重度污染和严重污染所占的百分比相加即可得出答案;(3)根据题意和用样本估计总体的方法,列出算式,求解即可.【解答】解:(1)根据题意,得:a=100×25%=25(天),严重污染所占的百分比是:1﹣10%﹣25%﹣12%﹣8%﹣25%=20%,b=100×20%=20(天),n=360°×20%=72°,故答案为:25,20,72°;(2)100天内重度污染和严重污染出现的频率为×100%=45%;(3)根据题意,得:200×10000×0.035×=87500(千克),答:估计2015年我市一天中出行的机动车至少要向大气里排放87500千克污染物.20.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【考点】反比例函数综合题.【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.【解答】解:(1)∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB==5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形;(2)∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y=的图象经过D点,∴4=,∴k=20,∴反比例函数的解析式为:y=;(3)∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y=,得y=,∴M点的纵坐标为:﹣4=,∴M点的坐标为:(0,).21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【考点】二次函数的应用.【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k 与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.22.王老师在组织一次数学教学中,扁拟了如下问题串【原题初探】如图1所示,在四边形ABCD中,AD∥BC,E为CD边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ADE;【变式猜想】如图2所示,在已知锐角∠AOB内有一定点P,过点P任意作一条直线MN,分别交射线OA,OB于点M,N,小明在将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,试问当MN在什么位置时,△MON的面积最小【拓展应用】如图3所示,一块四边形土地OABC,其中OA边长60米,AB边长30米,C点到OA边的距离为45米,使用测角器测得∠AOC=45°,OA⊥AB,OC⊥BC,机井P距离OA,AB 均是20米,过机井P画一条分割线将这块地分成两块四边形地块(与四边形土地OABC)的一组对边相交),则其中以点O为顶点的四边形地块的最大面积为1000m2.【考点】几何变换综合题.【分析】【原题初探】:根据可以求得△ADE≌△FCE,就可以得出S△ADE=S△FCE就可以得出结论;【变式猜想】:根据问题情境的结论可以得出当直线旋转到点P是MN的中点时S△MON 最小,过点M作MG∥OB交EF于G.由全等三角形的性质可以得出结论;【拓展应用】:当过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,延长CB交x轴于T,由B、C的坐标可得直线BC的解析式,就可以求出T的坐标,从而求出△OCT的面积,再由问题迁移的结论可以求出最大值,通过比较就可以求出结论.【解答】解:【原题初探】证明:∵AD∥BC,∴∠ADE=∠FCE,在△ADE与△FCE中,,∴△ADE≌△FCE,∴S△ADE=S△FCE,∴S四边形ABCD=S四边形ABCE+S△ADE=S四边形ABCE+S△FCE=S△ABF;【变式猜想】当直线旋转到点P是MN的中点时S△MON最小,如图(1),过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,由方法探究可以得出当P是MN的中点时S四边形MOFG=S△MON.∵S四边形MOFG<S△EOF,∴S△MON<S△EOF,∴当点P是MN的中点时S△MON最小;【拓展应用】①如图3,当过点P的直线l与四边形OABC的一组对边OC、AB分别交于点M、N,延长OC、AB 交于点D,∵OA边长60米,使用测角器测得∠AOC=45°,OA⊥AB,∴△OAD是等腰直角三角形,∴S△AOD=AO2=×602=1800由变式猜想的结论可知,当PN=PM时,△MND的面积最小,∴四边形ANMO的面积最大.作PP1⊥OA,MM1⊥OA,垂足分别为P1,M1,∴M1P1=P1A=20,∴OM1=M1M=20,∴MN∥OA,∴S四边形OANM=S△OMM1+S四边形ANMM1=×20×20+20×40=1000②如图4,当过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,延长CB交x轴于T,过点C作CH⊥OA,∴CH=45.∵∠COA=45°,∴△CHA为等腰直角三角形,∴OC=45,∵OC⊥BC,∴△OCT是等腰直角三角形,∴S△OCT=OC2=2025,OT=90由问题迁移的结论可知,当PM=PN时,△MNT的面积最小,∴四边形CMNO的面积最大.∴NP1=M1P1,MM1=2PP1=40,∴TM1=40∴OM1=OT﹣TM1=50.∵AT=AB=30,∴AM1=TM1﹣AT=40﹣30=10,∵AP1=20,∴P1N=P1M1=AP1=AM1=20﹣10=10,∴NT=P1N+AP1+AT=10+20+30=60∴S△MNT=×40×60=1200,∴S四边形OCMN=2025﹣1200=725<1000.∴综上所述:截得四边形面积的最大值为1000(m2),故答案为1000m2.23.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标.【考点】二次函数综合题.【分析】方法一:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.方法二:(1)略.(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,从而求出圆心坐标.(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC 的面积函数,从而求出M点.【解答】方法一:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.方法二:(1)略.(2)∵y=(x﹣4)(x+1),∴A(﹣1,0),B(4,0).C(0,﹣2),∴K AC==﹣2,K BC==,∴K AC×K BC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).(3)过点M作x轴的垂线交BC′于H,∵B(4,0),C(0,﹣2),∴l BC:y=x﹣2,设H(t,t﹣2),M(t,t2﹣t﹣2),∴S△MBC=×(H Y﹣M Y)(B X﹣C X)=×(t﹣2﹣t2+t+2)(4﹣0)=﹣t2+4t,∴当t=2时,S有最大值4,∴M(2,﹣3).。
2016年河南省普通高中招生考试试卷数 学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.31-的相反数是( ) (A )31- (B )31(C )3-(D )32.某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为( )(A )7105.9-⨯(B )8105.9-⨯(C )71095.0-⨯(D )51095-⨯3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )(A ) (B )(C )(D )4.下列计算正确的是( ) (A )228=- (B )()632=-(C )22423a a a =- (D )()523a a =-5.如图,过反比例函数)0(>=x xky 的图像上一点A 作AB ⊥x 轴 于点B ,连接AO ,若S △AOB =2,则k 的值为( )(A )2 (B )3 (C )4 (D )56.如图,在△ABC 中,∠ACB=90°,AC=8,AB=10. DE 垂直平分AC 交AB 于点E ,则DE 的长为( ) (A )6 (B )5 (C )4 (D )37.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) (A )甲 (B )乙 (C )丙 (D )丁8.如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时, 菱形的对角线交点D 的坐标为( ) (A )(1,-1) (B )(-1,-1) (C )(2,0)(D )(0,-2)二、填空题(每小题3分,共21分)9.计算:._________8)2(30=--10. 如图,在□ABCD 中,BE ⊥AB 交对角线AC 于点E , 若∠1=20°,则∠2的度数是_________.11.若关于x 的一元二次方程032=-+k x x 有两个不相等的实数根,则k 的取值范围__________________.12.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是_________.13.已知A (0,3),B (2,3)是抛物线c bx x y ++-=2上两点, 该抛物线的顶点坐标是_________.14.如图,在扇形AOB 中,∠AOB=90°,以点A 为圆心, OA 的长为半径作⌒OC 交⌒AB 于点C. 若OA=2,则阴影 部分的面积为___________.15.如图,已知AD ∥BC ,AB ⊥BC ,AB=3. 点E 为射线BC 上 一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处, 过点B ′作AD 的垂线,分别交AD ,BC 于点M ,N. 当点B ′ 为线段MN 的三等分点时,BE 的长为__________________. 三、解答题(本大题共8个小题,满分75分) 16. (8分)先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取。
2016年河南省中考数学押题试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的是1.﹣3的绝对值是()A.﹣B.C.﹣3 D.32.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.下列各式计算正确的是()A.2a+3b=6ab B.a8÷a2=a4C.(﹣2a2)3=﹣8a6D.(a﹣b)2=a2﹣2ab﹣b24.若一元二次方程x2+4x﹣2a=0有实数根,则a的取值范围是()A.a>2 B.a≥﹣2 C.a≤﹣2 D.a<﹣45.某校九年级(1)班的8名男生的体重分别是(单位:千克):65,70,58,60,55,58,50,54,这组数据的众数和中位数分别是()A.55和58 B.55和60 C.58和58 D.58和606.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数为()A.5 B.6 C.7 D.87.在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF的长为()A.2B.8 C.5D.108.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是()A.若y1=y2,则x1=x2B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y2二、填空题(每小题3分,共21分)9.计算:(﹣2)3+= .10.将一副直角三角板ABC和ADE如图放置(其中∠B=60°,∠E=45°),已知DE与AC交于点F,AE∥BC,则∠AFD的度数为.11.不等式组的所有非负整数解为.12.如图,AB是⊙O的直径,CE切⊙O于点C,交AB的延长线于点E,点D是⊙O上的点,连接BD、CD,若∠CDB=25°,则∠E的度数是.13.在一个不透明的袋子中装有仅颜色不同的3个白球和1个红球,先从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.14.如图,在四边形ABCD中,∠ABC=90°,BC=6,将四边形ABCD绕点A逆时针旋转30°至四边形AB′C′D′处,则旋转过程中,边BC所扫过的区域(图中阴影部分)的面积为.15.如图,在矩形ABCD中,AD=5,AB=8,点E是DC上一点,将∠D沿折痕AE折叠,使点D落在点D′处,当△AD′B为等腰三角形时,则DE的长为.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(x+1﹣)÷,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.17.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交BA、DC的延长线于点E、F,且AE=CF,连接DE、BF.(1)求证:△AOE≌△COF;(2)若∠ABD=30°,AB⊥AC.①当AE与AB的数量关系为时,四边形BEDF是矩形;②当AE与AB的数量关系为时,四边形BEDF是菱形.18.近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m= ,态度为C所对应的圆心角的度数为;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?19.如图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).20.如图,反比例函数y=的图象与一次函数y=﹣x﹣1的图象的一个交点为A(﹣2,a).(1)求反比例函数的表达式;(2)请直接写出不等式>﹣x﹣1的解集;(3)若一次函数=﹣x﹣1与x轴交于点B,与y轴交于点C,点P是反比例函数y=图象上一点,且S△BOP=4S△OBC,求点P的坐标.21.植树造林不仅可以绿化和美化家园,同时还可以起到扩大山林资源,防止水土流失,保护农田,调节气候,促进经济发展等作用,是一项利国利民、造福子孙后代的宏伟工程,今年3月12日,某校某班计划购进A、B两种树苗共17棵,已知A种树苗每棵的单价比B种树苗每棵的单价多20元.(1)若购进A种树苗花费了800元,购进B种树苗花费了420元,求A、B两种树苗每棵的单价各是多少元?(2)若购进A种树苗a棵,所需费用为w,求w与a的函数关系式;(3)若购进B中树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需的费用.22.已知Rt△ABC,AB=AC,∠BAC=90°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,连接CE.(1)发现问题如图①,当点D在边BC上时,①请写出BD和CE之间的数量关系为,位置关系为;②线段CE+CD= AC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中AC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸如图③,当点D在边CB的延长线上且其他条件不变时,若BC=4,CE=2,求线段CD的长.23.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.2016年河南省中考数学押题试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的是1.﹣3的绝对值是()A.﹣B.C.﹣3 D.3【考点】绝对值.【分析】根据绝对值的性质计算即可得解.【解答】解:﹣3的绝对值是3,即|﹣3|=3.故选D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.3.下列各式计算正确的是()A.2a+3b=6ab B.a8÷a2=a4C.(﹣2a2)3=﹣8a6D.(a﹣b)2=a2﹣2ab﹣b2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】利用同底数幂的乘法法则,合并同类项,积的乘方运算法则,完全平方公式化简,即可做出判断.【解答】解:A、2a+3b=2a+3b,故错误;B、a8÷a2=a6,故错误;C、(﹣2a2)3=﹣8a6,故正确;D、(a﹣b)2=a2﹣2ab﹣b2,故错误;故选C.4.若一元二次方程x2+4x﹣2a=0有实数根,则a的取值范围是()A.a>2 B.a≥﹣2 C.a≤﹣2 D.a<﹣4【考点】根的判别式.【分析】根据方程有实数根结合根的判别式可得出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:∵方程x2+4x﹣2a=0有实数根,∴△=42﹣4×1×(﹣2a)=16+8a≥0,解得:a≥﹣2.故选B.5.某校九年级(1)班的8名男生的体重分别是(单位:千克):65,70,58,60,55,58,50,54,这组数据的众数和中位数分别是()A.55和58 B.55和60 C.58和58 D.58和60【考点】众数;中位数.【分析】首先把所给数据按从小到大排序,然后利用中位数和众数定义定义即可确定结果.【解答】解:把已知数据按从小到大排序后为50,54,55,58,58,60,65,70,这组数据中58出现的次数最多,故众数是58,中位数是:(58+58)÷2=58.故选C.6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数为()A.5 B.6 C.7 D.8【考点】由三视图判断几何体.【分析】根据三视图可得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图和左视图可得第二层小正方体的个数,最后相加即可.【解答】解:由俯视图可得最底层有5个小正方体,根据主视图和左视图可得第二层有1个小正方体,则搭成这个几何体的小正方体有5+1=6(个);故选B.7.在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF的长为()A.2B.8 C.5D.10【考点】平行四边形的性质;等边三角形的判定与性质;勾股定理.【分析】首先延长DC,EF相交于点H.由在▱ABCD中,AB=6,AD=8,可求得CD,BC的长,又由EF⊥AB,∠ABC=60°,求得∠BFE=∠CFH=30°,然后由含30°的直角三角形的性质,求得BF,FC,CH,FH的长,然后由勾股定理求得DF的长.【解答】解:延长DC,EF相交于点H.∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD=6,AD=BC=8,∵EF⊥AB,∴∠B=∠FCH=60°,∠BEF=∠H=90°,∴∠BFE=∠CFH=30°,∵E是AB的中点,∴BE=AE=AB=3.∴BF=2BE=6,∴CF=BC﹣BF=2,∴CH=CF=1,∴FH==,DH=CD+CH=6+1=7,∴DF==2.故选A.8.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是()A.若y1=y2,则x1=x2B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y2【考点】二次函数图象上点的坐标特征.【分析】由于抛物线y=x2﹣1的图象关于y轴对称,开口向上,分别判断如下:若y1=y2,则x1=﹣x2;若x1=﹣x2,则y1=y2;若0<x1<x2,则在对称轴的右侧,y随x的增大而增大,则y1<y2;若x1<x2<0,则y1>y2.【解答】解:A、若y1=y2,则x1=﹣x2;B、若x1=﹣x2,则y1=y2;C、若0<x1<x2,则在对称轴的右侧,y随x的增大而增大,则y1<y2;D、正确.故选D.二、填空题(每小题3分,共21分)9.计算:(﹣2)3+= ﹣5 .【考点】算术平方根;有理数的乘方.【分析】先依据有理数的乘法法则和算术平方根的性质计算,然后再依据有理数的加法法则计算即可.【解答】解;原式=﹣8+3=﹣5.故答案为:﹣5.10.将一副直角三角板ABC和ADE如图放置(其中∠B=60°,∠E=45°),已知DE与AC交于点F,AE∥BC,则∠AFD的度数为75°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠EDC=∠E,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AE∥BC,∠E=45°,∴∠EDC=∠E=45°,∵∠B=60°,∴∠C=90°﹣60°=30°,∴∠AFD=∠C+∠EDC=30°+45°=75°.故答案为:75°.11.不等式组的所有非负整数解为0,1,2 .【考点】一元一次不等式组的整数解.【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出x的所有非负整数解即可.【解答】解:,由①得,x≤2;由②得,x>﹣3,故不等式组的解集为:﹣3<x≤2,其非负整数解为:0,1,2.故答案为:0,1,2.12.如图,AB是⊙O的直径,CE切⊙O于点C,交AB的延长线于点E,点D是⊙O上的点,连接BD、CD,若∠CDB=25°,则∠E的度数是40°.【考点】切线的性质.【分析】连接OC,在RT△COE中,求出∠COE即可解决问题.【解答】解:如图,连接OC,∵OA=OC,∴∠A=∠OCA=25°,∵∠A=∠D=25°,∴∠A=∠ACO=25°,∴∠COE=∠A+∠ACO=50°,∵CE是切线,∴∠OCE=90°,∴∠E=90°﹣∠COE=40°.故答案为40°.13.在一个不透明的袋子中装有仅颜色不同的3个白球和1个红球,先从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸出白球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次都摸出白球的有9种情况,∴两次都摸出白球的概率是:.故答案为:.14.如图,在四边形ABCD中,∠ABC=90°,BC=6,将四边形ABCD绕点A逆时针旋转30°至四边形AB′C′D′处,则旋转过程中,边BC所扫过的区域(图中阴影部分)的面积为3π.【考点】扇形面积的计算;旋转的性质.【分析】先根据直角三角形的性质去除AN及AB的长,再由三角形的面积公式求出△ABC的面积,由扇形的面积公式得出扇形BAB′及扇形CAC′的面积,由S阴影=S1+S2即可得出结论.【解答】解:∵在四边形ABCD中,∠ABC=90°,BC=6,∠BAC=30°,∴AC=12,AB==6,S△ABC=×6×6=18,∴S扇形BAB′=π×6()2=9π,∴S1=18﹣9π.∵S△AB′C′=S△ABC=18,S扇形CAC′=π×122=12π,∴S2=12π﹣18,∴S阴影=S1+S2=18﹣9π+12π﹣18=3π.故答案为:3π.15.如图,在矩形ABCD中,AD=5,AB=8,点E是DC上一点,将∠D沿折痕AE折叠,使点D落在点D′处,当△AD′B为等腰三角形时,则DE的长为或16﹣.【考点】翻折变换(折叠问题);等腰三角形的性质;矩形的性质.【分析】①当AD′=D′B=5时,过点D′作MN⊥AB于点N,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论;②当AB=D′B=8时,过点D′作MN⊥AB于点N,MN交CD于点M,设DE=a,则D′E=a.根据折叠的性质得到AD′=AD=5,根据勾股定理得到AN=,D′N=,根据相似三角形的性质即可得到结论.【解答】解:①当AD′=D′B=5时,过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵将∠D沿折痕AE折叠,使点D落在点D′处,∴AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当AB=D′B=8时,过点D′作MN⊥AB于点N,MN交CD于点M,如图2所示.设DE=a,则D′E=a.∵将∠D沿折痕AE折叠,使点D落在点D′处,∴AD′=AD=5,∴AD′2﹣AN2=BD′2﹣BN2,即52﹣AN2=82﹣(8﹣AN)2,∴AN=,∴BN=,∴D′N=,∵∠MED′+∠ED′M=∠ED′M+∠AD′N=90°,∴∠MED′=∠AD′N,∴△EMD′∽△AD′N,∴,即=,∴a=16﹣,∴当△AD′B为等腰三角形时,则DE的长为或16﹣.故答案为:或16﹣.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(x+1﹣)÷,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【考点】分式的化简求值.【分析】先根据分式的混合运算顺序化简原式,再从﹣<x<的范围内选取符合原式的x的值代入.【解答】解:原式=÷=•=x﹣1,在﹣<x<的范围内取x=0,得原式=﹣1.17.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交BA、DC的延长线于点E、F,且AE=CF,连接DE、BF.(1)求证:△AOE≌△COF;(2)若∠ABD=30°,AB⊥AC.①当AE与AB的数量关系为AE=AB 时,四边形BEDF是矩形;②当AE与AB的数量关系为3AE=AB 时,四边形BEDF是菱形.【考点】四边形综合题.【分析】(1)直接利用平行四边形的性质,得出AO=CO,进而得出∠EAO=∠FCO,结合全等三角形的判定方法得出答案;(2)①利用矩形的判定方法,得出BD=EF,即可得出答案;②利用菱形的判定方法,结合勾股定理的逆定理,得出∠BOE=90°,即可得出答案.【解答】(1)证明:连接AC,∵四边形ABCD是平行四边形,∴AO=CO,BA∥DC,BO=DO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(SAS);(2)解:①当AB=AE时,四边形BEDF是矩形;理由:∵△AOE≌△COF,∴EO=FO,又∵BO=DO,∴四边形BEDF是平行四边形,∵AB⊥AC,AB=AE,∴BO=EO,∴BD=EF,∴平行四边形BEDF是矩形;故答案为:AB=AE;②当AE与AB的数量关系为 3AE=AB时,四边形BEDF是菱形,理由:∵∠ABD=30°,AB⊥AC,∴设AO=x,则AB=x,BO=2x,∵3AE=AB,∴AE=x,由AO=x,故EO=x,∵(x)2+(2x)2=(x+x)2,∴△BOE是直角三角形,即∠BOE=90°,∴平行四边形BEDF是菱形.故答案为:AB=3AE.18.近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m= 32 ,态度为C所对应的圆心角的度数为115.2°;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?【考点】概率公式;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由扇形统计图可求得m的值;由态度为C的占32%,即可求得态度为C所对应的圆心角的度数;(2)首先求得25到35的人数,继而可补全条形统计图;(3)利用样本估计总体的方法,即可求得答案;(4)由题意,直接利用概率公式求解即可求得答案.【解答】解:(1)m=100﹣10﹣5﹣20﹣33=32;态度为C所对应的圆心角的度数为:32%×360=115.2°;故答案为:32,115.2°;(2)500×20%﹣15﹣35﹣20﹣5=25,补全条形统计图;(3)估计该地区对“广场舞”噪音干扰的态度为B的市民人数为:20×33%=6.6(万人);(4)从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是:=.19.如图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).【考点】解直角三角形的应用.【分析】过B作BF⊥AD于F.构建Rt△ABF中,根据三角函数的定义与三角函数值即可求出答案.然后根据BF的长可求出AF的长,再判定出四边形BFDC是矩形,可求出AD与ED的长,再用CD的长减去ED的长即可解答.【解答】解:如图:过B作BF⊥AD于F.在Rt△ABF中,∵sin∠BAF=,∴BF=ABsin∠BAF=2.1sin40°≈1.350.∴真空管上端B到AD的距离约为1.35米.在Rt△ABF中,∵cos∠BAF=,∴AF=ABcos∠BAF=2.1cos40°≈1.609.∵BF⊥AD,CD⊥AD,又BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD.在Rt△EAD中,∵tan∠EAD=,∴ED=ADtan∠EAD=1.809tan25°≈0.844.∴CE=CD﹣ED=1.350﹣0.844=0.506≈0.51∴安装铁架上垂直管CE的长约为0.51米.20.如图,反比例函数y=的图象与一次函数y=﹣x﹣1的图象的一个交点为A(﹣2,a).(1)求反比例函数的表达式;(2)请直接写出不等式>﹣x﹣1的解集;(3)若一次函数=﹣x﹣1与x轴交于点B,与y轴交于点C,点P是反比例函数y=图象上一点,且S△BOP=4S△OBC,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将x=﹣2代入一次函数解析式中求出a的值,根据点A的坐标利用反比例函数图象上点的坐标特征即可求出k值,从而得出结论;(2)联立一次函数与反比例函数解析式成方程组,解方程组求出两函数图象除点A外的另一点坐标,结合函数图象的上下位置关系以及两交点的横坐标即可得出不等式的解集;(3)根据一次函数的解析式求出点B、C的坐标,设点P的坐标为(m,﹣),根据三角形的面积公式结合S△BOP=4S△OBC,即可得出关于m的方程,解方程即可得出m的值,再将其代入点P的坐标即可得出结论.【解答】解:(1)∵点A(﹣2,a)在一次函数y=﹣x﹣1的图象上,∴a=﹣1×(﹣2)﹣1=1,∴点A(﹣2,1).∵点A(﹣2,1)在反比例函数y=的图象上,∴k=﹣2×1=﹣2,∴反比例函数的表达式为y=﹣.(2)联立一次函数与反比例函数解析式得:,解得:或,∴反比例函数与一次函数图象的另一个交点为(1,﹣2).观察函数图象可知:当﹣2<x<0或x>1时,反比例函数图象在一次函数图象的上方,∴不等式>﹣x﹣1的解集为﹣2<x<0或x>1.(3)令y=﹣x﹣1中x=0,则y=﹣1,∴点C(0,﹣1);令y=﹣x﹣1中x=0,则﹣x﹣1=0,解得:x=﹣1,∴点B(﹣1,0).设点P的坐标为(m,﹣),∵S△BOP=4S△OBC,∴BO•|y P|=4×OB•OC,即|﹣|=4,解得:m=±,∴点P的坐标为(,﹣4)或(﹣,4).21.植树造林不仅可以绿化和美化家园,同时还可以起到扩大山林资源,防止水土流失,保护农田,调节气候,促进经济发展等作用,是一项利国利民、造福子孙后代的宏伟工程,今年3月12日,某校某班计划购进A、B两种树苗共17棵,已知A种树苗每棵的单价比B种树苗每棵的单价多20元.(1)若购进A种树苗花费了800元,购进B种树苗花费了420元,求A、B两种树苗每棵的单价各是多少元?(2)若购进A种树苗a棵,所需费用为w,求w与a的函数关系式;(3)若购进B中树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需的费用.【考点】一次函数的应用.【分析】(1)设B种树苗每棵x元,利用“购进A种树苗用去800元、B种树苗用去420元,购进A、B两种树苗共17棵”得出方程求出即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答;(3)根据购买B种树苗的数量少于A种树苗的数量,可找出方案.【解答】解:(1)设B种树苗每棵x元,根据题意,得+=17,解得 x=60经检验:x=60是原方程的解.答:A种树苗每棵80元,B种树苗每棵60元;(2)购进a种树苗A棵,则购进B种树苗(17﹣a)棵根据题意得:W=80a+60(17﹣a)=20a+1020;(3)∵购买B种树苗的数量少于A中树苗的数量,∴17﹣a<a,解得:a>8.购进A、B两种树苗所需费用为W=20a+1020,因为A种树苗贵,则费用最省需x取最小整数9,此时17﹣a=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.22.已知Rt△ABC,AB=AC,∠BAC=90°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,连接CE.(1)发现问题如图①,当点D在边BC上时,①请写出BD和CE之间的数量关系为相等,位置关系为垂直;②线段CE+CD= AC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中AC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸如图③,当点D在边CB的延长线上且其他条件不变时,若BC=4,CE=2,求线段CD的长.【考点】三角形综合题.【分析】(1)①根据AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,证△BAD≌△CAF,推出CE=BD,CE ⊥BD即可;②结论:CE+CE=AC.由△ABC是等腰直角三角形,得到BC=AC,BC=BD+CD,由此即可得出结论;(2)结论:CE=AC+CD,如图2中,先证明△BAD≌△CAE,推出BD=CE即可,再根据等腰直角三角形性质即可解决问题.(3)根据SAS证△BAD≌△CAE,推出CE=BD即可,由此即可解决问题.【解答】(1)证明:如图1中,①∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵AD=AE,∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,∠ABC=∠ACE=45°,∴∠ECB=90°,∴BD⊥CE;②结论:CE+CE=AC.理由:由①得BD=CE,∴BC=AC,∵BC=BD+CD=CE+CD,∴CE+CD=AC;(2)解:如图2中,存在数量关系为:CE=AC+CD;理由:由(1)同理可得在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,在等腰直角三角形ABC中,BC=AC,∴BD=BC+CD=AC+CD,∴CE=AC+CD;(3)解:由(1)同理在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,∴CD=BC+BD=BC+CE.∵BC=4,CE=2,∴CD=6.23.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)首先根据直线y=﹣x+3与x轴交于点C,与y轴交于点B,求出点B的坐标是(0,3),点C的坐标是(4,0);然后根据抛物线y=ax2+x+c经过B、C两点,求出a\c的值是多少,即可求出抛物线的解析式.(2)首先过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,然后设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),求出EM的值是多少;最后根据三角形的面积的求法,求出S△ABC,进而判断出当△BEC面积最大时,点E的坐标和△BEC面积的最大值各是多少即可.(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.然后分三种情况讨论,根据平行四边形的特征,求出使得以P、Q、A、M为顶点的四边形是平行四边形的点P的坐标是多少即可.【解答】解:(1)∵直线y=﹣x+3与x轴交于点C,与y轴交于点B,∴点B的坐标是(0,3),点C的坐标是(4,0),∵抛物线y=ax2+x+c经过B、C两点,∴解得∴y=﹣x2+x+3.(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,,∵点E是直线BC上方抛物线上的一动点,∴设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),∴EM=﹣x2+x+3﹣(﹣x+3)=﹣x2+x,∴S△BEC=S△BEM+S△MEC==×(﹣x2+x)×4=﹣x2+3x。
河南省中考数学模拟真题测评 A 卷 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有理数,a b 在数轴上对应点的位置如图所示,下列结论中正确是( )A .2a <B .0a b +>C .a b ->D .0b a -< 2、如图,AB CD ∥,45A ∠=︒,30C ∠=︒,则E ∠的度数是( ) A .10° B .15° C .20° D .25° 3、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ). ·线○封○密○外A .28B .54C .65D .754、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒5、若分式1x x-有意义,则x 的值为( ) A .1x =B .1x ≠C .0x =D .0x ≠ 6、下列式子中,与2ab 是同类项的是( )A .abB .2a bC .2ab cD .22ab -7、如图所示,一座抛物线形的拱桥在正常水位时,水面AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A .B .10米C .米D .12米8、点()4,9-关于x 轴的对称点是( )A .()4,9--B .()4,9-C .()4,9-D .()4,99、有理数 m 、n 在数轴上的位置如图,则(m +n )(m +2n )(m ﹣n )的结果的为( ) A .大于 0 B .小于 0 C .等于 0 D .不确定10、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )A .冬B .奥C .运D .会第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、班主任从甲、乙、丙、丁四位同学中选择一位同学参加学校的演讲比赛.甲同学被选中的概率是______. 2、比较大小:2351x x ++______2251x x +-(用“>、=或<”填空). 3、若|a |+a =0___. 4、若23x y -=,则()2225x y x y --+-的值是______.5、∠AOB 的大小可由量角器测得(如图所示),则∠AOB 的补角的大小为_____度.·线○封○密○外三、解答题(5小题,每小题10分,共计50分)1、完成下面推理填空:如图,已知:AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠.求证:AD 平分BAC ∠.解:∵AD BC ⊥于D ,EG BC ⊥(已知),∴90ADC EGC ∠=∠=︒(____①_____),∴EG AD ∥(同位角相等,两直线平行),∴_____②___(两直线平行,同位角相等)∠1=∠2(____③_____),又∵1E ∠=∠(已知),∴∠2=∠3(_____④______),∴AD 平分BAC ∠(角平分线的定义).2、已知:在△ABC 中,AB =AC ,直线l 过点A .(1)如图1,∠BAC =90°,分别过点B ,C 作直线l 的垂线段BD ,CE ,垂足分别为D ,E .①依题意补全图1;②用等式表示线段DE ,BD ,CE 之间的数量关系,并证明;(2)如图2,当∠BAC ≠90°时,设∠BAC =α(0°< α <180°),作∠CEA =∠BDA =α,点D ,E 在直线l 上,直接用等式表示线段DE ,BD ,CE 之间的数量关系为 .3、如图,D 、E 、F 分别是△ABC 各边的中点,连接DE 、DF 、CD . (1)若CD 平分∠ACB ,求证:四边形DECF 为菱形; (2)连接EF 交CD 于点O ,在线段BE 上取一点M ,连接OM 交DE 于点N .已知CE =a ,CF =b ,EM =c ,求EN 的值.4、如图,在ABC 中,90ACB ∠=︒,将ABC 绕点C 旋转得到DEC ,连接AD . (1)如图1,点E 恰好落在线段AB 上. ①求证:BCE ACD △△∽; ②猜想CAE ∠和ADE ∠的关系,并说明理由; ·线○封○密○外(2)如图2,在旋转过程中,射线BE 交线段AC 于点F ,若28AC BC ==,75EF =,求CF 的长.5、如图,在平面直角坐标系中,()2,4A ,()3,1B ,()2,1C --.(1)在图中作出ABC ∆关于x 轴的对称图形111A B C ∆,并直接写出点1C 的坐标;(2)求ABC ∆的面积;(3)点(),2P a a -与点Q 关于x 轴对称,若8PQ =,直接写出点P 的坐标.-参考答案-一、单选题1、C【解析】【分析】 利用数轴,得到32a -<<-,01b <<,然后对每个选项进行判断,即可得到答案. 【详解】 解:根据数轴可知,32a -<<-,01b <<, ∴2a >,故A 错误; 0a b +<,故B 错误; a b ->,故C 正确; 0b a ->,故D 错误; 故选:C 【点睛】 本题考查了数轴,解题的关键是由数轴得出32a -<<-,01b <<,本题属于基础题型. 2、B 【解析】 【分析】 根据平行线的性质求出关于∠DOE ,然后根据外角的性质求解. 【详解】 解:∵AB ∥CD ,∠A =45°,·线○封○密·○外∴∠A =∠DOE =45°,∵∠DOE =∠C +∠E ,又∵30C ∠=︒,∴∠E =∠DOE -∠C =15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.3、B【解析】【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x ,则上面的数是x -7,下面的数是x +7.则这三个数的和是3x ,让选项等于3x 列方程.解方程即可【详解】设中间的数是x ,则上面的数是x -7,下面的数是x +7,则这三个数的和是(x -7)+x +(x +7)=3x ,∴3x =28, 解得:283x =不是整数, 故选项A 不是;∴3x =54,解得:18x = ,中间的数是18,则上面的数是11,下面的数是28,故选项B 是;∴3x =65, 解得:653x = 不是整数, 故选项C 不是; ∴3x =75, 解得:25x =, 中间的数是25,则上面的数是18,下面的数是32, 日历中没有32, 故选项D 不是; 所以这三个数的和可能为54, 故选B . 【点睛】 本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点. 4、B 【解析】 【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠ 【详解】 解:45,30EDB ABC ∠=︒∠=︒ 175EDB ABC ∴∠=∠+∠=︒ 故选B 【点睛】 ·线○封○密·○外本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.5、D【解析】【分析】根据分式有意义,分母不为0列出不等式,解不等式即可.【详解】x解:由题意得:0故答案为:D【点睛】本题考查的是分式有意义的条件,即分式的分母不为零.6、D【解析】【分析】根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.【详解】解:A、ab与ab2不是同类项,不符合题意;B、a2b与ab2不是同类项,不符合题意;C、ab2c与ab2不是同类项,不符合题意;D、-2ab2与ab2是同类项,符合题意;故选:D.【点睛】本题考查同类项,理解同类项的概念是解答的关键.7、B【解析】【分析】以O 点为坐标原点,AB 的垂直平分线为y 轴,过O 点作y 轴的垂线,建立直角坐标系,设抛物线的解析式为y =ax ²,由此可得A (﹣10,﹣4),B (10,﹣4),即可求函数解析式为y =﹣125 x²,再将y =﹣1代入解析式,求出C 、D 点的横坐标即可求CD 的长. 【详解】 解:以O 点为坐标原点,AB 的垂直平分线为y 轴,过O 点作y 轴的垂线,建立直角坐标系, 设抛物线的解析式为y =ax 2, ∵O 点到水面AB 的距离为4米, ∴A 、B 点的纵坐标为﹣4, ∵水面AB 宽为20米, ∴A (﹣10,﹣4),B (10,﹣4),将A 代入y =ax 2,﹣4=100a ,∴a =﹣125, ∴y =﹣125x 2, ∵水位上升3米就达到警戒水位CD ,∴C 点的纵坐标为﹣1,∴﹣1=﹣125x 2, ∴x =±5, ·线○封○密○外∴CD =10,故选:B .【点睛】本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.8、A【解析】【分析】直接利用关于x 轴对称点的性质得出答案.【详解】解:点P (−4,9)关于x 轴对称点P ′的坐标是:(−4,−9).故选:A .【点睛】此题主要考查了关于x 轴对称点的性质,正确得出横纵坐标的关系是解题关键.9、A【解析】【分析】从数轴上看出0n m <<,判断出()()()0200m n m n m n +<+-,,,进而判断()()()2m n m n m n ++-的正负.【详解】解:由题意知:0n m << ∴()()()0200m n m n m n +<+-,, ∴()()()20m n m n m n ++-> ·线故选A.【点睛】本题考查了有理数加减的代数式正负的判断.解题的关键在于正确判断各代数式的正负.10、D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“京”与“奥”是相对面,“冬”与“运”是相对面,“北”与“会”是相对面.故选:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题1、14或0.25【解析】【分析】由题意得出从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果,根据概率公式可得.【详解】解:从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果, ∴恰好选中乙同学的概率为14, 故答案为:14.【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 2、>【解析】【分析】先求两个多项式的差,再根据结果比较大小即可.【详解】解:∵22351(251)x x x x ++-+-,=22351251x x x x ++--+,=220x +>∴22351251x x x x ++>+-,故答案为:>.【点睛】 本题考查了整式的加减,解题关键是熟练运用整式加减法则进行计算,根据结果判断大小. 3、1【解析】 ·线○根据绝对值的性质得出a的取值范围,进而求绝对值和进行二次根式化简即可.【详解】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0,22aa-+-=1.故答案为:1.【点睛】本题考查了绝对值和二次根式的性质,解题关键是根据绝对值的意义确定a的取值范围.4、-2【解析】【分析】将2x y-的值代入原式=()()2225x y x y----计算可得.【详解】解:()2225x y x y--+-=()()2225x y x y----将23x y-=代入,原式=2335⨯--=-2故答案为:-2【点睛】本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.5、140【分析】先根据图形得出∠AOB =40°,再根据和为180度的两个角互为补角即可求解.【详解】解:由题意,可得∠AOB =40°,则∠AOB 的补角的大小为:180°−∠AOB =140°.故答案为:140.【点睛】本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.三、解答题1、垂直的定义;∠E =∠3;两直线平行,内错角相等;等量代换【解析】【分析】根据平行线的判定与性质进行解答即可.【详解】解:∵AD ⊥BC 于D ,EG ⊥BC (已知),∴∠ADC =∠EGC =90°(垂直的定义),∴EG ∥AD (同位角相等,两直线平行), ∴∠E =∠3(两直线平行,同位角相等) ∠1=∠2(两直线平行,内错角相等),又∵∠E =∠1(已知),∴∠2=∠3(等量代换), ·线○∴AD平分∠BAC(角平分线的定义).故答案为:垂直的定义;∠E=∠3;两直线平行,内错角相等;等量代换.【点睛】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.2、(1)①见详解;②结论为DE=BD+CE,证明见详解;(2)DE=BD+CE.证明见详解.【解析】【分析】(1)①依题意在图1作出CE、BD,标出直角符号,垂足即可;②结论为DE=BD+CE,先证∠ECA=∠BAD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD,即可;(2)DE=BD+CE.根据∠BAC=α(0°<α <180°)=∠CEA=∠BDA=α,得出∠CAE=∠ABD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD即可.(1)解:①依题意补全图1如图;②结论为DE=BD+CE,证明:∵CE⊥l,BD⊥l,∴∠CEA=∠BDA=90°,∴∠ECA+∠CAE=90°,∵∠BAC=90°,∴∠CAE+∠BAD=90°∴∠ECA=∠BAD,在△ECA和△DAB中,CEA ADB ECA DAB AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ECA ≌△DAB (AAS ),∴EA =BD ,CE =AD ,∴ED =EA +AD =BD +CE ;(2)DE =BD +CE .证明:∵∠BAC =α(0°< α <180°)=∠CEA =∠BDA =α,∴∠CAE +∠BAD =180°-α,∠BAD +∠ABD =180°-α,∴∠CAE =∠ABD ,在△ECA 和△DAB 中,CEA ADB EAC DBA AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ECA ≌△DAB (AAS ), ∴EA =BD ,CE =AD , ∴ED =EA +AD =BD +CE ;故答案为:ED = BD +CE .【点睛】·线○本题考查一线三等角,三角形内角和,平角,三角形全等判定与性质,掌握一线三等角特征,三角形内角和,平角,三角形全等判定方法与性质是解题关键.3、 (1)见解析(2)EN =2bc a c+ 【解析】【分析】(1)根据三角形的中位线定理先证明四边形DECF 为平行四边形,再根据角平分线+平行证明一组邻边相等即可;(2)由(1)得//DE AC ,所以要求EN 的长,想到构造一个“A “字型相似图形,进而延长MN 交CA 于点G ,先证明ENO FGO ∆≅∆,得到EN FG =,再证明MEN MCG ∆∆∽,然后根据相似三角形对应边成比例,即可解答.(1)证明:D 、E 、F 分别是ABC ∆各边的中点,DF ∴,DE 是ABC ∆的中位线,//DF BC ∴,//DE AC ,∴四边形DECF 为平行四边形, CD 平分ACB ∠,ACD DCE ∴∠=∠,//DF BC ,CDF DCE ∴∠=∠,ACD CDF ∴∠=∠,DF CF ∴=,∴四边形DECF 为菱形;(2)解:延长MN 交CA 于点G ,//DE AC ,MED MCA ∴∠=∠,NEO GFO ∠=∠,ENO FGO ∠=∠,四边形DECF 为平行四边形,OE OF ∴=,()ENO FGO AAS ∴∆≅∆,EN FG ∴=,EMN CMG ∠=∠,MEN MCG ∴∆∆∽, ∴EN ME CG MC=, ∴EN c b EN c a=-+, 2bc EN a c ∴=+. 【点睛】 本题考查了菱形的判定与性质,三角形的中位线定理,相似三角形的判定与性质,解题的关键是根据题目的已知并结合图形.4、 (1)①见解析;②290CAE ADE ∠+∠=︒,理由见解析·线○(2)3【解析】【分析】(1)①由旋转的性质得EC BC =,DC AC =,ECB DCA ∠=∠,根据相似的判定定理即可得证; ②由旋转和相似三角形的性质得B DAC ADC ∠=∠=∠,由90ACB ∠=︒得90CAB B ∠+∠=︒,故90CAE ADC CAE CDE ADE ∠+∠=∠+∠+∠=︒,代换即可得出结果;(2)设BE x =,作CH AD ⊥于H ,射线BE 交线段AC 于点F ,则90CHA BCF ∠=∠=︒,由旋转可证BCE ACD △△∽,由相似三角形的性质得FBC DAC ∠=∠,12BE BC AD AC ==即2AD x =,由此可证AHC BCF △△∽,故AH AC BC BF =,求得12AH AD x ==,分情况讨论:①当线段BE 交AC 于F 时、当射线BE 交AC 于F 时,根据相似比求出x 的值,再根据勾股定理即可求出CF 的长.(1)①∵将ABC 绕点C 旋转得到DEC ,∴EC BC =,DC AC =,ECB DCA ∠=∠, ∴EC BC DC AC=,ECB DCA ∠=∠, ∴BCE ACD △△∽; ②290CAE ADE ∠+∠=︒,理由如下:∵将ABC 绕点C 旋转得到DEC ,∴CAE CDE ∠=∠,∵BCE ACD △△∽,CE CB =,CD CA =, ∴B DAC ADC ∠=∠=∠,∵90ACB ∠=︒,∴90CAB B ∠+∠=︒,∴90CAE ADC CAE CDE ADE ∠+∠=∠+∠+∠=︒,∴290CAE ADE ∠+∠=︒;(2)设BE x =,作CH AD ⊥于H ,射线BE 交线段AC 于点F ,则90CHA BCF ∠=∠=︒,∵将ABC 绕点C 旋转得到DEC ,∴EC BC =,DC AC =,ECB DCA ∠=∠, ∴EC BC DC AC=,ECB DCA ∠=∠, ∴BCE ACD △△∽, ∴FBC DAC ∠=∠,12BE BC AD AC ==,即2AD x =, ∵90CHA BCF ∠=∠=︒,∴AHC BCF △△∽, ∴AH AC BC BF=, ∵CD CA =,CH AD ⊥, ∴12AH AD x ==①当线段BE交AC于F时8745xx=-,解得132 5x=,25x=-(舍),∴3FC==,②当射线BE交AC于F时8745xx=+,解得1325x=-(舍),25x=,∴FC=·线○封○密○外综上,CF 的长为3【点睛】 本题考查相似三角形的判定与性质以及旋转的性质,掌握相似三角形的判定定理以及性质是解题的关键.5、 (1)见详解;(−2,1);(2)8.5;(3)P (5,3)或(−1,−3).【解析】【分析】(1)画出△A 1B 1C 1,据图直接写出C1坐标;(2)先求出△ABC 外接矩形CDEF 面积,用之减去三个直角三角形的面积,得△ABC 的面积;(3)先根据P ,Q 关于x 轴对称,得到Q 的坐标,再构建方程求解即可.(1)解:如图1△A 1B 1C 1就是求作的与△ABC 关于x 轴对称的三角形,点C 1的坐标(−2,1); (2)·线解:如图2由图知矩形CDEF的面积:5×5=25△ADC的面积:12×4×5=10△ABE的面积:12×1×3=32△CBF的面积:12×5×2=5所以△ABC的面积为:25-10-32-5=8.5.(3)解:∵点P(a,a−2)与点Q关于x轴对称,∴Q(a,2−a),∵PQ=6,∴|(a-2)-(2-a)|=6,解得:a=5或a=-1,∴P(5,3)或(−1,−3).【点睛】本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.。
2016年河南省中招权威预测数学模拟试卷(二)一、选择题(每小题3分,共24分)下列个小题均有四个答案,其中只有一个是正确的,将正确答案前的字母填入题后的括号内1.2的相反数是()A.2 B.﹣2 C.D.2.2014年北京APEC会议期间共有2280名青年志愿者上岗服务,2280用科学记数法表示为()A.0.228×104B.2.28×102C.2.28×103D.2.28×1043.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°4.若+(y+2)2=0,则(x+y)2015等于()A.﹣1 B.1 C.32014D.﹣320145.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,连接BE,分别以B、E为圆心,以大于的长为半径作弧,两弧交于点M、N,若直线MN恰好过点C,则AB的长度为()A.B.C.D.26.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.7.在平面直角坐标系中,点A(3,m)在第一象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()A.﹣2 B.2 C.3 D.48.如图,⊙O过正方形ABCD的顶点A、B,且与CD相切,若正方形ABCD的边长为2,则⊙O的半径为()A.1 B.C.D.二、填空题(每小题3分,共21分)9.比较大小:﹣2﹣3.10.计算:(x﹣1)2﹣(x+2)(x﹣2)=.11.已知扇形的圆心角为120°,弧长为2π,则它的半径为.12.抛物线y=(x﹣1)2﹣1的顶点在直线y=kx﹣3上,则k=.13.学校团委拟在“六一”节矩形“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人至少有一人参加此活动的概率是.14.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=,则图中阴影部分的面积为.15.如图,边长为4的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是.三、解答题(本大题共8个小题,共75分)16.先化简,再求值:(x﹣1﹣)÷,其中x是方程﹣=0的解.17.如图,AB是半圆O的直径,AB=a,C是半圆上一点,弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=时,四边形AEDF是正方形.18.为了了解某市初三年级学生体育成绩(成绩均为整数),随机抽取了部分学生的体育成绩并分段(A:25.5~30.5;B:30.5~35.5;C:35.5~40.5;D:40.5~45.5;E:45.5~50.5)统计如下:体育成绩统计表分数段频数/人频率A 12 0.05B 36 aC 84 0.35D b 0.25E 48 0.20根据上面提供的信息,回答下列问题:(1)在统计表中,a=,b=,并将统计图补充完整;(2)小明说:“这组数据的中位数一定在C中.”你认为小明的说法正确吗?(填“正确”或“错误”);(3)若成绩在40分以上(含40分)定为优秀,则该市今年48000名初三年级学生中体育成绩为优秀的学生人数约有多少?19.如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.(1)求反比例函数的解析式;(2)求△OEF的面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b>的解集.20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格200021.图①为一种平板电脑保护套的支架效果图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架.平板电脑的下端N保持在保护套CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图②.其中AN表示平板电脑,M为AN上的定点,AN=CB=20cm,AM=8cm,MB=MN.我们把∠ANB叫做倾斜角.(1)当倾斜角为45°时,求CN的长;(2)按设计要求,倾斜角能小于30°吗?请说明理由.22.材料:相似三角形的对应边的比相等,对应角相等.(1)如图①,△ABC中,∠A=50°,∠B=45°,点D、E分别在AB、AC上,且ADAB=AEAC.则△ABC与△ADE的关系为,∠ADE=;(2)如图②,在平行四边形ABCD中,对角线AC、BD交于点O,M为AD中点,连接CM交BD于点N,且ON=1,求BD的长;(3)△ABC中,∠A=25°,CD是边AB上的高,且CD2=ADBD,请直接写出∠ABC的度数.23.如图,在平面直角坐标系中,顶点为(4,﹣1),的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点的坐标为(0,3).(1)求抛物线的解析式;(2)点P是抛物线上位于A、C两点之间的一个动点,连接AP、AC,设点P的横坐标为m,①当m为何值时,△PAC的面积最大?求出此时P点的坐标和△PAC的最大面积;②在抛物线的对称轴上是否存在点M,使得△PAM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2016年河南省中招权威预测数学模拟试卷(二)参考答案与试题解析一、选择题(每小题3分,共24分)下列个小题均有四个答案,其中只有一个是正确的,将正确答案前的字母填入题后的括号内1.2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】根据相反数的定义求解即可.【解答】解:2的相反数为:﹣2.故选:B.【点评】本题考查了相反数的知识,属于基础题,掌握相反数的定义是解题的关键.2.2014年北京APEC会议期间共有2280名青年志愿者上岗服务,2280用科学记数法表示为()A.0.228×104B.2.28×102C.2.28×103D.2.28×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2280=2.28×103,故选C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【考点】平行线的性质;三角形内角和定理.【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.4.若+(y+2)2=0,则(x+y)2015等于()A.﹣1 B.1 C.32014D.﹣32014【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵+(y+2)2=0,∴x=1,y=﹣2,∴(x+y)2015=(1﹣2)2015=﹣1,故选A.【点评】本题考查了非负数的性质:算术平方根和偶次方,几个非负数的和为0时,这几个非负数都为0.5.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,连接BE,分别以B、E为圆心,以大于的长为半径作弧,两弧交于点M、N,若直线MN恰好过点C,则AB的长度为()A.B.C.D.2【考点】线段垂直平分线的性质;勾股定理;矩形的性质;作图—基本作图.【分析】如图,连接EC由FC垂直平分BE,得到∠BFC=∠EFC=90°,EF=BF,由于FC=FC,推出△BFC≌△CEF(SAS),于是得到BC=EC利用勾股定理可得AB=CD=.【解答】解:如图,连接EC∵FC垂直平分BE,即∠BFC=∠EFC=90°,EF=BF,又∵FC=FC,在△BFC与△CEF中,∴△BFC≌△CEF(SAS),∴BC=EC又∵AD=BC,AE=1故EC=2利用勾股定理可得AB=CD=.故选B.【点评】本题考查的是线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明三角形全等后易求解.本题难度中等.6.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.【考点】展开图折叠成几何体.【分析】根据展开图折叠成几何体,可得正方体,A,B是同一棱的两个顶点,可得答案.【解答】解;AB是正方体的边长,AB=1,故选:B.【点评】本题考查了展开图折叠成几何体,正确将展开图折叠成几何体是解题关键,难度不大.7.在平面直角坐标系中,点A(3,m)在第一象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()A.﹣2 B.2 C.3 D.4【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】先求出点A(3,m)关于x轴的对称点B的坐标,再代入直线y=﹣x+1求出m的值即可.【解答】解:∵点A(3,m)与点B关于x轴对称,∴B(3,﹣m).∵点B在直线y=﹣x+1上,∴﹣m=﹣3+1=﹣2.故选B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.如图,⊙O过正方形ABCD的顶点A、B,且与CD相切,若正方形ABCD的边长为2,则⊙O的半径为()A.1 B.C.D.【考点】切线的性质;勾股定理;垂径定理.【分析】连接OE、OB,延长EO交AB于F,设⊙O的半径为R,则OF=2﹣R,再由勾股定理即可求出R的值.【解答】解:连接OE、OB,延长EO交AB于F;∴E是切点,∴OE⊥CD,∴OF⊥AB,OE=OB;设OB=R,则OF=2﹣R,在Rt△OBF中,BF=AB=×2=1,OB=R,OF=2﹣R,∴R2=(2﹣R)2+12,解得R=.故选:D.【点评】此题主要考查了正方形、圆及直角三角形的性质,涉及面较广,但难度适中.根据题意作出辅助线、构造出直角三角形是解答此题的关键.二、填空题(每小题3分,共21分)9.比较大小:﹣2>﹣3.【考点】有理数大小比较.【分析】本题是基础题,考查了实数大小的比较.两负数比大小,绝对值大的反而小;或者直接想象在数轴上比较,右边的数总比左边的数大.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.【点评】(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.10.计算:(x﹣1)2﹣(x+2)(x﹣2)=﹣2x+5.【考点】完全平方公式;平方差公式.【专题】计算题.【分析】原式利用完全平方公式及平方差公式计算,去括号合并即可得到结果.【解答】解:原式=x2﹣2x+1﹣x2+4=﹣2x+5.故答案为:﹣2x+5.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.11.已知扇形的圆心角为120°,弧长为2π,则它的半径为3.【考点】弧长的计算.【分析】根据弧长公式代入求解即可.【解答】解:∵l=,∴R==3.故答案为:3.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.12.抛物线y=(x﹣1)2﹣1的顶点在直线y=kx﹣3上,则k=2.【考点】二次函数的性质;一次函数图象上点的坐标特征.【分析】首先求出抛物线的顶点坐标,然后把顶点坐标代入y=kx﹣3,进而求出k的值.【解答】解:∵抛物线解析式为y=(x﹣1)2﹣1,∴抛物线的顶点坐标为(1,﹣1),∵顶点在直线y=kx﹣3,∴﹣1=k﹣3,∴k=2.故答案为2.【点评】本题主要考查二次函数的性质的知识,解答本题的关键是根据顶点坐标公式求出抛物线的顶点坐标,此题难度不大.13.学校团委拟在“六一”节矩形“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人至少有一人参加此活动的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲乙两人恰有一人参加此活动的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,甲乙两人至少有一人参加此活动的有10种情况,∴甲乙两人至少有一人参加此活动的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=,则图中阴影部分的面积为9﹣3.【考点】旋转的性质.【专题】计算题.【分析】图中阴影部分由4个全等的等腰三角形和一个正方形组成,如图,作DH⊥AE于H,根据旋转的性质得∠DAF=90°,∠EAF=∠BAD=60°,AB=AE=,则∠DAE=30°,在Rt△ADH中,利用含30度的直角三角形三边的关系可得DH=AD=,AH=DH=,所以HE=AE﹣AH=﹣,接着在Rt△DHE中,利用勾股定理得到DE2=DH2+HE2=6﹣3,所以图中阴影部分的面积=4S△ADE+6﹣3=9﹣3.【解答】解:如图,作DH⊥AE于H,∵菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°,∴∠DAF=90°,∠EAF=∠BAD=60°,AB=AE=∴∠DAE=30°,∵四边形ABCD为菱形,∴AD=AB=,在Rt△ADH中,∵∠DAH=30°,∴DH=AD=,AH=DH=,∴HE=AE﹣AH=﹣,在Rt△DHE中,DE2=DH2+HE2=()2+(﹣)2=6﹣3,∴图中阴影部分的面积=4S△ADE+6﹣3=4×××+6﹣3=9﹣3.故答案为9﹣3.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质和含30度的直角三角形三边的关系.15.如图,边长为4的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是1.【考点】全等三角形的判定与性质;垂线段最短;等边三角形的判定与性质;旋转的性质.【分析】取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时最短,再根据∠CAD=30°求解即可.【解答】解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时∵∠CAD=×60°=30°,AG=AC=×42,∴EG=AG=×2=1,∴DF=1.故答案为:1.【点评】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.三、解答题(本大题共8个小题,共75分)16.先化简,再求值:(x﹣1﹣)÷,其中x是方程﹣=0的解.【考点】分式的化简求值;解一元一次方程.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到x的值,代入计算即可求出值.【解答】解:原式=÷==,方程去分母得:5x﹣5﹣2x+4=0,解得:x=,当x=时,原式==﹣.【点评】此题考查了分式的化简求值,以及解一元一次方程,熟练掌握运算法则是解本题的关键.17.如图,AB是半圆O的直径,AB=a,C是半圆上一点,弦AD平分∠BAC,DE⊥AB 于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=a时,四边形AEDF是正方形.【考点】正方形的判定;全等三角形的判定与性质;菱形的判定;圆周角定理.【分析】(1)根据角平分线的性质,可得DF与DE的关系,根据圆周角定理,可得DC与DB的关系,根据HL,可得答案;(2)根据菱形的性质,可得OD与CD,OD与BD的关系,根据正三角形的性质,可得∠DBA 的度数,根据三角函数值,可得答案;(3)根据圆周角定理,可得OD⊥AB,根据勾股定理,可得答案.【解答】解:(1)证明:∵弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF.∵弦AD平分∠BAC,∴∠FAD=∠BAD,∴BD=CD.在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD (HL);(2)四边形AODC是菱形时,OD=CD=DB=OB,∴∠DBA=60°,∴AD=ABcos∠DBA=asin60°=a,故答案为:;(3)当OD⊥AB,即OD与OE重合时,四边形AEDF是正方形,由勾股定理,得AD==a,故答案为:a.【点评】本题考查了正方形的判定,(1)利用了角平分线的性质,圆周角定理;(2)利用了等边三角形的判定与性质,三角函数值;(3)利用了正方形的判定,勾股定理.18.为了了解某市初三年级学生体育成绩(成绩均为整数),随机抽取了部分学生的体育成绩并分段(A:25.5~30.5;B:30.5~35.5;C:35.5~40.5;D:40.5~45.5;E:45.5~50.5)统计如下:体育成绩统计表分数段频数/人频率A 12 0.05B 36 aC 84 0.35D b 0.25E 48 0.20根据上面提供的信息,回答下列问题:(1)在统计表中,a=0.15,b=60,并将统计图补充完整;(2)小明说:“这组数据的中位数一定在C中.”你认为小明的说法正确吗?正确(填“正确”或“错误”);(3)若成绩在40分以上(含40分)定为优秀,则该市今年48000名初三年级学生中体育成绩为优秀的学生人数约有多少?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)首先用12÷0.05即可得到抽取的部分学生的总人数,然后用36除以总人数得到a,用总人数乘以0.25即可求出b;根据表格的信息就可以补全频数分布直方图;(2)根据中位数的定义和表格信息就可以得到这组数据的“中位数”落在哪一组,进而判断小明的说法是否正确;(3)利用48000乘以抽查的人数中优秀的学生人数所占的频率即可.【解答】解:(1)∵抽取的部分学生的总人数为12÷0.05=240(人),∴a=36÷240=0.15,b=240×0.25=60;统计图补充如下:(2)C组人数最多,A组、B组、C组人数的和大于120人,所以这组数据的中位数一定在C中.故小明的说法正确;(3)48000×(0.25+0.20)=21600(人).即该市今年48000名初三年级学生中体育成绩为优秀的学生人数约有21600人.故答案为0.15,60;正确.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.同时考查了中位数的定义及用样本估计总体的思想.19.如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.(1)求反比例函数的解析式;(2)求△OEF的面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b>的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)先利用矩形的性质确定C点坐标(6,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=6,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(6,1),E点坐标为(,4),然后根据△OEF的面积=S﹣S△ODE﹣S△OBF﹣S△CEF进行计算;矩形BCDO(3)观察函数图象得到当<x<6时,一次函数图象都在反比例函数图象上方,即k2x+b>.【解答】解:(1)∵四边形DOBC是矩形,且点C的坐标为(6,4),∴OB=6,OD=4,∵点A为线段OC的中点,∴A点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为y=;(2)把x=6代入y=得y=1,则F点的坐标为(6,1);把y=4代入y=得x=,则E点坐标为(,4),△OEF的面积=S﹣S△ODE﹣S△OBF﹣S△CEF矩形BCDO=4×6﹣×4×﹣×6×1﹣×(6﹣)×(4﹣1)=;(3)由图象得:不等式不等式k2x+b>的解集为<x<6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法确定函数解析式.20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格2000【考点】一次函数的应用;分式方程的应用;一元一次不等式的应用.【专题】销售问题.【分析】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【解答】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得,解得:x=1600.经检验,x=1600是原方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.=34000元.∴a=20时,y最大∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.21.图①为一种平板电脑保护套的支架效果图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架.平板电脑的下端N保持在保护套CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图②.其中AN表示平板电脑,M为AN上的定点,AN=CB=20cm,AM=8cm,MB=MN.我们把∠ANB叫做倾斜角.(1)当倾斜角为45°时,求CN的长;(2)按设计要求,倾斜角能小于30°吗?请说明理由.【考点】解直角三角形的应用.【分析】(1)当∠ANB=45°时,根据等腰三角形的性质可得∠NMB=90°.再根据等腰直角三角形的性质和三角函数可得BN的长度,根据CN=CB﹣BN=AN﹣BN即可求解;(2)当∠ANB=30°时,作ME⊥CB,垂足为E.根据三角函数可得BN=2BE=12cm,CB=AN=20cm,依此即可作出判断.【解答】解:(1)当∠ANB=45°时,∵MB=MN,∴∠B=∠ANB=45°,∴∠NMB=180°﹣∠ANB﹣∠B=90°.在Rt△NMB中,sin∠B=,∴BN===12cm.∴CN=CB﹣BN=AN﹣BN=(20﹣12)cm.(2)当∠ANB=30°时,作ME⊥CB,垂足为E.∵MB=MN,∴∠B=∠ANB=30°在Rt△BEM中,cos∠B=,∴BE=MB cos∠B=(AN﹣AM)cos∠B=6cm.∵MB=MN,ME⊥CB,∴BN=2BE=12cm.∵CB=AN=20cm,且12>20,∴此时N不在CB边上,与题目条件不符.随着∠ANB度数的减小,BN长度在增加,∴倾斜角不可以小于30°.【点评】此题考查了解直角三角形的应用,三角函数的基本概念,关键把实际问题转化为数学问题加以计算.22.材料:相似三角形的对应边的比相等,对应角相等.(1)如图①,△ABC中,∠A=50°,∠B=45°,点D、E分别在AB、AC上,且ADAB=AEAC.则△ABC与△ADE的关系为△ABC∽△AED,∠ADE=85°;(2)如图②,在平行四边形ABCD中,对角线AC、BD交于点O,M为AD中点,连接CM交BD于点N,且ON=1,求BD的长;(3)△ABC中,∠A=25°,CD是边AB上的高,且CD2=ADBD,请直接写出∠ABC的度数.【考点】相似形综合题.【专题】综合题;分类讨论.【分析】(1)如图①,由ADAB=AEAC可推出△ABC∽△AED,从而得到∠ADE=∠C,再根据三角形的内角和定理就可解决问题;(2)如图②,易证△MND∽△CNB,则有=,由M为AD中点及AD=BC可得BN=2DN.设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,从而可得x+1=2(x ﹣1),求出x就可解决问题;(3)由于CD的位置不确定,故需分情况讨论.由CD2=ADBD可证到△DAC∽△DCB,则有∠DCB=∠A=25°,然后利用三角形的内角和定理及外角的性质就可解决问题.【解答】解:(1)答案为△ABC∽△AED,∠ADE=85°.提示:如图①,∵ADAB=AEAC,∴=.∵∠A=∠A,∴△ABC∽△AEB,∴∠ADE=∠C.∵∠A=50°,∠B=45°,∴∠C=180°﹣50°﹣45°=85°,∴∠ADE=85°;(2)如图②,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴=.∵M为AD中点,∴MD=AD=BC,即=,∴=,即BN=2DN.设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得x=3.∴BD=2x=6;(3)∠ABC的度数为65°或115°.提示:CD可能在△ABC内,如图③,也可能在△ABC外,如图④.由CD2=ADBD可证到△DAC∽△DCB,从而得到∠DCB=∠A=25°,如图③,∠B=90°﹣25°=65°,如图④,∠ABC=90°+25°=115°.【点评】本题主要考查了相似三角形的判定与性质、平行四边形的性质、三角形的内角和定理、三角形外角性质等知识,由于三角形高的位置与三角形的形状有关,当三角形的形状不确定时,常需分类讨论.23.如图,在平面直角坐标系中,顶点为(4,﹣1),的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点的坐标为(0,3).(1)求抛物线的解析式;(2)点P是抛物线上位于A、C两点之间的一个动点,连接AP、AC,设点P的横坐标为m,①当m为何值时,△PAC的面积最大?求出此时P点的坐标和△PAC的最大面积;②在抛物线的对称轴上是否存在点M,使得△PAM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)①过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC 的最大面积及对应的P点坐标;②当△PAM是等腰直角三角形时,设M(4,y),P(m,m2﹣2m+3),分三种情况进行讨论:Ⅰ)∠M=90°,MA=MP;Ⅱ)∠A=90°,AM=AP;Ⅲ)∠P=90°,PA=PM.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,解得a=,∴抛物线的解析式为y=(x﹣4)2﹣1,即y=x2﹣2x+3;(2)①如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为y=﹣x+3;设P点的坐标为(m,m2﹣2m+3),则Q点的坐标为(m,﹣m+3);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,﹣);②∵点P是抛物线上位于A、C两点之间的一个动点,点P的横坐标为m,C(6,0),∴0<m<6.当△PAM是等腰直角三角形时,设M(4,y),P(m,m2﹣2m+3),分三种情况:Ⅰ)如果∠M=90°,MA=MP,显然M(4,3),P(4,﹣1);Ⅱ)如果∠A=90°,AM=AP,如图,作MN⊥y轴于点N,PQ⊥y轴于点Q,易证△AMN≌△PAQ,则MN=AQ=4,即3﹣(m2﹣2m+3)=4,解得m=4,所以P(4,﹣1),∵AN=PQ=4,∴y﹣3=4,∴y=7,∴M(4,7);Ⅲ)如果∠P=90°,PA=PM,如图,作MN⊥y轴于点Q,交对称轴于点N,易证△PQA≌△MNP,则PQ=MN,AQ=PN,即m=y﹣(m2﹣2m+3),3﹣(m2﹣2m+3)=4﹣m,∴y=2m﹣1,∵AP=PM,。
河南省2016年中考模拟数学试卷(一)含答案河南省2016年中考模拟数学试卷一一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()A。
3-2 B。
21 C。
- D。
22.以下是我市著名企事业(___、心连心化肥、___、___)的徽标或者商标,其中既是轴对称图形又是中心对称图形的是()AB。
CD3.2014年巴西世界杯在南美洲国家巴西境内12座城市中的12座球场内举行,本届世界杯的冠军将获得3500万美元的奖励,将3500万用科学记数法表示为()A。
3.5×106 B。
3.5×107 C。
35×106 D。
0.35×1084.下列各式计算正确的是()A)3-2=1 (B)a6÷a2=a3 (C)x2+x3=x5 (D)(-x2)3=-x65.用6个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A。
B。
C。
D。
6.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A。
8,6 B。
8,5 C。
52,52 D。
52,537.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4 cm,如果点C是OB上一个动点,则PC的最小值为()A)2 (B)23 (C)4 (D)438.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2011次运动后,动点P的坐标是()。
A.(2011,0)B.(2011,2)C.(2011,1)D.(2010,0)二、填空题(每小题3分,共21分)9.计算:(2+π)-2|1-sin30°|+()=-1.10.如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4).将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是()。
2016年河南省中考原创押题数学试卷(三)一、选择题1.(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.62.下列关于x的方程一定有实数解的是()A.2x=m B.x2=m C. =m D. =m3.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.4.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()A.0.8 B.0.7 C.0.4 D.0.25.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为()A.B.C.D.6.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠5+∠4=180°B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠6=∠27.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.58.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②E点的坐标是(5,8);③sin∠COA=;④AC+OB=12.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题9.计算:( +1)(3﹣)= .10.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为.11.分解因式:(x﹣1)2﹣4= .12.若点P(x,y)在函数y=+的图象上,那么点P在平面直角坐标系中第象限.13.受国际金融危机的影响,2016中国房地产有所波动,某商品房经过两次降价,由5000元/平方米降为3200元/平方米.已知两次降价的百分率相同,则这个百分率为.14.如图,钝角三角形ABC的面积为15,最长边AB=10,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为.15.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(﹣)÷,其中x=tan60°﹣1.17.已知:如图,在▱ABCD中,线段EF分别交AD、AC、BC于点E、O、F,EF⊥AC,AO=CO.(1)求证:△ABF≌△CDE;(2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是(直接写出这个条件).18.学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.19. 2016年清明小长假,所有高速公路对七座以下的机动车辆免收高速费,很多人都走出家门,投入大自然的环抱,进行自驾游.如图所示,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号)20.某日,小敏、小君两人约好去奥体中心打球.小敏13:00从家出发,匀速骑自行车前往奥体中心,小君13:05从离奥体中心6000m的家中匀速骑自行车出发.已知小君骑车的速度是小敏骑车速度的1.5倍.设小敏出发x min后,到达离奥体中心y m的地方,图中线段AB表示y与x之间的函数关系.(1)小敏家离奥体中心的距离为m;她骑自行车的速度为m/min;(2)求线段AB所在直线的函数表达式;(3)小敏与小君谁先到奥体中心,要等另一人多久?21.“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?22.如图1所示,A、B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B 的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)【问题解决】如图2,过点B作BB′⊥l2,且B B′等于河宽,连接AB′交l1于点M,作MN⊥l1交l2于点N,则MN就为桥所在的位置.【类比联想】(1)如图3,正方形ABCD中,点E、F、G分别在AB、BC、CD上,且AF⊥GE,求证:AF=EG.(2)如图4,矩形ABCD中,AB=2,BC=x,点E、F、G、H分别在AB、BC、CD、AD上,且EG⊥HF,设y=,试求y与x的函数关系式.【拓展延伸】如图5,一架长5米的梯子斜靠在竖直的墙面OE上,初始位置时OA=4米,由于地面OF较光滑,梯子的顶端A下滑至点C时,梯子的底端B左滑至点D,设此时AC=a米,BD=b米.(3)当a= 米时,a=b.(4)当a在什么范围内时,a<b?请说明理由.23.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2016年河南省中考原创押题数学试卷(三)参考答案与试题解析一、选择题1.(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.6【考点】有理数的乘法.【专题】计算题.【分析】根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.【解答】解:原式=﹣2×3=﹣6.故选:C.【点评】本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.2.下列关于x的方程一定有实数解的是()A.2x=m B.x2=m C. =m D. =m【考点】无理方程;一元一次方程的解;根的判别式;分式方程的解.【分析】根据一元一次方程的解、无理方程、一元二次方程和分式方程的解的特点分别对每一项进行判断即可.【解答】解:A.2x=m,一定有实数解;B.x2=m,当m<0时,无解;C. =m,当m=0或﹣时无解;D. =m,当m<0时,无解;故选A.【点评】本题考查了一元一次方程的解、无理方程、一元二次方程和分式方程,关键是灵活运用有关知识点进行判断.3.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看所得到的图形.【解答】解:从几何体的上面看俯视图是,故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()A.0.8 B.0.7 C.0.4 D.0.2【考点】频数(率)分布表.【专题】图表型.【分析】求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.【解答】解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是: =0.8.故选;A.【点评】本题考查了频数分布表,用到的知识点是:频率=频数÷总数.5.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为()A.B.C.D.【考点】几何概率.【分析】分别求出圆和正方形的面积,它们的面积比即为针头扎在阴影区域内的概率.【解答】解:正方形的面积=4×4=16cm2,圆的面积=πcm2,针头扎在阴影区域内的概率为.故选C.【点评】本题是一个随机实验,考查了几何概率,针头扎在阴影部分的概率为圆与正方形的面积比.6.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠5+∠4=180°B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠6=∠2【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理和三角形外角性质进行判断.【解答】解:A、如图,∠7+∠4+∠5=180°,∠1=∠7,则∠1+∠5+∠4=180°.故本选项正确;B、如图,由三角形外角性质知:∠4+∠5=∠2.故本选项正确;C、如图,根据对顶角相等,三角形内角和是180度得到:∠1+∠3+∠6=180°.故本选项正确;D、如图,根据对顶角相等,三角形外角性质得到:∠3+∠6=∠2.故本选项错误;故选:D.【点评】本题考查了三角形内角和定理和三角形的外角性质.解题时,充分利用了“对顶角相等”这一性质.7.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.5【考点】翻折变换(折叠问题).【专题】几何图形问题.【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.【点评】考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.8.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②E点的坐标是(5,8);③sin∠COA=;④AC+OB=12.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】反比例函数综合题.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D 点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB•AC=160即可求出OB的长.【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF===8,在Rt△OCF中,∵OC=10,CF=8,∴OF===6,∴C(6,8),∵点D时线段AC的中点,∴D点坐标为(,),即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),故①错误;∵CF=8,∴直线CB的解析式为y=8,∴,解得x=4,y=8,∴E点坐标为(4,8),故②错误;∵CF=8,OC=10,∴sin∠COA===,故③正确;∵A(10,0),C(6,8),∴AC==4,∵OB•AC=160,∴OB===8,∴AC+OB=4+8=12,故④正确.故选:B.【点评】本题考查的是反比例函数综合题,涉及到菱形的性质及反比例函数的性质、锐角三角函数的定义等相关知识,难度适中.二、填空题9.计算:( +1)(3﹣)= 2.【考点】二次根式的混合运算.【专题】计算题.【分析】先把后面括号内提,然后利用平方差公式计算.【解答】解:原式=(+1)(﹣1)=×(3﹣1)=2.故答案为2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将25000000用科学记数法表示为2.5×107.故答案为:2.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.分解因式:(x﹣1)2﹣4= (x+1)(x﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式:a2﹣b2=(a+b)(a﹣b)进行分解即可.【解答】解:(x﹣1)2﹣4,=(x﹣1)2﹣22,=(x﹣1﹣2)(x﹣1+2),=(x﹣3)(x+1),故答案为:(x﹣3)(x+1).【点评】此题主要考查了平方差公式分解因式,关键是掌握平方差公式的特点:①多项式必须是二项式,②两项都能写成平方的形式,③符号相反.12.若点P(x,y)在函数y=+的图象上,那么点P在平面直角坐标系中第二象限.【考点】函数关系式.【分析】因为分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数大于或等于0.从而可以得到x<0,由x2>0,≥0可以得>0,∴y=>0,即求出点P所在的象限.【解答】解:∵,∴x <0,又∵x <0,∴>0,即y >0,∴P 应在平面直角坐标系中的第二象限.故答案为:二.【点评】本题考查了分式和二次根式有意义的条件,难点是判断出所求的点的横、纵坐标的符号.13.受国际金融危机的影响,2016中国房地产有所波动,某商品房经过两次降价,由5000元/平方米降为3200元/平方米.已知两次降价的百分率相同,则这个百分率为 20% .【考点】一元二次方程的应用.【专题】增长率问题.【分析】此题可设降价的百分率为x ,则第一次降价后的单价是原来的(1﹣x ),第二次降价后的单价是原来的(1﹣x )2,根据题意列方程解答即可.【解答】解:降价的百分率为x ,根据题意列方程得5000×(1﹣x )2=3200,解得x 1=0.2,x 2=1.8(不符合题意,舍去).所以降价的百分率为0.2,即20%.故答案是:20%.【点评】本题考查了一元二次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.14.如图,钝角三角形ABC 的面积为15,最长边AB=10,BD 平分∠ABC ,点M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值为 3 .【考点】轴对称-最短路线问题.【专题】压轴题.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=15,∴CE=3.即CM+MN的最小值为3.故答案为3.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.15.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.【考点】平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.【专题】几何图形问题;压轴题.【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠DCF=∠BCD ,故此选项正确;延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,,∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴FC=FM ,故②正确;③∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC故S △BEC =2S △CEF 错误;④设∠FEC=x ,则∠FCE=x ,∴∠DCF=∠DFC=90°﹣x ,∴∠EFC=180°﹣2x ,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x ,∵∠AEF=90°﹣x ,∴∠DFE=3∠AEF ,故此选项正确.故答案为:①②④.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DMF 是解题关键.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(﹣)÷,其中x=tan60°﹣1.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式==2+2. 【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.已知:如图,在▱ABCD 中,线段EF 分别交AD 、AC 、BC 于点E 、O 、F ,EF ⊥AC ,AO=CO .(1)求证:△ABF≌△CDE;(2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是EF⊥AC (直接写出这个条件).【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)首先根据平行四边形的性质可得AB=CD,∠B=∠D,AD=BC,AD∥BC,然后证明△AOE ≌△COF,可得CF=AE,再证明DE=BF,进而可证明△ABF≌△CDE;(2)在证明△AOE≌△COF的过程中,只需要∠AOE=∠FOC,对顶角相等即可,无需垂直,因此EF ⊥AC是多余条件.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AD=BC,AD∥BC.∵AD∥BC.∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).∴CF=AE,∴AD﹣AE=BC﹣CF,即DE=BF.在△ABF和△CDE中,,∴△ABF≌△CDE(SAS).(2)解:EF⊥AC.【点评】此题主要考查了平行四边形的性质,以及全等三角形的判定和性质,关键是掌握平行四边形的对边相等;平行四边形的对角相等.18.学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.【考点】折线统计图;用样本估计总体;扇形统计图.【分析】(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.【解答】解:(1)90÷30%=300(名),故一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4)1800×=480(名).答:1800名学生中估计最喜爱科普类书籍的学生人数为480.【点评】本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.19.2016年清明小长假,所有高速公路对七座以下的机动车辆免收高速费,很多人都走出家门,投入大自然的环抱,进行自驾游.如图所示,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号)【考点】勾股定理的应用.【分析】过B 点作BE ⊥l 1,交l 1于E ,CD 于F ,l 2于G .在Rt △ABE 中,根据三角函数求得BE ,在Rt △BCF 中,根据三角函数求得BF ,在Rt △DFG 中,根据三角函数求得FG ,再根据EG=BE+BF+FG 即可求解.【解答】解:过B 点作BE ⊥l 1,交l 1于E ,CD 于F ,l 2于G .在Rt △ABE 中,BE=AB •sin30°=20×=10km ,在Rt △BCF 中,BF=BC ÷cos30°=10÷=km ,CF=BF •sin30°=×=km , DF=CD ﹣CF=(30﹣)km ,在Rt △DFG 中,FG=DF •sin30°=(30﹣)×=(15﹣)km ,∴EG=BE+BF+FG=(25+5)km .故两高速公路间的距离为(25+5)km .【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.20.某日,小敏、小君两人约好去奥体中心打球.小敏13:00从家出发,匀速骑自行车前往奥体中心,小君13:05从离奥体中心6000m 的家中匀速骑自行车出发.已知小君骑车的速度是小敏骑车速度的1.5倍.设小敏出发x min 后,到达离奥体中心y m 的地方,图中线段AB 表示y 与x 之间的函数关系.(1)小敏家离奥体中心的距离为 6000 m ;她骑自行车的速度为 200 m/min ;(2)求线段AB 所在直线的函数表达式;(3)小敏与小君谁先到奥体中心,要等另一人多久?【考点】一次函数的应用.【分析】(1)根据函数图象可得,小敏家离奥体中心的距离为6000米,她所用时间为30分钟,根据速度=路程÷时间,即可解答;(2)利用待定系数法,即可求函数解析式;(3)小君骑车的速度是200×1.5=300(米/分钟),设小君骑自行车时与奥体中心的距离为y1m,则y1=﹣300(x﹣5)+6000,当y1=0时,x=25.30﹣25=5.即小君先到达奥体中心,小君要等小敏5分钟.【解答】解:(1)小敏家离奥体中心的距离为6000米,她骑自行车的速度为:6000÷30=200(米/分钟).故答案为:6000,200;(2)设AB所在直线的函数表达式为y=kx+b,将点A(0,6000),B(30,0)代入y=kx+b得:,解得.∴AB所在直线的函数表达式为y=﹣200x+6000.(3)∵小君骑车的速度是小敏骑车速度的1.5倍.∴小君骑车的速度是200×1.5=300(米/分钟),设小君骑自行车时与奥体中心的距离为y1m,则y1=﹣300(x﹣5)+6000,当y1=0时,x=25.30﹣25=5.∴小君先到达奥体中心,小君要等小敏5分钟.【点评】本题考查了一次函数的应用,利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.21.“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?【考点】二次函数的应用.【专题】计算题.【分析】(1)设商品的定价为x元,由这种商品的售价每上涨1元,其销售量就减少2件,列出等式求得x的值即可;(2)设利润为y元,列出二次函数关系式,在售价不超过40元/件的范围内求得利润的最大值.【解答】解:(1)设商品的定价为x元,由题意,得(x﹣20)[100﹣2(x﹣30)]=1600,解得:x=40或x=60;答:售价应定为40元或60元.(2)设利润为y元,得:y=(x﹣20)[100﹣2(x﹣30)](x≤40),即:y=﹣2x2+200x﹣3200;∵a=﹣2<0,∴当x=﹣=﹣=50时,y取得最大值;又x≤40,则在x=40时可取得最大值,即y=1600.最大答:售价为40元/件时,此时利润最大,最大为1600元.【点评】本题考查的是二次函数在实际生活中的应用,关键是对题意的正确理解.22.如图1所示,A、B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B 的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)【问题解决】如图2,过点B作BB′⊥l2,且BB′等于河宽,连接AB′交l1于点M,作MN⊥l1交l2于点N,则MN就为桥所在的位置.【类比联想】(1)如图3,正方形ABCD中,点E、F、G分别在AB、BC、CD上,且AF⊥GE,求证:AF=EG.(2)如图4,矩形ABCD中,AB=2,BC=x,点E、F、G、H分别在AB、BC、CD、AD上,且EG⊥HF,设y=,试求y与x的函数关系式.【拓展延伸】如图5,一架长5米的梯子斜靠在竖直的墙面OE上,初始位置时OA=4米,由于地面OF较光滑,梯子的顶端A下滑至点C时,梯子的底端B左滑至点D,设此时AC=a米,BD=b米.(3)当a= 1 米时,a=b.(4)当a在什么范围内时,a<b?请说明理由.【考点】四边形综合题.【分析】(1)过点作DH⊥AF交AB于点H,则有∠1+∠2=90°,故四边形DGEH是平行四边形,再由ASA定理得出△ABF≌△DAH,由此可得出结论;(2)作DM∥GE交AB于点M,作AN∥HF交BC于点N,根据直角三角形的性质得出∠1+∠2=90°,再根据四边形ABCD是矩形可知∠3+∠2=90°,由相似三角形的性质得出△ABN∽△DAM,根据相似三角形的对应边成比例即可得出结论;(3)过点B作DC的平行线,过点C作OF的平行线,两线交于点P,连接AP,由题意可得DBPC为平行四边形,可得出∠BAP=∠3+∠1=∠BPA=∠4+∠2.(4)若a<b,即AC<BD=CP,因而在△ACP中,由等边对等角可知∠3<∠5,再由锐角三角函数的定义即可得出结论.【解答】(1)证明:如图3,过点作DH⊥AF交AB于点H,则有∠1+∠2=90°.∵GE⊥AF,∴DH∥GE.∵四边形ABCD是正方形,∴∠3+∠2=90°,BA=AE,DG∥HE,∴∠3=∠1,四边形DGEH是平行四边形.∴DH=GE,在△ABF与△DAH中,,∴△ABF≌△DAH,∴DH=AF,∴AF=GE;(2)解:作DM∥GE交AB于点M,作AN∥HF交BC于点N(如图4).∵EG⊥HF,易得DM⊥AN,∴∠1+∠2=90°.又∵四边形ABCD是矩形,∴∠3+∠2=90°,∴∠3=∠1,且四边形ANFH及四边形MEGD均为平行四边形,∴AN=HF,DM=EG.∵∠3=∠1,∠B=∠MAD=90°,∴△ABN∽△DAM,∴===,∴y=;(3)解:∵CO=4﹣a,DO=3+b.∴Rt△DOC中,DC2=(4﹣a)2+(3+b)2,即(4﹣a)2+(3+b)2=52.当a=b时,有(4﹣a)2+(3+a)2=25,解得a=1或a=0(不合题意).故答案为:1;(4)当0<a<1时,a<b.理由如下:如图5,过点B作DC的平行线,过点C作OF的平行线,两线交于点P,连接AP.∵CD∥BP,PC∥OF,∴DBPC为平行四边形,∴BP=DC,CP=BD.又AB=DC,∴BP=AB.∴∠BAP=∠3+∠1=∠BPA=∠4+∠2.若a<b,即AC<BD=CP,因而在△ACP中,∵∠1>∠2,∴∠3<∠4.又∵∠5=∠4,∴∠3<∠5.∵Rt△ABO中,sin∠3==,同理sin∠5==,由题意得,>,解得,即0<a<1.【点评】本题考查的是四边形综合题,涉及到平行四边形的判定与性质、全等三角形的判定与性质等知识,解答时,要灵活运用全等三角形的判定定理和性质定理、锐角三角函数的定义、相似三角形的判定定理和性质定理.23.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)直接把A 点和C 点坐标代入y=﹣x 2+mx+n 得m 、n 的方程组,然后解方程组求出m 、n 即可得到抛物线解析式;(2)先利用抛物线对称轴方程求出抛物线的对称轴为直线x=﹣,则D (,0),则利用勾股定理计算出CD=,然后分类讨论:如图1,当CP=CD 时,利用等腰三角形的性质易得P 1(,4);当DP=DC 时,易得P 2(,),P 3(,﹣);(3)先根据抛物线与x 轴的交点问题求出B (4,0),再利用待定系数法求出直线BC 的解析式为y=﹣x+2,利用一次函数图象上点的坐标特征和二次函数图象上点的坐标特征,设E (x ,﹣ x+2)(0≤x ≤4),则F (x ,﹣ x 2+x+2),则FE=﹣x 2+2x ,由于△BEF 和△CEF 共底边,高的和为4,则S △BCF =S △BEF +S △CEF =•4•EF=﹣x 2+4x ,加上S △BCD =,所以S 四边形CDBF =S △BCF +S △BCD =﹣x 2+4x+(0≤x ≤4),然后根据二次函数的性质求四边形CDBF 的面积最大,并得到此时E 点坐标.【解答】解:(1)把A (﹣1,0),C (0,2)代入y=﹣x 2+mx+n 得,解得, ∴抛物线解析式为y=﹣x 2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,。
2016年河南省中考猜想数学试卷一、选择题(共18小题,每小题3分,满分54分)1.(3分)若点P(1,b)到x轴的距离为2,则b等于()A.2 B.﹣2 C.2或﹣2 D.±2.(3分)函数y=2x的图象与函数y=﹣x+1的图象的交点坐标是()A.(0,1) B.(1,0) C.(﹣,)D.(,)3.(3分)如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k 的值是()A.2 B.﹣2 C.4 D.﹣44.(3分)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.5.(3分)如图,直线L1:y=x+3与直线L2:y=ax+b相交于点A(m,4),则关于x的不等式x+3≤ax+b的解集是()A.x≥4 B.x≤4 C.x≥m D.x≤16.(3分)如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A 开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,S与t的大致图象是()A. B.C.D.7.(3分)下列图形,线段、等边三角形、矩形、圆、正五边形中,既是轴对称图形,又是中心对称图形的个数是()A.2 B.3 C.4 D.58.(3分)如图,AB∥CD,若∠B=70°,则∠E+∠F等于()A.20°B.70°C.100° D.110°9.(3分)如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是()A.B.C.D.10.(3分)如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=7cm,那么BC的长为()A.3cm B.3.5cm C.4cm D.4.5cm11.(3分)如图所示的是一个长方形纸片ABCD沿其上一条线EF折叠后的图形,已知∠BEF=105°,则∠B′EA等于()A.15°B.30°C.45°D.60°12.(3分)如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC 与AB的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°13.(3分)如图,将一个一边有刻度的直尺放在一个量角器上,使其一边经过量角器的圆心O另一边与量角器交于C、D两点,且C、D两点在直尺上的刻度分别为2、10在量角器上的刻度分别为50、170,则直尺的宽为()A.2 B.C.2 D.14.(3分)如图,在菱形ABCD中,点E、F分别是边AB、AD的中点,连接CE、CF交对角线BD于点M、N,连接EF,则BN:EF等于()A.1:1 B.1:2 C.2:3 D.3:215.(3分)如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A.B.C.D.16.(3分)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()A.B.2 C.3 D.17.(3分)一列火车A从甲站到乙站,同时另一列火车B从乙站到甲站,如图分别表示它们离甲站的距离与时间的关系,给出以下结论:①火车B的速度大于火车A的速度;②行驶1.4小时后,两车相遇;③两车相距110千米时,它们行驶了1个小时;④A车行驶3小时,两车相距300千米,其中正确的结论有()A.1个 B.2个 C.3个 D.4个18.(3分)如图,正方形ABCD的边与正方形CGFE的边CE重合,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH、FH,EG与FH交于点M,对于下面四个结论:①GH⊥BE②HO BG;③GH2=GM•GE;④△GBE∽△GMF,其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题19.(3分)计算:﹣|﹣2|﹣sin60°=.20.(3分)根据如图所示的程序计算函数值,若输入的x的值为,则输出的y 的值为.21.(3分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为.22.(3分)如图,小红站在水平面上的点A处,测得旗杆BC顶点C的仰角为60°,点A到旗杆的水平距离为a米.若小红的水平视线与地面的距离为b米,则旗杆BC的长为米.(用含有a、b的式子表示).23.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.24.(3分)如图,平面直角坐标系中有一个正六边形ABCDEF,其中C.D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A,B,C,D,E,F中,会过点(2015,2)的是点.三、解答题25.先化简(﹣)÷,然后从不等式﹣5≤x<6的解中,选取一个你认为符合题意的x的值代入求值.26.解不等式组,并写出该不等式组的整数解.27.火力发电站的燃烧塔的轴截面是如图所示的图形,ABCD是一个矩形,DE、CF分别是两个反比例函数图象的一部分,已知AB=87m,BC=20m,上口宽EF=16m,求整个燃烧塔的高度.28.某城市对居民用水实行阶梯收费,每户每月用水量如果未超过20吨.按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月的用水量为x吨,应收水费为y元(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.(2)若该城市某户居民5月份水费平均为每吨2.2元,问该户居民5月份用水多少吨?29.为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.30.如图,一次函数y=kx+b的图象与反比例函数y=d的图象都经过点A(﹣2,6)和点B(4,n).(1)求着两个函数的解析式(2)求直线AB关于y轴的对称直线l的函数解析式(3)直线l与反比例函数y=的图象是否交点?如果有交点,求出交点的坐标,如果没有交点,可将直线l向上平移多少个单位后,正好与反比例函数的图象有一个交点?31.已知点a(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图1,若点C(x,0)且﹣1<x<3,BC⊥AC,求两个坐标间y与x之间的函数关系式.(2)在(1)的条件下,Y是否有最大值?若有,请求出最大值;若没有,请说明理由.(3)如图2,若点B的坐标为(﹣1,1).在x轴上另取点E,则当点E在x轴上的什么位置时,△ABE的周长最小?求出此时点E的坐标.32.如图,在方格纸中(小正方形的边长为1),反比例函数y=与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)分别写出点A、B的坐标后,把直线AB向右平移5个单位,再向上平移5个单位,画出平移后的直线A′B′;(2)若点C在函数y=的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.33.如图,在矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上的动点,满足∠PQO=60°.(1)①点B的坐标是;②∠CAO=度;③当点Q与点A重合时,点P的坐标为(直接写出答案)(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN 为等腰三角形?若存在,请直接写出点P的横坐标m的值;若不存在,请说明理由.34.如图,将Rt△ABC的直角顶点C放在坐标原点,另两个直角边分别与两坐标轴的正半轴重合,已知AC=2,AB=4,将Rt△ABC按如图所示的方式依次绕顶点旋转,经过三次旋转分别经历图①②③种情形,把这三次的旋转叫做一次变换.(1)线段AB在从原图到图①的过程中扫过的图形的面积是,在一次变换过程中顶点B经过的路程是.(2)经过n次变换后,点B移动到B3n的位置,求点B3n的坐标.35.如图所示,P、Q分别是Rt△ABC两直角边AB、AC上两点,M为斜边BC的中点,且PM⊥QM,MD⊥AB于点D,ME⊥AC于点E.求证:(1)△MPD∽△MQE;(2)AD•PD=AE•EQ:(3)PB2+QC2=PM2+QM2.36.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.37.如图,△ABC是等腰直角三角形,∠C=90°,CD⊥AB于点D,射线DE与射线DF互相垂直.(1)如图1,DE⊥AC于点E,DF⊥BC于点F,求证:四边形CEDF是正方形.(2)如图2,求证:四边形CEDF的面积S CEDF=S△ABC.(3)如图3,△GDF的面积是否等于S?如果成立,请给予证明;如果不成△ABC立,请说明理由.38.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC 于点D.(1)求证:AC=CD;(2)若AC=2,AO=,求OD的长度.39.如图,⊙O是△ABC的外接圆,AB=AC,连接CO并延长交⊙O的切线AP于点P.(1)求证:∠APC=∠BCP.(2)若BC=4,sin∠APC=,求PA的长.40.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如图的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)若该校共有学生600人,估计持“无所谓”态度的学生人数是.2016年河南省中考猜想数学试卷参考答案与试题解析一、选择题(共18小题,每小题3分,满分54分)1.(3分)若点P(1,b)到x轴的距离为2,则b等于()A.2 B.﹣2 C.2或﹣2 D.±【解答】解:∵点P(1,b)到x轴的距离为2,∴|b|=2,∴b=2或﹣2.故选C.2.(3分)函数y=2x的图象与函数y=﹣x+1的图象的交点坐标是()A.(0,1) B.(1,0) C.(﹣,)D.(,)【解答】解:由解得,∴数y=2x的图象与函数y=﹣x+1的图象的交点坐标是(,),故选D.3.(3分)如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k 的值是()A.2 B.﹣2 C.4 D.﹣4【解答】解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选D.4.(3分)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.【解答】解:当a>0时,y=ax+1过一、二、三象限,y=在一、三象限;当a<0时,y=ax+1过一、二、四象限,y=在二、四象限;故选A.5.(3分)如图,直线L1:y=x+3与直线L2:y=ax+b相交于点A(m,4),则关于x的不等式x+3≤ax+b的解集是()A.x≥4 B.x≤4 C.x≥m D.x≤1【解答】解:∵y=x+3经过点A(m,4),∴m+3=4,解得:m=1,∴A(1,4),∴关于x的不等式x+3≤ax+b的解集是x≤1,故选:D.6.(3分)如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A 开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,S与t的大致图象是()A. B.C.D.【解答】解:设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为S=hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=h(AB+BC﹣vt)=﹣hvt+h (AB+BC),是关于t的一次函数关系式;故选C.7.(3分)下列图形,线段、等边三角形、矩形、圆、正五边形中,既是轴对称图形,又是中心对称图形的个数是()A.2 B.3 C.4 D.5【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;矩形是轴对称图形,也是中心对称图形;圆是轴对称图形,也是中心对称图形;正五边形是轴对称图形,不是中心对称图形;故既是轴对称图形,又是中心对称图形的个数是3.故选B.8.(3分)如图,AB∥CD,若∠B=70°,则∠E+∠F等于()A.20°B.70°C.100° D.110°【解答】解:∵AB∥CD,∠B=70°,∴∠BDE=∠B=70°,∴∠E+∠F=70°.故选B.9.(3分)如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是()A.B.C.D.【解答】解:俯视图可以看出一共3列,右边有前后2排,后排是2个小正方体,前面一排有1个小正方体,其他两列都是1个小正方体,由此可判断出这个几何体的主视图是A故选A.10.(3分)如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=7cm,那么BC的长为()A.3cm B.3.5cm C.4cm D.4.5cm【解答】解:由点D是AC的中点,得AD=CD.由CB=CD,得CD=BC.由线段的和差,得AD+CD+BC=AB.又AB=7cm,得BC+BC+BC=7.解得BC=3cm,故选:A.11.(3分)如图所示的是一个长方形纸片ABCD沿其上一条线EF折叠后的图形,已知∠BEF=105°,则∠B′EA等于()A.15°B.30°C.45°D.60°【解答】解:∵四边形ABCD是矩形,∴∠C=∠B=90°,∵∠BEF=105°,∴∠CFE=75°,由折叠的性质得到∠FEB′=∠BEF=105°,∵AD∥CD,∴∠AEF=∠CFE=75°,∴∠B′EA=30°,故选B.12.(3分)如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC 与AB的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°【解答】解:如图,连接OC.∵OA=OC,∴∠OAC=∠OCA=35°,∴∠POC=∠OAC+∠OCA=70°,∵PC是⊙O切线,∴PC⊥OC,∴∠PCO=90°,∴∠P=90°﹣∠POC=20°,故选B.13.(3分)如图,将一个一边有刻度的直尺放在一个量角器上,使其一边经过量角器的圆心O另一边与量角器交于C、D两点,且C、D两点在直尺上的刻度分别为2、10在量角器上的刻度分别为50、170,则直尺的宽为()A.2 B.C.2 D.【解答】解:过点O作OM⊥DC于点M,连接OD.∴DM=CD=(10﹣2)=4.∵在Rt△ODM中,∠DOM=(170°﹣50°)=60°,∴OM====.故选D.14.(3分)如图,在菱形ABCD中,点E、F分别是边AB、AD的中点,连接CE、CF交对角线BD于点M、N,连接EF,则BN:EF等于()A.1:1 B.1:2 C.2:3 D.3:2【解答】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD,AD∥BC,AB∥CD,∵点E、F分别是边AB、AD的中点,∴DC=2BE,BC=2DF,∵AD∥BC,AB∥CD,∴△DFN∽△BCN,△BEM∽△DCM,∴==,==,∴BM=MN,DN=MN,∴BM=MN=DN,∴BN=2BM,∵点E、F分别是边AB、AD的中点,∴BD=2EF=6BM,∴EF=3BM,∴BN:EF=2BM:3BM=2:3,故选C.15.(3分)如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A.B.C.D.【解答】解:根据等角的余角相等,得∠BAE=∠CEF=∠DFG.又∠B=∠C=∠D=90°,AE=EF=4,FG=2,∴△ABE≌△ECF,△ECF∽△FDG.∴AB=CE,BE=CF,DF:CE=FG:EF=1:2.∴=,∴DF=FC=BE,设BE=x,则AB=2x,根据勾股定理,得x2+4x2=16,x=.则矩形ABCD的周长为2(2x+3x)=10x=8.故选B.16.(3分)如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( )A .B .2C .3D .【解答】解:如图,设BF 、CE 相交于点M ,∵菱形ABCD 和菱形ECGF 的边长分别为2和3,∴△BCM ∽△BGF , ∴=, 即=,解得CM=1.2,∴DM=2﹣1.2=0.8,∵∠A=120°,∴∠ABC=180°﹣120°=60°,∴菱形ABCD 边CD 上的高为2sin60°=2×=, 菱形ECGF 边CE 上的高为3sin60°=3×=, ∴阴影部分面积=S △BDM +S △DFM =×0.8×+×0.8×=.故选A .17.(3分)一列火车A从甲站到乙站,同时另一列火车B从乙站到甲站,如图分别表示它们离甲站的距离与时间的关系,给出以下结论:①火车B的速度大于火车A的速度;②行驶1.4小时后,两车相遇;③两车相距110千米时,它们行驶了1个小时;④A车行驶3小时,两车相距300千米,其中正确的结论有()A.1个 B.2个 C.3个 D.4个【解答】解:①因为,所以火车B的速度大于火车A的速度正确;火车A解析式为:y=100x,火车B的解析式为:y=﹣140x+350,100x=﹣140x+350,解得:x=1.46,故②行驶1.4小时后,两车相遇错误;﹣140x+350=100x+110,解得:x=1,故③两车相距110千米时,它们行驶了1个小时正确;100x﹣300=0,解得:x=3,故④A车行驶3小时,两车相距300千米正确;故选C18.(3分)如图,正方形ABCD的边与正方形CGFE的边CE重合,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH、FH,EG与FH交于点M,对于下面四个结论:①GH⊥BE②HO BG;③GH2=GM•GE;④△GBE∽△GMF,其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:①∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正确;②∵GH是∠EGC的平分线,∴∠BGH=∠EGH,在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO是△EBG的中位线∴HO∥BG,HO=BG,故②正确;③当∠FME=90°时,根据射影定理可得GH2=GM•GE,但由题意得:∠FOE=90°,因此③错误;④连接CF,如图所示:由(1)得△EHG是直角三角形,∵O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,∴∠HFC=∠CGH,∵∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,∴∠FMG=∠GBE,又∵∠EGB=∠FGM=45°,∴△GBE∽△GMF.故④正确,故选:C.二、填空题19.(3分)计算:﹣|﹣2|﹣sin60°=﹣.【解答】解::﹣|﹣2|﹣sin60°=2﹣2﹣=﹣故答案为:﹣.20.(3分)根据如图所示的程序计算函数值,若输入的x的值为,则输出的y的值为.【解答】解:∵2≤≤4,∴当x=时,y=.故答案是:.21.(3分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为2km.【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,∴AD=OA=2km.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2km,∴AB=AD=2km.即该船航行的距离(即AB的长)为2km.故答案为2km.22.(3分)如图,小红站在水平面上的点A处,测得旗杆BC顶点C的仰角为60°,点A到旗杆的水平距离为a米.若小红的水平视线与地面的距离为b米,则旗杆BC的长为a+b米.(用含有a、b的式子表示).【解答】解:由于AB=a(米),仰角α=60°,则BC=AB•tan60°+b=a+b(米).此时国旗离地面的距离为(a+b)米.23.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),=S四边形DMCN=.∴S四边形DGCH则阴影部分的面积是:﹣.故答案为﹣.24.(3分)如图,平面直角坐标系中有一个正六边形ABCDEF,其中C.D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A,B,C,D,E,F中,会过点(2015,2)的是点D.【解答】解:如图所示:当滚动到A′D⊥x轴时,E、F、A的对应点分别是E′、F′、A′,连接A′D,点F′,E′作F′G⊥A′D,E′H⊥A′D,∵六边形ABCDEF是正六边形,∴∠A′F′G=30°,∴A′G=A′F′=,同理可得HD=,∴A′D=2,∵D(2,0)∴A′(2,2),OD=2,∵正六边形滚动6个单位长度时正好滚动一周,∴从点(2,2)开始到点(2015,2)正好滚动2013个单位长度,∵=335…3,∴恰好滚动335周多3个,∴会过点(2015,2)的是点D.故答案为:D.三、解答题25.先化简(﹣)÷,然后从不等式﹣5≤x<6的解中,选取一个你认为符合题意的x的值代入求值.【解答】解:原式=•=x+5,∵要使分式有意义,∴x﹣5≠0,x≠0,x2﹣25≠0,∵﹣5≤x<6,∴取x=5.6,∴原式=5.6+5=10.6.26.解不等式组,并写出该不等式组的整数解.【解答】解:,由①得:x<;由②得x≥﹣1;∴不等式组的解集为﹣1≤x<,则原不等式组的整数解为﹣1,0,1,2.27.火力发电站的燃烧塔的轴截面是如图所示的图形,ABCD是一个矩形,DE、CF分别是两个反比例函数图象的一部分,已知AB=87m,BC=20m,上口宽EF=16m,求整个燃烧塔的高度.【解答】解:AB=87m,BC=20m,则C的坐标是(,20).设反比例函数的解析式是y=,把C的坐标代入得k=×20=870,则反比例函数解析式是y=,当x==8时,y==(m).答:整个燃烧塔的高是m.28.某城市对居民用水实行阶梯收费,每户每月用水量如果未超过20吨.按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月的用水量为x吨,应收水费为y元(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.(2)若该城市某户居民5月份水费平均为每吨2.2元,问该户居民5月份用水多少吨?【解答】解:(1)当0≤x≤20时,y=1.9x;当x>20时,y=1.9×20+2.8(x﹣20)=2.8x﹣18;(2)∵2.2>1.9,∴可以确定该户居民5月份的用水量超过20吨,设该户居民5月份用水x吨,根据题意,得:2.8x﹣18=2.2x,解得:x=30,答:该户居民5月份用水30吨.29.为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x 的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.【解答】解:(1)设每个笔记本x元,每支钢笔y元.(1分)(2分)解得答:每个笔记本14元,每支钢笔15元.(5分)(2)(3)当14x<12x+30时,x<15;当14x=12x+30时,x=15;当14x>12x+30时,x>15.(8分)综上,当买超过10件但少于15件商品时,买笔记本省钱;当买15件奖品时,买笔记本和钢笔一样;当买奖品超过15件时,买钢笔省钱.(10分)30.如图,一次函数y=kx+b的图象与反比例函数y=d的图象都经过点A(﹣2,6)和点B(4,n).(1)求着两个函数的解析式(2)求直线AB关于y轴的对称直线l的函数解析式(3)直线l与反比例函数y=的图象是否交点?如果有交点,求出交点的坐标,如果没有交点,可将直线l向上平移多少个单位后,正好与反比例函数的图象有一个交点?【解答】解:(1)将点A(﹣2,6)代入y=得m=﹣12,∴反比例函数的解析式为y=,将B(4,n)代入y=﹣得n=﹣3,∴B(4,﹣3),将A,B代入y=kx+b得,∴,∴一次函数的解析式为y=﹣x+3;(2)如图,设直线AB交x轴于N,交y轴于M,则M(0,3),N(2,0)∴点N关于y轴的对称点N′(﹣2,0),直线l过M,N′两点,设直线l的解析式为y=k1x+b1,∴,∴,∴直线l的解析式为y=x+3;(3)令x﹣3=﹣,化简得x2+2x+8=0,∴△=22﹣32<0,∴方程无解,∴直线l与反比例函数y=的图象无交点,设将直线l向上平移m个单位后,正好与反比例函数的图象有一个交点,则x+3+m=﹣有唯一解,∴方程3x2+2(3+m)x+24=0有两个不为零的相等根,∴△1=4(3+m)2﹣3×4×24=0,解得:m=﹣3±6,∵m>0,∴m=﹣3+6,∴将直线l向上平移(﹣3+6)个单位,正好与反比例函数的图象有一个交点.31.已知点a(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图1,若点C(x,0)且﹣1<x<3,BC⊥AC,求两个坐标间y与x之间的函数关系式.(2)在(1)的条件下,Y是否有最大值?若有,请求出最大值;若没有,请说明理由.(3)如图2,若点B的坐标为(﹣1,1).在x轴上另取点E,则当点E在x轴上的什么位置时,△ABE的周长最小?求出此时点E的坐标.【解答】解:(1)过点A作AE⊥x轴于点E.在△BCD与△CAE中,∵∠BCD=∠CAE=90°﹣∠ACE,∠BDC=∠CEA=90°,∴△BCD∽△CAE,∴BD:CE=CD:AE,∵A(3,4),B(﹣1,y),C(x,0)且﹣1<x<3,∴y:(3﹣x)=(x+1):4,∴y=﹣x2+x+(﹣1<x<3).(2)在(1)的条件下,y有最大值.理由如下:y=﹣x2+x+=﹣(x﹣1)2+1(﹣1<x<3).所以对称轴为x=1,当x=1时,y=1.最大值(3)△ABE的周长=AB+BE+EA,线段AB始终保持不变.故当BE+EA最小时,△ABE的周长最小,如图2,过点A作x轴的对称点A′.当点B、E与点A′共线时,BE+AE=BE+A′E=A′B最小.由对称的性质可得到:A′(3,﹣4).设直线BA′的解析式为y=kx+b(k≠0).则,解得,所以,直线BA′的解析式为y=﹣x﹣.当y=0时,x=﹣,故点E的坐标为(﹣,0).32.如图,在方格纸中(小正方形的边长为1),反比例函数y=与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)分别写出点A、B的坐标后,把直线AB向右平移5个单位,再向上平移5个单位,画出平移后的直线A′B′;(2)若点C在函数y=的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.【解答】解:(1)A(﹣1,﹣4)、B(﹣4,﹣1)平移后的直线为A′B′;(2)C点的坐标为C1(﹣2,﹣2)或C2(2,2).33.如图,在矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上的动点,满足∠PQO=60°.(1)①点B的坐标是(6,2);②∠CAO=30度;③当点Q与点A重合时,点P的坐标为(3,3)(直接写出答案)(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标m的值;若不存在,请说明理由.【解答】解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,2),∴点B的坐标为:(6,2);②∵tan∠CAO===,∴∠CAO=30°;③如图1:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3),∴PE=3,∴AE==3,∴OE=OA﹣AE=6﹣3=3,∴点P的坐标为(3,3);故答案为:①(6,2),②30,③(3,3);(2)情况①:如图2,MN=AN=3,则∠AMN=∠MAN=30°,∴∠MNO=60°,∵∠PQO=60°,即∠MQO=60°,∴点N与Q重合,∴点P与D重合,∴此时m=0,情况②,如图3,AM=AN,作MJ⊥x轴、PI⊥x轴;MJ=MQ•sin60°=AQ•sin60°=(OA﹣IQ﹣OI)•sin60°=(3﹣m)=AM=AN=,可得(3﹣m)=,解得:m=3﹣,情况③AM=NM,此时M的横坐标是4.5,如图4,过点P作PK⊥OA于K,过点M作MG⊥OA于G,∴MG=,∴QK===3,GQ==,∴KG=3﹣0.5=2.5,AG=AN=1.5,∴OK=2,∴m=2.34.如图,将Rt△ABC的直角顶点C放在坐标原点,另两个直角边分别与两坐标轴的正半轴重合,已知AC=2,AB=4,将Rt△ABC按如图所示的方式依次绕顶点旋转,经过三次旋转分别经历图①②③种情形,把这三次的旋转叫做一次变换.(1)线段AB在从原图到图①的过程中扫过的图形的面积是π,在一次变换过程中顶点B经过的路程是π.(2)经过n次变换后,点B移动到B3n的位置,求点B3n的坐标.【解答】解:(1)线段AB在从原图到图①的过程中扫过的图形是一个半径为4,圆心角为120°的扇形,∴其面积为×π×16=π,在一次变换过程中顶点B经过两段弧,第一段是圆心角为120°,半径为4的圆弧,第二段是圆心角为90°,半径为2的圆弧,∴点B经过的路程是+=π.故答案为:π,π;(2)∵经过一次变换点B向右平移(2+4+)个单位长度,即(6+2)个单位长度,∴经过n次变换后,B3n(6n+2n,2).35.如图所示,P、Q分别是Rt△ABC两直角边AB、AC上两点,M为斜边BC的中点,且PM⊥QM,MD⊥AB于点D,ME⊥AC于点E.求证:(1)△MPD∽△MQE;(2)AD•PD=AE•EQ:(3)PB2+QC2=PM2+QM2.【解答】证明:(1)∵MD⊥AB于点D,ME⊥AC,∠A=90°,∴∠MDP=∠MEA=∠A=90°,∴四边形ADME是矩形,∴AD=EM,AE=DM,∠DME=90°,∵PM⊥QM,∴∠PMQ=90°,∴∠DMP=∠EMQ,∴△MPD∽△MQE;(2)∵△MPD∽△MQE,∴,∵AD=EM,AE=DM,∴,∴AD•PD=AE•EQ;(3)如图,以M点为中心,△MCQ顺时针旋转180°至△MBN,∴△MCQ≌△MBN,∴BN=QC,MN=MQ,∠MBN=∠C,连接PN,PQ,∵PM⊥QM,∴PM垂直平分NQ,∴PN=PQ,∵△ABC是直角三角形,BC是斜边,∴∠ABC+∠C=90°,∴∠ABC+∠MBN=90°,即△PBN是直角三角形,根据勾股定理可得,PN2=PB2+BN2,∴PQ2=PB2+QC2,∵PQ2=PM2+QM2,∴PB2+QC2=PM2+QM2.36.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.【解答】应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=DB=AB,与已知PD=AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC===4,①若PB=PC,设PA=x,则x2+32=(4﹣x)2,∴x=,即PA=,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或.37.如图,△ABC是等腰直角三角形,∠C=90°,CD⊥AB于点D,射线DE与射线DF互相垂直.(1)如图1,DE⊥AC于点E,DF⊥BC于点F,求证:四边形CEDF是正方形.(2)如图2,求证:四边形CEDF的面积S CEDF=S△ABC.?如果成立,请给予证明;如果不成(3)如图3,△GDF的面积是否等于S△ABC立,请说明理由.【解答】证明:(1)∵∠C=90°,DE⊥AC于点E,DF⊥BC于点F,∴四边形CEDF是矩形,∵△ABC是等腰直角三角形,CD⊥AB,∴∠ECD=∠FCD=45°,∴CF=DF,∴四边形CEDF是正方形;(2)∵△ABC是等腰直角三角形,CD⊥AB于点D,∴CD=DB,∠ECD=∠FBD=45°,∵∠CDE=90°﹣∠CDF=∠BDF,在△CDE与△BDF中,,∴△CDE≌△BDF,=S△CDB=S△ABC;∴S正方形CEDF,(3)△GDF的面积不等于S△ABC理由:同(2)可得△CDE≌△BDF,=S△GDB+S△BDF=S△GDB+S△CDE>S△BDG+S△CDG=S△BCD=S△ABC,∴S△GDF∴△GDF的面积不等于S.△ABC38.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.(1)求证:AC=CD;(2)若AC=2,AO=,求OD的长度.【解答】(1)证明:∵AC是⊙切线,∴OA⊥AC,∴∠OAC=90°,∴∠OAB+∠CAB=90°.∵OC⊥OB,∴∠COB=90°,∴∠ODB+∠B=90°.∵OA=OB∴∠OAB=∠B,∴∠CAB=∠ODB.∵∠ODB=∠ADC,∴∠CAB=∠ADC∴AC=CD;(2)解:在Rt△OAC中,OC==3,∴OD=OC﹣CD,=OC﹣AC,=3﹣2,=1.39.如图,⊙O是△ABC的外接圆,AB=AC,连接CO并延长交⊙O的切线AP于点P.(1)求证:∠APC=∠BCP.(2)若BC=4,sin∠APC=,求PA的长.【解答】解:(1)证明:连接AO 并延长叫BC于点D,交于点E.如下图所示:∵AP切⊙O于点A,∴EA⊥PA.∵AB=AC,∴,∴EA⊥BC,∴BC∥AP,∴∠APC=∠BCP(2)∵AE⊥BC,∴CD=BC=2,∵sin∠APC==,∴设OA=3k,OP=5k,则OC=OA=3k∵BC∥AP,∴△APO∽△CDO,∴,∴,∴PA=计整理制作了如图的统计图,请回答下列问题:(1)这次抽查的家长总人数为100;(2)请补全条形统计图和扇形统计图;(3)若该校共有学生600人,估计持“无所谓”态度的学生人数是240人.【解答】解:(1)这次抽查的家长总人数为20÷20%=100,故答案为:100;(2)100﹣10﹣20=70(人),×100%=10%,×100%=70%,条形统计图和扇形统计图如下:(3)该校持“无所谓”态度的学生有600×=240(人),故答案为:240人.。
2016年河南省普通高中招生考试数学试题(含答案全解全析)(满分:120分时间:100分钟)第Ⅰ卷(选择题,共24分)一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.-13的相反数是( )A.-13B.13C.-3D.32.某种细胞的直径是0.000 000 95米,将0.000 000 95用科学记数法表示为( )A.9.5×10-7B.9.5×10-8C.0.95×10-7D.95×10-83.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )4.下列计算正确的是( )A.√8-√2=√2B.(-3)2=6C.3a4-2a2=a2D.(-a3)2=a55.如图,过反比例函数y=kx(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为( )A.2B.3C.4D.56.如图,在△ABC中,∠ACB=90°,AC=8,AB=10.DE垂直平分AC交AB于点E,则DE的长为( )A.6B.5C.4D.37.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数185 180 185 180(cm)方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙C.丙D.丁8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( )A.(1,-1)B.(-1,-1)C.(√2,0)D.(0,-√2)第Ⅱ卷(非选择题,共96分)二、填空题(每小题3分,共21分)3= .9.计算:(-2)0-√810.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为.11.若关于x的一元二次方程x2+3x-k=0有两个不相等的实数根,则k的取值范围是.12.在“阳光体育”活动时间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在同一组的概率是.13.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是.14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作OC⏜交AB⏜于点C.若OA=2,则阴影部分的面积为.15.如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B 落在点B'处,过点B'作AD的垂线,分别交AD,BC于点M,N.当点B'为线段MN的三等分点时,BE的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(xx2+x -1)÷x2-1x2+2x+1,其中x的值从不等式组{-x≤1,2x-1<4的整数解中选取.17.(9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5 6406 430 6 520 6 7987 3258 430 8 215 7 453 7 446 6 7547 638 6 834 7 326 6 830 8 6488 753 9 450 9 865 7 290 7 850对这20个数据按组距1 000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A 5 500≤x<6 500 2B 6 500≤x<7 500 10C 7 500≤x<8 500 mD 8 500≤x<9 500 3E 9 500≤x<10 500 n请根据以上信息解答下列问题:(1)填空:m= ,n= ;(2)补全频数分布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;(4)若该团队共有120人,请估计其中一天行走步数不少于7 500步的人数.18.(9分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作☉O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE= ;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.19.(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°.升旗时,国旗上端悬挂在距地面2.25米处.若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)20.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.(10分)某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x …-3 -52-2 -1 0 1 2523 …y … 3 54m -1 0 -1 0543 …其中,m= ;(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2-2|x|=0有个实数根;②方程x2-2|x|=2有个实数根;③关于x的方程x2-2|x|=a有4个实数根时,a的取值范围是.22.(10分)(1)发现如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b 的式子表示).图1(2)应用点A 为线段BC 外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC 为边,作等边三角形ABD 和等边三角形ACE,连接CD,BE.①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值.图2(3)拓展如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM 长的最大值及此时点P 的坐标.23.(11分)如图1,直线y=-43x+n 交x 轴于点A,交y 轴于点C(0,4),抛物线y=23x 2+bx+c 经过点A,交y 轴于点B(0,-2).点P 为抛物线上一个动点,过点P 作x 轴的垂线PD,过点B 作BD ⊥PD 于点D,连接PB,设点P 的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD'P',且旋转角∠PBP'=∠OAC,当点P的对应点P'落在点P的坐标.坐标轴上时,请直接写出····图1答案全解全析:一、选择题1.B 绝对值相同,符号不同的两个数互为相反数.故选B.2.A 原数用科学记数法表示为9.5×10-7.故选A.3.C 选项C中几何体的主视图和左视图均为 .故选C.4.A A项,√8-√2=2√2-√2=√2;B项,(-3)2=9;C项,3a4与2a2不是同类项,不能合并;D项,(-a3)2=a6.故选A.k=2,所以k=4.故选C.5.C 由题意得k>0,S△AOB=126.D 在△ABC中,∠ACB=90°,∵DE垂直平分AC,∴AD=DC,DE∥BC,∴E为AB的中点,∴DE=1BC,2BC=3.故选D.∵BC=√AB2-AC2=6,∴DE=127.A 甲和丙的成绩好,甲的方差小于丙的方差,因为方差越小,发挥越稳定,所以应选择甲.故选A.8.B 由题意知菱形每8秒旋转一周,60秒旋转7周余4秒,4秒旋转180°,即旋转60秒后得到的图形与原图形关于原点成中心对称,因为B(2,2),所以D(1,1),D关于原点对称的点的坐标为(-1,-1).故选B.评析本题考查旋转的概念,菱形的性质,中心对称的坐标变换,属中等难度题.二、填空题9.答案-1解析原式=1-2=-1.10.答案110°(或110)解析在▱ABCD中,AB∥CD,所以∠BAC=∠1=20°.又因为BE⊥AB,所以∠ABE=90°,故∠2=∠BAC+∠ABE=20°+90°=110°.11.答案k>-94解析根据题意得Δ=b2-4ac=9+4k>0,所以k>-9.412.答案 14解析 设4个组分别是1,2,3,4,画树状图如下.共有16种等可能的结果,其中小明和小亮同学被分在同一组的情况有4种,所以小明和小亮同学被分在同一组的概率P=416=14. 13.答案 (1,4)解析 把A(0,3),B(2,3)分别代入y=-x 2+bx+c 中,得{3=c ,3=-4+2b +c ,解得{c =3,b =2,∴抛物线的解析式为y=-x 2+2x+3. ∴y=-(x 2-2x+1)+4=-(x-1)2+4,∴该抛物线的顶点坐标为(1,4).14.答案 √3-π3解析 连接OC,AC,则OC=OA=AC,所以△OAC 为等边三角形,所以∠COA=∠CAO=60°,因为 ∠AOB=90°,所以∠BOC=30°,所以S 阴影=S 扇形BOC +S △OAC -S 扇形OAC =30π×4360+√3×224-60π×4360=13π+√3-2π3=√3-π3. 评析 本题考查扇形、等边三角形面积的计算,分割法是求阴影部分面积的常见方法.15.答案 3√22或3√55解析 ∵AD ∥BC,AB ⊥BC,MN ⊥AD,∴四边形ABNM 为矩形,∴MN=AB=3,∵B'为线段MN 的三等分点,∴B'M=1或2,∵∠AB'E=∠ABC=90°,∴∠AB'M+∠EB'N=90°.∵∠EB'N+∠B'EN=90°,∴∠AB'M=∠B'EN.又∵∠AMB'=∠ENB'=90°,∴△AMB'∽△B'NE,∴AB 'AM =B 'E B 'N ,设B'E=BE=x. ①当B'M=1时,B'N=2,在Rt △AMB'中,AM=√B 'A 2-B 'M 2=√32-12=2√2,所以2√2=x 2,即x=3√22; ②当B'M=2时,B'N=1,在Rt △AMB'中,AM=√B 'A 2-B 'M 2=√32-22=√5,所以√5=x 1,即x=3√55. 综上所述,BE 的长为3√22或3√55. 评析 本题考查轴对称,矩形的判定和性质,相似三角形的判定与性质,勾股定理等知识,题目的计算量略大,属中档题.三、解答题16.解析 原式=-x 2x (x+1)÷(x+1)(x -1)(x+1)2(3分)=-x x+1·x+1x -1=-xx -1.(5分)解{-x ≤1,2x -1<4得-1≤x<52,∴不等式组的整数解为-1,0,1,2.(7分) 若使分式有意义,只能取x=2,∴原式=-22-1=-2.(8分)17.解析 (1)4;1.(2分)(2)按人数为4和1正确补全直方图(图略).(4分)(3)B.(6分)(4)120×4+3+120=48(人).所以该团队一天行走步数不少于7 500步的人数约为48人.(9分)18.解析 (1)证明:在Rt △ABC 中,∠ABC=90°,点M 是AC 的中点,∴MA=MB.∴∠A=∠MBA.(2分)∵四边形ABED 是圆内接四边形,∴∠ADE+∠ABE=180°.又∵∠ADE+∠MDE=180°,∴∠MDE=∠MBA.同理可证:∠MED=∠A.(4分)∴∠MDE=∠MED,∴MD=ME.(5分)(2)①2.(7分)②60°(或60).(9分)19.解析 过点C 作CD ⊥AB,垂足为D,则DB=9.(1分)在Rt △CBD 中,∠BCD=45°,∴CD=DBtan45°=9.(3分)在Rt △ACD 中,∠ACD=37°,∴AD=CD ·tan 37°≈9×0.75=6.75.(6分)∴AB=AD+DB=6.75+9=15.75.(7分)(15.75-2.25)÷45=0.3(米/秒).∴国旗应以约0.3米/秒的速度匀速上升.(9分)20.解析 (1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元.(1分)依题意得{x +3y =26,3x +2y =29.解得{x =5,y =7.(3分) 所以一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元.(4分)(2)设购进A 型节能灯m 只,总费用为w 元.依题意得w=5m+7(50-m)=-2m+350.(5分)∵-2<0,∴当m 取最大值时,w 有最小值.(6分)又∵m ≤3(50-m),∴m ≤37.5.而m为正整数,∴当m=37时,w最小=-2×37+350=276.(8分)此时50-m=50-37=13.所以最省钱的购买方案是购进37只A型节能灯,13只B型节能灯.(9分)评析本题考查二元一次方程组的应用,一次函数在方案设计中的应用,属中档题.21.解析(1)0.(2)正确补全图象(图略).(3)可从函数的最值,增减性,图象的对称性等方面阐述.答案不唯一,合理即可.(4)①3;3.②2.③-1<a<0.(注:本题不累计给分,除(3)中每条性质为2分外,其他每空1分)评析本题考查了函数图象的画法,根据函数解析式探究函数的图象和性质,以及函数与方程的关系.题目难度适中,设计新颖独特,也对学生研究性学习的能力作了考查.22.解析(1)CB延长线上;a+b.(2分)(2)①DC=BE.理由如下:∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB.(5分)∴△CAD≌△EAB.∴DC=BE.(6分)②BE长的最大值是4.(8分)(3)AM的最大值为3+2√2,点P的坐标为(2-√2,√2).(10分)【提示】如图a,构造△BNP≌△MAP,则NB=AM.由(1)知,当点N在BA的延长线上时,NB有最大值(如图b).易得AN=2√2,∴AM=NB=3+2√2.过点P作PE⊥x轴于E,PE=AE=√2,∴P(2-√2,√2).评析 本题属类比探究题,主要考查三角形的全等,等边三角形的性质.23.解析 (1)由直线y=-43x+n 过点C(0,4),得n=4,∴直线的解析式为y=-43x+4. 当y=0时,0=-43x+4,解得x=3,∴A(3,0).(1分) ∵抛物线y=23x 2+bx+c 经过点A(3,0),B(0,-2), ∴{0=23×32+3b +c ,-2=c .∴{b =-43,c =-2.∴抛物线的解析式为y=23x 2-43x-2.(3分) (2)∵点P 的横坐标为m,∴P (m ,23m 2-43m -2),D(m,-2).(4分)若△BDP 为等腰直角三角形,则PD=BD.①当点P 在直线BD 上方时,PD=23m 2-43m. (i)若点P 在y 轴左侧,则m<0,BD=-m.∴23m 2-43m=-m,∴m 1=0(舍去),m 2=12(舍去).(5分)(ii)若点P 在y 轴右侧,则m>0,BD=m,∴23m 2-43m=m,∴m 3=0(舍去),m 4=72.(6分)②当点P 在直线BD 下方时,m>0,BD=m,PD=-23m 2+43m.∴-23m 2+43m=m,∴m 5=0(舍去),m 6=12.(7分)综上,m=72或12.即当△BDP 为等腰直角三角形时,PD 的长为72或12.(8分)(3)P 1(-√5,4√5+43),P 2(√5,-4√5+43),P 3(258,1132).(11分)【提示】∵∠PBP'=∠OAC,OA=3,OC=4,∴AC=5,sin ∠PBP'=45,cos ∠PBP'=35.①当点P'落在x 轴上时,过点D'作D'N ⊥x 轴,垂足为N,交BD 于点M,∠DBD'=∠ND'P'=∠PBP'. 如图a,ND'-MD'=2,即35(23m 2-43m)-(-45m)=2.图a如图b,ND'+MD'=2,即35(23m 2-43m)+45m=2.解得m=±√5.∴P 1(-√5,4√5+43),P 2(√5,-4√5+43);图b②当点P'落在y 轴上时,如图c,过点D'作D'M ⊥x 轴,交BD 于点M,过点P'作P'N ⊥y 轴,交MD'的延长线于点N,∠DBD'=∠ND'P'=∠PBP'.∵P'N=BM,∴45(23m 2-43m)=35m,解得m=0(舍去)或m=258.∴P 3(258,1132).图c评析本题考查了用待定系数法求二次函数解析式,用点的坐标差值表示线段的长度,动点与定点所构成的不定三角形的旋转等知识.分类讨论在本题中连续应用,而题目结论较多,容易丢解,造成丢分.本题为二次函数的综合题,属难题.。
!" #$%& '()* +,+./01234 -56789:;:<- ./0!"#$"%&"#12 !" #$ "!%' $#%'&( "!"#$%&'()* &!#' "!%'&(&!"'!)* + "!%+ &!#'!!, "+,#"-".(/012 ,-% 0 . #./01'234567+,0"1".23012 894:;* &!'&' !"'"'"&"'&" &!" &'"" !&"' "&'" &!'&'&" !' < &(!' &(''4, " !&"'&, &!'1!('!$&!'& &('&! 567 !&"'&&3!("'4, !"&'-( "('!('&3&"'&(8"('&&8&"+,0")".12 =&"7>?9 #@!"A B '#"'#'" "' "'#"&!'&" "' !" "'#' !" #' &!" C D#7&"'.B #'7 &!"'.E $" ) "#''!-) &!""#"'#& ) "#'') &#'" ) &#''!-) &!"" F G'*7 #'H $#'*'4, < &'#+ &'*'4, " #&,#' #&', &'#-I &"'+ #&''4,&"'' &'*" C D#'7 &!"'.E $ '7!"'.B "I &!'&" !&'' "&'"&"' &'(" C D "J K * C D 'L M N "+,."3 4504"+!!,"&,12 O P Q &!"'7R S O P Q"' '&!'1, '* !(" '*'!( '( &!O P Q !*'(7T Q " !*"' &!*'4, " !*'"* 9:;"'$&3 9:; !&*'!*&!'$&1'&&3!&*'&, 3!!3!1!$3, . !12 U V $/' 0+. $+.8!W U V $'X B ''Y Z 7 . +.8! 3 B '[\]^_. ,+.8! , 3`a ,<.<!3<.'b c d e 7, . !3!&3!-!-3( &+$+$12 &!"'4, &!'!"'$&"'$$38f g '()*&"& '2( !",! "'$ & ",&",$$) & ! "') &!"'!$&! !"'$& "! , &"!'-( - &"! , &"& 1 & "! '&, -h 4 i B ! 9! ( &"A B (-!" #$%& '()* +, +!"#$%&!& !'& $ !"# "$& $%!&#'( $)() "& $'*+"$ & !'%( )"#$""$,- +++'.($- /)$%$)&#$""*) " & $0) "& $$- '0+0+1*-230/- +'34/-+-. ("+)*+,-. /"+01, /&$01- -23456781& 9:;<=> ?@ 1 1& 9%+)*+,-A B %,$+1C D E )F G H %& $%&$/ & !$&!& ,$%& +5%,%$-2& -',-*& ,$%&6& ,$/6-2 & !$&! !-$&-6&!$%6&! C I J K L M & !%$!-%7& -+N &!+$ +0&! +4 '0-+2O M &!$30'-$+!%&-,&%&$+-&!,$81& 9:;P =Q ?@ ( 1& 9%+)*+,-A B %,$+(C D E )F G H %& $%&$' & !$&!& ,$%& +0%,+$-(& -',-.& ,$%&4& ,$'4-( & !$&! !-$&!0&-$&!0+ C I J K L M & !+$!-+4& -+N &!+$ &!0+ +4 '4-+2O M &!$34'-+2R B H A S &!)T U 30'-+'34'-+2/ 012*.2 0. V W $/+0/040+0/+40+/+00+ +00//40$+0+0/0/+00+ /40+00/$0 +00/ /00 /40 /40+00/$0/0028/$+0$*Q V W $*+0*$+4*2*,2 0. * X Y +! #$#$+. $+1$3( 2%$+. #$+' %$#$3( %$+' $+12,- %# %+$' +$!2 $+'$+ !$+ %+$2 $!'%+2+ -34 C * Z H $!'%+2 ,- %#$!'#+Q [\;#!$+],^[\;2_Q %+'#+$*%#$-N 1+U 89 %#$`\%#)a 12$+$*%%#$#+2[\;#!$+b c ;28%+$-Q d \;#!$+b c ;2 :-34 C Z H 8%+'#+$$+Q d \;#!$+U c ;28 $+#$3; Q d \;#!$+b e f ;2 %+$$*<; 6 $+#$3; 2g %+'$+ %$:- 2h 9 )i j B 8 %$:- Q d \;#!$+b e f ;2*<2 0. * /;; + /,/./ k l m ;n o @?@p q 2*:;*+;*;;<;.;:;+;;=>?@/3/;*+;***: r s <t u v w x y 0:v )z {|}U<- ***7/;/;;$/323- ~| 2!" #$%& '()* +, +!"# -. !" #$!%!" #$ &'(" #$%%&' !" &'(' ) !&'$!% "(!$&' )"*&' )&*"'#!)&(&('"!%(!$)( !"$!)(!$!(("$(! *+,&( $!(&- )"$&'$)(.("$!(.!(&# !'$&' /01 !&'$ !(.!(& /01!% # )&$"'$!".!'$!(. !(.!(&/01!% !2-3 * -+,-)&./01(!2-3*-)(- /. ! #2$+.34)&56789:,$-. -4( .";<=) %>$) %>$?=2$+@A - $%B C ( 53 / $)B C ( 3 6/ # )$ ,D =$$ )$$3# !"&3E F )+ )!$+!# )$!.G H (!( )!7$!$!'6)$$8- +$$)!.$!$8- $).B C ( 3 8 - $)I 6789:,$- -4' .";J8$--K L -$)3- 6789:.K M N (,$)3- ) $).B C ( 3 8 )$$3 +$$8-0 )+$$!)+$ )$$!)- !"(4O +).&3E F 4 +!*)!-P +!*)!$. )$!*+$1+!$86.-Q R S T U L)!)$(!).)()+.)$ 86. ).!8-K L .$!&-(!*+(1+!$86!&&$%&- 0 )(!$!)(! )($!'&- 0 )+!*0 )+(10 )(!$)8&-)!- -. ! P )'!8V W X .Y Z [Z \]^_.`^ a Z \]^_,`^b c d e L2)8..&8',$!3389''..3'',$!8'' -K L.$!,$) -f )'!8V W X .Y Z [Z \]^_!`^ aZ \]^_)`^- ) g )'!8V W X.Y Z \]^_2`^ )[Z \]^_ !62 `^ Q d e h L3$39'2.&'' !62 $!9'2.&''- & Q d e h L !62 32 K L 2!%- 3$!9'2.&'' i !9'4' 3j k 2.l m n l m - o 2p q m r !%s 3p L q m r3q m$!9' !.&''$&&8 `t -f W X q u v w x y \]^z {|}.~ (&&8`t -))- -. ! !"$)4!" )401 !" H "!<)4=$5-)%$! )$5%! <=$+ +)$+! )+!$ !+$$"' - +"'4 +4$+"- )+4 !+"- )4$!" )4+$ !"+- )4+. 4)+$"' !"+. 4)+$"' - )5"$!9' 6 !"+. 4)+ $"'+)4 !"-+4)!'56"&(+4'"&(#!5) - !" H "!<+4=$6 <#4=$5-#&(!( #(5&! <=$+ +#$+! #+!$"' - +"'4( +4$+" 4+"$"' - #+4. 4+!$ !+". 4+!$"' - #+4$ !+"- #+4 !+"- #4$!" #4+* !"+- 564* +6! 456* 4+"*"' - !" #4- & #&(!( H (). #(5&! <=$+!" #$%& '()* +, +!"!!#!!$%"& "#$%& !'( !'!'!$!''( !"#!'()$%&#!)!)(!!'!''!)(!)* + ',- !()( !(!!)'.)(' !%()* +,('*+-./012 *(3456('*,$&!()72*(45!!(.!*!%.')* +,('$*-./012 *(3486('*,$)!(&72*(48!!(/!*!%0'+91: 0;*(/<-456$%.'486$%0'+'1+ -. 2 =0-!./.1>?,, + @,,'/A %B A 1 ,+'-A 1C /!*D -!1E ,+-FG $ * 1 + ',- !,+( 0,+!%& !,!!+!1 E ,,-FH $ 1 * +I ,, 1 * + * 1 J K -!0/'.1/.2 L0).11.2!*2!1 +M L1!'2!1 +' N 2 :O P 0-M Q R $-!0/'.'/.1+I , 1 * J K -!./.1 L1..1!*+M L .!02+=0,+-M Q R $-!0/.1+,3-S F H $4 @,3'T U V W X -O P01,3-Y F H $04'.'4.1+Z /!4J K -!0/.1 L -!04.1+E ,5-Y F H $04.1+D 35! 04'.'4.1 0 04.1 !04'.14+36 /A 35 -A 536! ,!+!)* 365! 0,+!%& +$34 365!35!04'.14!' +M L 7!0' 4'.1'4+1 )* ./36[-A \,8 ./35[/A \,9 ?,']': -A \,: ^_'6+&563";$/-!'9:8C 0/'.'/.1!* L /2!02 /'!1+,"-F H $ 02 * +N ' :,3-F H $ 4 04'.'4.1 +',- 3"9(-54 3"9!39"9!04'.'4.14.2!104',- "!&( -54 !"&!!&!"!!&2104!!&2+ !&!104+$&!!$0!&!10 104 !4+ &6;!)* !$;< 0,+!%& +6#`a b =c d c #+68!2'+#!2'4+38!68.36%68=35 4!24. 04'.14 +M L 42!& 4'!* +36<38>68!4!& 68!24!&+ +6!68$34 !+,!&'%39<!8!2'+&.!&!6%(O P 0-!0/'7'/.1!0 /02 '.% e ,'-F H $ 2 % +,'f 36-g h $%06%!)%:+!%0!+!2+ ':!:+!2 :+'!%& +'!':$34%&!'+'+6!28* 0 :+'> !+,!)* + ?!i #+63'!? '+6.? '63!2' '&'%.2' &% )%!8&1'+E !j #+63'-k l $8&+。