江苏专用2018版高考数学大一轮复习第十四章鸭部分14.4坐标系与参数方程第2课时不等式的证明教师用书理
- 格式:doc
- 大小:2.08 MB
- 文档页数:9
第2课时 参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f t ,y =gt就是曲线的参数方程.2.常见曲线的参数方程和普通方程 点的轨迹 普通方程参数方程直线y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)圆 x 2+y 2=r 2⎩⎪⎨⎪⎧ x =r cos θ,y =r sin θ(θ为参数)椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧ x =a cos φ,y =b sin φ(φ为参数)双曲线 x 2a -y 2b 2=1 ,(a >0,b >0) ⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ(φ为参数)抛物线 y 2=2px (p >0)⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数)1.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =2-3t (t 为参数),求直线l 的斜率.解 将直线l 的参数方程化为普通方程为y -2=-3(x -1),因此直线l 的斜率为-3.2.已知直线l 1:⎩⎪⎨⎪⎧x =1-2t ,y =2+kt (t 为参数)与直线l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数)垂直,求k的值.解 直线l 1的方程为y =-k 2x +4+k 2,斜率为-k2;直线l 2的方程为y =-2x +1,斜率为-2. ∵l 1与l 2垂直,∴(-k2)×(-2)=-1⇒k =-1. 3.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t(t 为参数)上,求PF 的值.解 将抛物线的参数方程化为普通方程为y 2=4x ,则焦点F (1,0),准线方程为x =-1,又P (3,m )在抛物线上,由抛物线的定义知PF =3-(-1)=4.4.(2016·江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B两点,求线段AB 的长.解 直线l 的方程化为普通方程为3x -y -3=0, 椭圆C 的方程化为普通方程为x 2+y 24=1,联立方程组得⎩⎪⎨⎪⎧3x -y -3=0,x 2+y 24=1,解得⎩⎪⎨⎪⎧x 1=1y 1=0或⎩⎪⎨⎪⎧x 2=-17,y 2=-837,∴A (1,0),B ⎝ ⎛⎭⎪⎫-17,-837.故AB =⎝ ⎛⎭⎪⎫1+172+⎝ ⎛⎭⎪⎫0+8372=167.题型一 参数方程与普通方程的互化例1 (2016·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A 、B 两点,AB =10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcosα+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.AB =|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=144cos 2α-44.由AB =10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 思维升华 消去参数的方法一般有三种(1)利用解方程的技巧求出参数的表示式,然后代入消去参数; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.(1)求直线⎩⎪⎨⎪⎧x =2+t ,y =-1-t (t为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.(2)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.解 (1)将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9.又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点. (2)直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,∴椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0), 则3-a =0,∴a =3. 题型二 参数方程的应用例2 (2016·扬州二模)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ (θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解 (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.思维升华 已知圆、圆锥曲线的参数方程解决有关问题时,一般是把参数方程化为普通方程,通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ⎝ ⎛⎭⎪⎫θ为参数,0≤θ≤π2和⎩⎪⎨⎪⎧x =1-22t ,y =-22t (t 为参数),求曲线C 1与C 2的交点坐标.解 曲线C 1的普通方程为x 2+y 2=5(x ≥0,y ≥0). 曲线C 2的普通方程为x -y -1=0.解方程组⎩⎪⎨⎪⎧x -y -1=0,x 2+y 2=5x ≥0,y ≥0,得⎩⎪⎨⎪⎧x =2,y =1.∴曲线C 1与C 2的交点坐标为(2,1). 题型三 极坐标方程和参数方程的综合应用例3 (2016·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以使问题得到简捷的解答.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.(2016·扬州质检)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos(θ+π4),直线l 的参数方程为⎩⎨⎧x =t ,y =-1+22t(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点. (1)求圆心的极坐标; (2)求△PAB 面积的最大值. 解 (1)由圆C 的极坐标方程为ρ=22cos(θ+π4),得ρ2=22(22ρcos θ-22ρsin θ), 把⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可得圆C 的直角坐标方程为x 2+y 2-2x +2y =0,即(x -1)2+(y +1)2=2.∴圆心坐标为(1,-1), ∴圆心的极坐标为(2,7π4).(2)由题意,得直线l 的直角坐标方程为22x -y -1=0. ∴圆心(1,-1)到直线l 的距离d =|22+1-1|222+-12=223,∴AB =2r 2-d 2=22-89=2103. 点P 到直线l 的距离的最大值为r +d =2+223=523,∴S max =12×2103×523=1059.1.求直线⎩⎪⎨⎪⎧x =1-12t ,y =32t(t 为参数)被曲线⎩⎨⎧x =cos θ,y =3sin θ(θ为参数)所截得的弦长.解 直线方程可化为3x +y -3=0, 曲线方程可化为x 2+y 23=1.由⎩⎪⎨⎪⎧y =-3x +3,x 2+y 23=1,得x 2-x =0,∴x =0或x =1.可得交点为A (0,3),B (1,0). ∴AB =1+3=2. ∴所截得的弦长为2. 2.(2016·连云港质检)直线⎩⎪⎨⎪⎧x =4+at ,y =bt(t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,求切线的倾斜角.解 直线的普通方程为bx -ay -4b =0,圆的普通方程为(x -2)2+y 2=3,直线与圆相切,则圆心(2,0)到直线的距离为3,从而有3=|2b -a ·0-4b |a 2+b2,即3a 2+3b 2=4b 2,∴b =±3a ,而直线的倾斜角的正切值为tan α=b a ,∴tan α=±3,因此切线的倾斜角为π3或2π3.3.(2016·苏州模拟)已知直角坐标系xOy 中,直线l 的参数方程:⎩⎪⎨⎪⎧x =22t -2,y =22t(t为参数),以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,求以极点为圆心且与直线l 相切的圆的极坐标方程. 解 ∵直线l 的直角坐标方程为x -y +2=0. ∴原点到直线的距离r =22=1.∴以极点为圆心且与直线l 相切的圆的极坐标方程为ρ=1.4.(2015·湖北)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t -1t,y =t +1t(t 为参数),l 与C 相交于A ,B 两点,求AB 的长.解 直线l 的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x -y =0,曲线C的参数方程⎩⎪⎨⎪⎧x =t -1t,y =t +1t两式经过平方相减,化为普通方程为y 2-x 2=4,联立⎩⎪⎨⎪⎧3x -y =0,y 2-x 2=4解得⎩⎪⎨⎪⎧ x =-22,y =-322或⎩⎪⎨⎪⎧x =22,y =322.所以A ⎝ ⎛⎭⎪⎫-22,-322,B ⎝ ⎛⎭⎪⎫22,322. 所以AB =⎝ ⎛⎭⎪⎫-22-222+⎝ ⎛⎭⎪⎫-322-3222=2 5.5.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2(t 为参数),在以O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 2的方程为ρsin(θ+π4)=22,求曲线C 1与曲线C 2的交点个数. 解 曲线C 1,C 2化为普通方程和直角坐标方程分别为x 2=2y ,x +y -4=0,联立⎩⎪⎨⎪⎧x 2=2y ,x +y -4=0,消去y 得x 2+2x -8=0,因为判别式Δ>0,所以方程有两个实数解.故曲线C 1与曲线C 2的交点个数为2.6.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长. 解 将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t , 解得t 1=0,t 2=-8 2.所以AB =|t 1-t 2|=8 2.7.(2016·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标系方程;(2)设点P 在C 1上,点Q 在C 2上,求PQ 的最小值及此时P 的直角坐标. 解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α). 因为C 2是直线,所以PQ 的最小值即为P 到C 2距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 8.已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解 (1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1,联立方程得⎩⎨⎧y =3x -1,x 2+y 2=1,解得C 1与C 2的交点坐标分别为(1,0),(12,-32).(2)依题意,C 1的普通方程为x sin α-y cos α-sin α=0, 则A 点的坐标为(sin 2α,-sin αcos α), 故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin 2αy =-12sin αcos α(α为参数),∴P 点轨迹的普通方程为(x -14)2+y 2=116.故P 点的轨迹是圆心为(14,0),半径为14的圆.9.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin(θ-π6).(1)求圆C 的直角坐标方程;(2)点P (x ,y )是直线l 与圆面ρ≤4sin(θ-π6)的公共点,求3x +y 的取值范围.解 (1)因为圆C 的极坐标方程为ρ=4sin(θ-π6),所以ρ2=4ρsin(θ-π6)=4ρ(32sin θ-12cos θ).又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以圆C 的直角坐标方程为x 2+y 2+2x -23y =0. (2)设z =3x +y ,由圆C 的方程x 2+y 2+2x -23y =0,得 (x +1)2+(y -3)2=4,所以圆C 的圆心是(-1,3),半径是2. 将⎩⎪⎨⎪⎧x =-1-32t y =3+12t 代入z =3x +y ,得z =-t .又直线l 过C (-1,3),圆C 的半径是2, 所以-2≤t ≤2,所以-2≤-t ≤2, 即3x +y 的取值范围是[-2,2].所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。
第1课时绝对值不等式1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集:不等式a>0a=0a<0|x|<a (-a,a)∅∅|x|>a (-∞,-a)∪(a,+∞)(-∞,0)∪(0,+∞)R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c;(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则|a|-|b|≤|a±b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.1.(2015·某某改编)解不等式|x-1|-|x-5|<2的解集.解①当x≤1时,原不等式可化为1-x-(5-x)<2,∴-4<2,不等式恒成立,∴x≤1.②当1<x<5时,原不等式可化为x-1-(5-x)<2,∴x<4,∴1<x<4,③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.综上,原不等式的解集为(-∞,4).2.若存在实数x使|x-a|+|x-1|≤3成立,某某数a的取值X围.解∵|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4.3.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,某某数a 的取值X 围.解 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5; 当-2≤x <12时,5≥y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值X 围为[-1,12].题型一 绝对值不等式的解法例1 (2015·课标全国Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值X 围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2.(2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值X 围为(2,+∞). 思维升华 解绝对值不等式的基本方法有(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.(1)(2016·全国乙卷)已知函数f (x )=|x +1|-|2x -3|.(1)在图中画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.解 (1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤ 32,-x +4,x >32,y =f (x )的图象如图所示.(2)由f (x )的表达式及图象,当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫xx <13或x >5.所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫xx <13或1<x <3或x >5.题型二 利用绝对值不等式求最值例2 (1)对任意x ,y ∈R ,求|x -1|+|x |+|y -1|+|y +1|的最小值. (2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,求|x -2y +1|的最大值. 解 (1)∵x ,y ∈R ,∴|x -1|+|x |≥|(x -1)-x |=1, |y -1|+|y +1|≥|(y -1)-(y +1)|=2, ∴|x -1|+|x |+|y -1|+|y +1|≥1+2=3. ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.(2)|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.思维升华 求含绝对值的函数最值时,常用的方法有三种 (1)利用绝对值的几何意义.(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |. (3)利用零点分区间法.(1)若关于x 的不等式|2 014-x |+|2 015-x |≤d 有解,求d 的取值X 围.(2)(2016·某某二模)不等式|x +1x|≥|a -2|+sin y 对一切非零实数x ,y 均成立,某某数a 的取值X 围.解 (1)∵|2 014-x |+|2 015-x |≥|2 014-x -2 015+x |=1, ∴关于x 的不等式|2 014-x |+|2 015-x |≤d 有解时,d ≥1. (2)∵x +1x∈(-∞,-2]∪[2,+∞),∴|x +1x|∈[2,+∞),其最小值为2.又∵sin y 的最大值为1,故不等式|x +1x|≥|a -2|+sin y 恒成立时,有|a -2|≤1,解得a ∈[1,3]. 题型三 绝对值不等式的综合应用例3 (2016·全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12, M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解 f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1,所以-1<x ≤-12;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1,所以-12<x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,即(a +b )2<(1+ab )2,因此|a +b |<|1+ab |.思维升华 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决. (2)数形结合是解决与绝对值有关的综合问题的常用方法.(2016·全国丙卷)已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值X 围. 解 (1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a , 当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.① 当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值X 围是[2,+∞).1.在实数X 围内,求不等式||x -2|-1|≤1的解集. 解 由||x -2|-1|≤1得-1≤|x -2|-1≤1,解⎩⎪⎨⎪⎧|x -2|≥0,|x -2|≤2得0≤x ≤4.∴不等式的解集为[0,4].2.不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,某某数a 的取值X 围. 解 由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2,所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.3.(2016·某某模拟)对于任意实数a ,b ,已知|a -b |≤1,|2a -1|≤1,且恒有|4a -3b +2|≤m ,某某数m 的取值X 围. 解 因为|a -b |≤1,|2a -1|≤1, 所以|3a -3b |≤3,|a -12|≤12,所以|4a -3b +2|=|(3a -3b )+(a -12)+52|≤|3a -3b |+|a -12|+52≤3+12+52=6,即|4a -3b +2|的最大值为6, 所以m ≥|4a -3b +2|max =6.4.已知f (x )=|x -3|,g (x )=-|x -7|+m ,若函数f (x )的图象恒在函数g (x )图象的上方,求m 的取值X 围.解 由题意,可得不等式|x -3|+|x -7|-m >0恒成立,即(|x -3|+|x -7|)min >m ,由于x 轴上的点到点(3,0)和点(7,0)的距离之和的最小值为4,所以要使不等式恒成立,则m <4. 5.(2016·某某模拟)求不等式|x +3|-|2x -1|<x2+1的解集.解 ①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,∴-3≤x <-25.③当x ≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.6.(2016·某某模拟)已知关于x 的不等式|2x -m |≤1的整数解有且仅有一个值为2,求关于x 的不等式|x -1|+|x -3|≥m 的解集. 解 由不等式|2x -m |≤1,可得m -12≤x ≤m +12,∵不等式的整数解为2, ∴m -12≤2≤m +12,解得3≤m ≤5.再由不等式仅有一个整数解2,∴m =4. 本题即解不等式|x -1|+|x -3|≥4, 当x <1时,不等式等价于1-x +3-x ≥4, 解得x ≤0,不等式解集为{x |x ≤0}.当1≤x ≤3时,不等式等价于x -1+3-x ≥4, 解得x ∈∅,不等式解集为∅.当x >3时,不等式等价于x -1+x -3≥4, 解得x ≥4,不等式解集为{x |x ≥4}.综上,原不等式解集为(-∞,0]∪[4,+∞). 7.设函数f (x )=|2x +1|-|x -4|. (1)解不等式f (x )>2; (2)求函数y =f (x )的最小值.解 (1)方法一 令2x +1=0,x -4=0分别得x =-12,x =4.原不等式可化为:⎩⎪⎨⎪⎧x <-12-x -5>2或⎩⎪⎨⎪⎧-12≤x <43x -3>2或⎩⎪⎨⎪⎧x ≥4,x +5>2.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-7,或x >53. 方法二 f (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3, -12≤x <4,x +5, x ≥4.画出f (x )的图象,如图所示.求得y =2与f (x )图象的交点为(-7,2),⎝ ⎛⎭⎪⎫53,2. 由图象知f (x )>2的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-7,或x >53. (2)由(1)的方法二知:f (x )min =-92.8.(2016·某某模拟)已知函数f (x )=|x +3|-|x -2|. (1)求不等式f (x )≥3的解集;(2)若f (x )≥|a -4|有解,求a 的取值X 围. 解 (1)f (x )=|x +3|-|x -2|≥3,当x ≥2时,有x +3-(x -2)≥3,解得x ≥2; 当x ≤-3时,-x -3+(x -2)≥3,解得x ∈∅; 当-3<x <2时,有2x +1≥3,解得1≤x <2. 综上,f (x )≥3的解集为{x |x ≥1}. (2)由绝对值不等式的性质可得,||x +3|-|x -2||≤|(x +3)-(x -2)|=5, 则有-5≤|x +3|-|x -2|≤5. 若f (x )≥|a -4|有解,则|a -4|≤5, 解得-1≤a ≤9.所以a 的取值X 围是[-1,9]. 9.(2016·某某模拟)已知a 和b 是任意非零实数. (1)求|2a +b |+|2a -b ||a |的最小值;(2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,某某数x 的取值X 围. 解 (1)∵|2a +b |+|2a -b ||a |≥|2a +b +2a -b ||a |=|4a ||a |=4, ∴|2a +b |+|2a -b ||a |的最小值为4.(2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,即|2+x |+|2-x |≤|2a +b |+|2a -b ||a |恒成立,故|2+x |+|2-x |≤⎝⎛⎭⎪⎫|2a +b |+|2a -b ||a |min.由(1)可知,|2a +b |+|2a -b ||a |的最小值为4,∴x 的取值X 围即为不等式|2+x |+|2-x |≤4的解集. 解不等式得-2≤x ≤2, 故实数x 的取值X 围为[-2,2].10.已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f (x )≤g (x ),求a 的取值X 围. 解 (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,∴原不等式的解集是{x |0<x <2}.(2)∵a >-1,则-a 2<12,∴f (x )=|2x -1|+|2x +a |=⎩⎪⎨⎪⎧-4x +1-a , x <-a2,a +1, -a 2≤x <12,4x +a -1, x ≥12.当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f (x )=a +1, 即a +1≤x +3在x ∈⎣⎢⎡⎭⎪⎫-a 2,12上恒成立. ∴a +1≤-a 2+3,即a ≤43,∴a 的取值X 围为⎝ ⎛⎦⎥⎤-1,43.。
(江苏专用)2018版高考数学大一轮复习第十四章选考部分14.4 坐标系与参数方程第2课时不等式的证明教师用书理苏教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018版高考数学大一轮复习第十四章选考部分14.4 坐标系与参数方程第2课时不等式的证明教师用书理苏教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018版高考数学大一轮复习第十四章选考部分14.4 坐标系与参数方程第2课时不等式的证明教师用书理苏教版的全部内容。
第2课时不等式的证明1.不等式证明的方法(1)比较法:①作差比较法:知道a>b⇔a-b〉0,a<b⇔a-b<0,因此要证明a〉b只要证明a-b>0即可,这种方法称为作差比较法.②作商比较法:由a〉b>0⇔错误!>1且a〉0,b>0,因此当a〉0,b>0时,要证明a>b,只要证明错误!〉1即可,这种方法称为作商比较法.(2)综合法:从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫综合法.即“由因导果”的方法.(3)分析法:从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫分析法.即“执果索因”的方法.(4)反证法和放缩法:①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫做反证法.②在证明不等式时,有时要把所证不等式的一边适当地放大或缩小,此利于化简并使它与不等式的另一边的关系更为明显,从而得出原不等式成立,这种方法称为放缩法.(5)数学归纳法:一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:①证明当n=n0时命题成立;②假设当n=k(k∈N*,且k≥n0)时命题成立,证明n=k+1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立.这种证明方法称为数学归纳法.2.几个常用基本不等式(1)柯西不等式:①柯西不等式的代数形式:设a,b,c,d均为实数,则(a2+b2)(c2+d2)≥(ac+bd)2(当且仅当ad=bc时,等号成立).②柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,等号当且仅当α,β共线时成立.③柯西不等式的三角不等式:设x1,y1,x2,y2,x3,y3∈R,则错误!+错误!≥错误!.④柯西不等式的一般形式:设n为大于1的自然数,a i,b i(i=1,2,…,n)为实数,则(a 错误!+a错误!+…+a错误!)(b错误!+b错误!+…+b错误!)≥(a1b1+a2b2+…+a n b n)2,等号当且仅当错误!=错误!=…=错误!时成立(当a i=0时,约定b i=0,i=1,2,…,n).(2)算术—几何平均不等式若a1,a2,…,a n为正数,则错误!≥错误!,当且仅当a1=a2=…=a n时,等号成立.1.设a,b,m,n∈R,且a2+b2=5,ma+nb=5,求m2+n2的最小值.解根据柯西不等式(ma+nb)2≤(a2+b2)(m2+n2),得25≤5(m2+n2),m2+n2≥5,m2+n2的最小值为错误!.2.若a,b,c∈(0,+∞),且a+b+c=1,求a+错误!+错误!的最大值.解(错误!+错误!+错误!)2=(1×错误!+1×错误!+1×错误!)2≤(12+12+12)(a+b+c)=3。
专题14 坐标系与参数方程选考内容(一)坐标系与参数方程1.坐标系(1)理解坐标系的作用.(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查与参数方程、极坐标方程相关的互化与计算2.从考查内容来看,主要考查:(1)极坐标系中直线和圆的方程;(2)已知直线和圆的参数方程,判断直线和圆的位置关系.考向一参数方程与普通方程的互化样题1(2017新课标全国Ⅰ文科)在直角坐标系xOy中,曲线C的参数方程为3cos,sin,xyθθ=⎧⎨=⎩(θ为参数),直线l的参数方程为4,1,x a tty t=+⎧⎨=-⎩(为参数).(1)若a=−1,求C与l的交点坐标;(2)若C上的点到l a.考向二极坐标方程与直角坐标方程的互化样题2 已知极坐标方程(1)求的直角坐标方程,并分别判断的形状;(2)求交点间的距离.考向三 极坐标方程与参数方程的综合应用样题3 已知直线l的参数方程为1x t y =+=⎧⎪⎨⎪⎩(t 为参数).在以坐标原点O 为极点, x 轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为24cos sin 40ρρθθ--+=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于,A B 两点,求OA OB ⋅.【解析】(1)直线l的普通方程是)1y x =-,即y =.曲线C的直角坐标方程是22440x y x +--+=,即()(2223x y -+=.(2)直线lC 的极坐标方程得:2540ρρ-+=, 所以4A B OA OB ρρ⋅==.样题4 在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为为参数),直线与曲线相交于两点.(1)写出曲线的直角坐标方程和直线的普通方程;(2)若,求的值.。
第1课时相似三角形的进一步认识1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边.2.平行线分线段成比例定理两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相似三角形的判定及性质(1)判定定理:(2)性质定理:相似三角形的对应线段的比等于相似比,面积比等于相似比的平方.4.直角三角形的射影定理直角三角形一条直角边的平方等于该直角边在斜边上的射影与斜边的乘积,斜边上的高的平方等于两条直角边在斜边上射影的乘积.1.(2016·南京模拟)如图,在四边形ABCD 中,△ABC ≌△BAD .求证:AB ∥CD .证明 由△ABC ≌△BAD 得∠ACB =∠BDA , 故A ,B ,C ,D 四点共圆,从而∠CAB =∠CDB . 由△ABC ≌△BAD 得∠CAB =∠DBA , 因此∠DBA =∠CDB ,所以AB ∥CD .2.如图,BD ⊥AE ,∠C =90°,AB =4,BC =2,AD =3,求EC 的长度.解 在Rt △ADB 中,DB =AB 2-AD 2=7,依题意得,△ADB ∽△ACE , ∴DB EC =AD AC ,可得EC =DB ·AC AD=27. 3.(2016·镇江模拟)如图,在△ABC 中,D 是AC 的中点,E 是BD 的中点,AE 交BC 于点F ,求BFFC的值.解 如图,过点D 作DG ∥AF ,交BC 于点G ,易得FG =GC ,又在△BDG 中,BE =DE ,即EF 为△BDG 的中位线,故BF =FG ,因此BF FC =12.题型一 平行截割定理的应用例1 如图,在四边形ABCD 中,AC ,BD 交于点O ,过点O 作AB 的平行线,与AD ,BC 分别交于点E ,F ,与CD 的延长线交于点K .求证:KO 2=KE ·KF .证明 延长CK ,BA ,设它们交于点H ,因为KO ∥HB , 所以KO HB =DK DH ,KE HA =DK DH .因此KO HB =KE HA ,即KO KE =HB HA .因为KF ∥HB ,同理可得KF KO =HB HA .故KO KE =KF KO ,即KO 2=KE ·KF .思维升华 当条件中给出平行线时,应优先考虑平行线分线段成比例定理,在有关比例的计算与证明题中,常结合平行线分线段成比例定理构造平行线解题.作平行线常用的方法有利用中点作中位线,利用比例线段作平行线等.(1)如图,在梯形ABCD 中,AD ∥BC ,BD 与AC 相交于点O ,过点O 的直线分别交AB ,CD 于E ,F ,且EF ∥BC ,若AD =12,BC =20,求EF 的长度.(2)如图,在△ABC 中,DE ∥BC ,EF ∥CD ,若BC =3,DE =2,DF =1,求AB 的长. 解 (1)∵AD ∥BC , ∴OB OD =BC AD =2012=53, ∴OB BD =58.∵OE ∥AD ,∴OE AD =OB BD =58.∴OE =58AD =58×12=152,同理可求得OF =38BC =38×20=152,∴EF =OE +OF =15. (2)∵DE ∥BC ,∴AD AB =AE AC =DE BC =23,EC AC =13. 又∵EF ∥CD ,∴DF AD =EC AC =13.∴AD =3.∴AB =32AD =92.题型二 相似三角形的判定与性质例2 (2016·江苏)如图,在△ABC 中,∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点,求证:∠EDC =∠ABD .证明 由BD ⊥AC ,可得∠BDC =90°, 由E 为BC 中点,可得DE =CE =12BC ,则∠EDC =∠C ,由∠BDC =90°,得∠C +∠DBC =90°, 又∠ABC =90°,则∠ABD +∠DBC =90°, ∴∠ABD =∠C ,又∵∠EDC =∠C ,∴∠EDC =∠ABD .思维升华 (1)判定两个三角形相似要注意结合图形的性质特点,灵活选择判定定理.在一个题目中,相似三角形的判定定理和性质定理可能多次用到.(2)相似三角形的性质可用来证明线段成比例、角相等,也可间接证明线段相等.(1)如图,AB 与CD 相交于点E ,过E 作BC 的平行线与AD 的延长线相交于点P .已知∠A =∠C ,PD =2DA =2,求PE 的长.(2)如图,四边形ABCD 中,DF ⊥AB ,垂足为F ,DF =3,AF =2FB =2,延 长FB 到E ,使BE =FB ,连结BD ,EC .若BD ∥EC ,求四边形ABCD 的面积.解 (1)∵BC ∥PE , ∴∠PED =∠C =∠A , ∴△PDE ∽△PEA ,∴PE P A =PDPE,则PE 2=P A ·PD , 又∵PD =2DA =2,∴P A =PD +DA =3. ∴PE =P A ·PD = 6.(2)如图,过点E 作EN ⊥DB 交DB 的延长线于点N ,在Rt △DFB 中,DF =3,FB =1,则BD =10,由Rt △DFB ∽Rt △ENB , 知EN DF =BEBD, 所以EN =31010,又BD ∥EC ,所以EN 为△BCD 底边BD 上的高,故S 四边形ABCD =S △ABD +S △BCD=12AB ·DF +12BD ·EN =12×3×3+12×10×31010=6. 题型三 射影定理的应用例3 (2016·苏州调研)如图,在△ABC 中,D 、F 分别在AC 、BC 上,且AB ⊥AC ,AF ⊥BC ,BD =DC =FC =1,求AC 的长.解 在△ABC 中,设AC 为x ,∵AB ⊥AC ,AF ⊥BC . 又FC =1,根据射影定理, 得AC 2=FC ·BC ,即BC =x 2.再由射影定理,得AF 2=BF ·FC =(BC -FC )·FC , 即AF 2=x 2-1,∴AF =x 2-1. 在△BDC 中,过D 作DE ⊥BC 于E . ∵BD =DC =1,∴BE =EC =12x 2.又∵AF ⊥BC ,∴DE ∥AF ,∴DE AF =DCAC ,∴DE =DC ·AFAC =x 2-1x.在Rt △DEC 中,∵DE 2+EC 2=DC 2, 即(x 2-1x )2+(12x 2)2=12,∴x 2-1x 2+x 44=1.整理得x 6=4,∴x =32,即AC =32.思维升华 (1)在使用直角三角形射影定理时,要学会将“乘积式”转化为相似三角形中的“比例式”.(2)证题时,作垂线构造直角三角形是解直角三角形常用的方法.(1)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,且AD ∶BD =9∶4,求AC ∶BC .(2)已知圆的直径AB =13,C 为圆上一点,过C 作CD ⊥AB 于D (AD >BD ),若CD =6,求AD 的长.解 (1)∵AC 2=AD ·AB ,BC 2=BD ·AB ,∴AC 2∶BC 2=AD ∶BD =9∶4,∴AC ∶BC =3∶2.(2)如图,连结AC ,CB ,∵AB 是⊙O 的直径,∴∠ACB =90°.设AD =x ,∵CD ⊥AB 于D , ∴由射影定理得CD 2=AD ·DB , 即62=x (13-x ),∴x 2-13x +36=0,解得x 1=4,x 2=9.∵AD >BD ,∴AD =9.1.(2016·苏州一模)如图,△OAB 是等腰三角形,P 是底边AB 延长线上一点,且PO =3,P A ·PB =4,求腰长OA 的长度.解 如图,作OD ⊥AP ,垂足为D ,则PO 2-PD 2=OB 2-BD 2, 所以PO 2-OB 2=PD 2-BD 2,因为AD =BD ,所以PD 2-BD 2=PD 2-AD 2=(PD +AD )(PD -AD )=P A ·PB =4, 所以PO 2-OB 2=4,所以OB 2=9-4=5, 所以OB =5,所以OA = 5.2.(2016·徐州模拟)如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,求AE 的长.解 由于∠ACD =∠AEB =90°, ∠B =∠D ,∴△ABE ∽△ADC , ∴AB AD =AEAC.又AC =4,AD =12,AB =6, ∴AE =AB ·AC AD =6×412=2.3.如图,Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高,若AB ∶AC =2∶1,求AD ∶BC .解 设AC =k ,则AB =2k ,BC =5k , ∵∠BAC =90°,AD ⊥BC ,∴AC 2=CD ·BC ,∴k 2=CD ·5k ,∴CD =55k , 又BD =BC -CD =455k ,∴AD 2=CD ·BD =55k ·455k =45k 2, ∴AD =255k ,∴AD ∶BC =2∶5.4.在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AD ∶BD =2∶3,求△ACD 与△CBD 的相似比.解 如图所示,在Rt △ACB 中,CD ⊥AB ,由射影定理得:CD 2=AD ·BD , 又∵AD ∶BD =2∶3, 令AD =2x .则BD =3x (x >0), ∴CD 2=6x 2,∴CD =6x .又∵∠ADC =∠BDC =90°,∴△ACD ∽△CBD . 易知△ACD 与△CBD 的相似比为AD CD =2x 6x =63.即相似比为6∶3.5.如图所示,在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,BE 是∠ABC 的角平分线,交AD 于点F ,求证:DF AF =AEEC.证明 ∵BE 是∠ABC 的角平分线, ∴DF AF =BD AB , ① AE EC =AB BC.②在Rt △ABC 中,由射影定理知, AB 2=BD ·BC ,即BD AB =ABBC .③ 由①③得DF AF =ABBC,④由②④得DF AF =AEEC.6.如图所示,在Rt △ABC 中,∠ACB =90°,M 是BC 的中点,CN ⊥AM ,垂足是N ,求证:AB ·BM =AM ·BN .证明 ∵CM 2=MN ·AM , 又∵M 是BC 的中点,∴BM 2=MN ·AM ,∴BM AM =MN BM,又∵∠BMN =∠AMB ,∴△AMB ∽△BMN , ∴AB BN =AMBM,∴AB ·BM =AM ·BN . 7.如图所示,平行四边形ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点F ,DE =12CD .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求平行四边形ABCD 的面积. (1)证明 ∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AB ∥CD .∴∠ABF =∠CEB . ∴△ABF ∽△CEB .(2)解 ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴△DEF ∽△CEB ,△DEF ∽△ABF . ∵DE =12CD ,∴S △DEF S △CEB =(DE CE )2=19,S △DEF S △ABF =(DE AB )2=14.∵S △DEF =2,∴S △CEB =18,S △ABF =8. ∴S 四边形BCDF =S △CEB -S △DEF =16.∴S 四边形ABCD =S 四边形BCDF +S △ABF =16+8=24.8.如图,在平行四边形ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连结AE ,F 为AE 上一点,且∠BFE =∠C .(1)求证:△ABF ∽△EAD .(2)若∠BAE =30°,AD =3,求BF 的长. (1)证明 ∵AB ∥CD ,∴∠BAF =∠AED .又∵∠BFE =∠C ,∠BFE +∠BF A =∠C +∠ADE , ∴∠BF A =∠ADE .∴△ABF ∽△EAD . (2)解 ∵∠BAE =30°,∴∠AEB =60°, ∴AB AE =sin 60°=32, 又△ABF ∽△EAD ,∴BF AD =AB AE ,∴BF =AB AE ·AD =332.9.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,E 、F 分别是AB 、BC 的中点,EF 与BD 相交于点M .(1)求证:△EDM ∽△FBM ; (2)若DB =9,求BM .(1)证明 ∵E 是AB 的中点,∴AB =2EB . ∵AB =2CD ,∴CD =EB . 又∵AB ∥CD ,∴四边形CBED 是平行四边形. ∴CB ∥DE ,∴⎩⎪⎨⎪⎧∠DEM =∠BFM ,∠EDM =∠FBM , ∴△EDM ∽△FBM .(2)解 ∵△EDM ∽△FBM ,∴DM BM =DE BF .∵F 是BC 的中点, ∴DE =2BF .∴DM =2BM ,∴BM =13DB =3. 10.如图,在梯形ABCD 中,点E ,F 分别在AB ,CD 上,EF ∥AD ,假设EF 做上下平行移动.(1)若AE EB =12,求证:3EF =BC +2AD ; (2)若AE EB =23,试判断EF 与BC ,AD 之间的关系,并说明理由; (3)请你探究一般结论,即若AE EB =m n,那么你可以得到什么结论? (1)证明 过点A 作AH ∥CD 分别交EF ,BC 于点G ,H .因为AE EB =12,所以AE AB =13, 又EG ∥BH ,所以EG BH =AE AB =13,即3EG =BH . 又EG +GF =EG +AD =EF ,从而EF =13(BC -HC )+AD , 所以EF =13BC +23AD , 即3EF =BC +2AD .(2)解 EF 与BC ,AD 的关系式为5EF =2BC +3AD ,理由和(1)类似.(3)解 因为AE EB =m n ,所以AE AB =m n +m. 又EG ∥BH ,所以EG BH =AE AB ,即EG =m m +nBH . 所以EF =EG +GF =EG +AD=m m +n(BC -AD )+AD , 所以EF =m m +n BC +n m +nAD , 即(m +n )EF =mBC +nAD .。
第1课时 坐标系1.平面直角坐标系设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ) (ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立: ⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0). 这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程1.(2016·北京西城区模拟)求在极坐标系中,过点(2,π2)且与极轴平行的直线方程.解 点(2,π2)在直角坐标系下的坐标为(2cos π2,2sin π2),即(0,2).∴过点(0,2)且与x 轴平行的直线方程为y =2. 即为ρsin θ=2.2.在极坐标系中,已知两点A 、B 的极坐标分别为(3,π3)、(4,π6),求△AOB (其中O 为极点)的面积.解 由题意知A 、B 的极坐标分别为(3,π3)、(4,π6),则△AOB 的面积S △AOB =12OA ·OB ·sin ∠AOB=12×3×4×sin π6=3. 3.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.当△AOB 是等边三角形时,求a 的值.解 由ρ=4sin θ可得x 2+y 2=4y ,即x 2+(y -2)2=4. 由ρsin θ=a 可得y =a .设圆的圆心为O ′,y =a 与x 2+(y -2)2=4的两交点A ,B 与O 构成等边三角形,如图所示.由对称性知∠O ′OB =30°,OD =a . 在Rt △DOB 中,易求DB =33a ,∴B 点的坐标为(33a ,a ). 又∵B 在x 2+y 2-4y =0上,∴(33a )2+a 2-4a =0, 即43a 2-4a =0,解得a =0(舍去)或a =3.题型一 极坐标与直角坐标的互化例1 (1)以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,求线段y =1-x (0≤x ≤1)的极坐标方程.(2)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,求曲线C 1和C 2交点的直角坐标.解 (1)∵⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴y =1-x 化成极坐标方程为ρcos θ+ρsin θ=1, 即ρ=1cos θ+sin θ.∵0≤x ≤1,∴线段在第一象限内(含端点), ∴0≤θ≤π2.(2)因为x =ρcos θ,y =ρsin θ,由ρsin 2θ=cos θ,得ρ2sin 2θ=ρcos θ,所以曲线C 1的直角坐标方程为y 2=x .由ρsin θ=1,得曲线C 2的直角坐标方程为y =1.由⎩⎪⎨⎪⎧ y 2=x ,y =1得⎩⎪⎨⎪⎧x =1,y =1,故曲线C 1与曲线C 2交点的直角坐标为(1,1).思维升华 (1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴的正半轴重合;③取相同的单位长度.(2)直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.(1)曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,求曲线C 的极坐标方程.(2)求在极坐标系中,圆ρ=2cos θ垂直于极轴的两条切线方程.解 (1)将x 2+y 2=ρ2,x =ρcos θ代入x 2+y 2-2x =0,得ρ2-2ρcos θ=0,整理得ρ=2cos θ. (2)由ρ=2cos θ,得ρ2=2ρcos θ,化为直角坐标方程为x 2+y 2-2x =0,即(x -1)2+y 2=1,其垂直于x 轴的两条切线方程为x =0和x =2,相应的极坐标方程为θ=π2(ρ∈R )和ρcos θ=2.题型二 求曲线的极坐标方程例2 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出曲线C 的方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由 +y 21=1得x 2+(y 2)2=1,即曲线C 的方程为x 2+y 24=1.(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0,或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为(12,1),所求直线斜率为k =12,于是所求直线方程为y -1=12(x -12),化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 即ρ=34sin θ-2cos θ.思维升华 求曲线的极坐标方程的步骤:(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意21x一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.在极坐标系中,已知圆C 经过点P (2,π4),圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解 在ρsin ⎝⎛⎭⎫θ-π3=-32中, 令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 如图所示,因为圆C 经过点 P ⎝⎛⎭⎫2,π4, 所以圆C 的半径 PC =(2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ. 题型三 极坐标方程的应用例3 (2015·课标全国Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解 (1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 为等腰直角三角形, 所以△C 2MN 的面积为12.思维升华 (1)已知极坐标系方程讨论位置关系时,可以先化为直角坐标方程;(2)在曲线的方程进行互化时,一定要注意变量的范围,注意转化的等价性.(2017·广州调研)在极坐标系中,求直线ρsin(θ+π4)=2被圆ρ=4截得的弦长.解 由ρsin(θ+π4)=2,得22(ρsin θ+ρcos θ)=2可化为x +y -22=0.圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式得:2r 2-d 2=242-(222)2=4 3.故所求弦长为4 3.1.(2015·广东)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ-π4=2,点A 的极坐标为⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离.解 依题可知直线l :2ρsin ⎝⎛⎭⎫θ-π4=2和点A ⎝⎛⎭⎫22,7π4可化为l :x -y +1=0和A (2,-2),所以点A 到直线l 的距离为d =|2-(-2)+1|12+(-1)2=522.2.在极坐标系(ρ,θ)(0≤θ<2π)中,求曲线ρ(cos θ+sin θ)=1与ρ(sin θ-cos θ)=1的交点的极坐标.解 曲线ρ(cos θ+sin θ)=1化为直角坐标方程为x +y =1,ρ(sin θ-cos θ)=1化为直角坐标方程为y -x =1.联立方程组⎩⎪⎨⎪⎧ x +y =1,y -x =1,得⎩⎪⎨⎪⎧x =0,y =1,则交点为(0,1),对应的极坐标为⎝⎛⎭⎫1,π2. 3.在极坐标系中,已知圆ρ=3cos θ与直线2ρcos θ+4ρsin θ+a =0相切,求实数a 的值. 解 圆ρ=3cos θ的直角坐标方程为x 2+y 2=3x , 即⎝⎛⎭⎫x -322+y 2=94, 直线2ρcos θ+4ρsin θ+a =0的直角坐标方程为2x +4y +a =0. 因为圆与直线相切,所以|2×32+4×0+a |22+42=32,解得a =-3±3 5.4.在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4对称的曲线的极坐标方程.解 以极点为坐标原点,极轴为x 轴建立直角坐标系, 则曲线ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1, 且圆心为(1,0).直线θ=π4的直角坐标方程为y =x ,因为圆心(1,0)关于y =x 的对称点为(0,1),所以圆(x -1)2+y 2=1关于y =x 的对称曲线为x 2+(y -1)2=1.所以曲线ρ=2cos θ关于直线θ=π4对称的曲线的极坐标方程为ρ=2sin θ.5.在极坐标系中,P 是曲线C 1:ρ=12sin θ上的动点,Q 是曲线C 2:ρ=12cos(θ-π6)上的动点,求|PQ|的最大值.解 对曲线C 1的极坐标方程进行转化:∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0, 即x 2+(y -6)2=36.对曲线C 2的极坐标方程进行转化: ∵ρ=12cos(θ-π6),∴ρ2=12ρ(cos θcos π6+sin θsin π6),∴x 2+y 2-63x -6y =0,∴(x -33)2+(y -3)2=36, ∴|PQ|max =6+6+(33)2+32=18.6.在极坐标系中,O 是极点,设A (4,π3),B (5,-5π6),求△AOB 的面积.解 如图所示,∠AOB =2π-π3-5π6=5π6,OA =4,OB =5,故S △AOB =12×4×5×sin 5π6=5.7.已知P (5,2π3),O 为极点,求使△POP ′为正三角形的点P ′的坐标.解 设P ′点的极坐标为(ρ,θ). ∵△POP ′为正三角形,如图所示,∴∠POP ′=π3.∴θ=2π3-π3=π3或θ=2π3+π3=π.又ρ=5,∴P ′点的极坐标为(5,π3)或(5,π).8.在极坐标系中,判断直线ρcos θ-ρsin θ+1=0与圆ρ=2sin θ的位置关系.解 直线ρcos θ-ρsin θ+1=0可化成x -y +1=0,圆ρ=2sin θ可化为x 2+y 2=2y ,即x 2+(y -1)2=1.圆心(0,1)到直线x -y +1=0的距离d =|0-1+1|2=0<1.故直线与圆相交.9.在极坐标系中,已知三点M ⎝⎛⎭⎫2,-π3、N (2,0)、P ⎝⎛⎭⎫23,π6. (1)将M 、N 、P 三点的极坐标化为直角坐标; (2)判断M 、N 、P 三点是否在一条直线上.解 (1)由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得M 的直角坐标为(1,-3);N 的直角坐标为(2,0);P 的直角坐标为(3,3). (2)∵k MN =32-1=3,k NP =3-03-2= 3.∴k MN =k NP ,∴M 、N 、P 三点在一条直线上.10.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos(θ-π3)=1,M ,N 分别为C 与x 轴、y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解 (1)由ρcos(θ-π3)=1得ρ(12cos θ+32sin θ)=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N (233,π2).(2)M 点的直角坐标为(2,0). N 点的直角坐标为(0,233).所以P 点的直角坐标为(1,33).则P 点的极坐标为(233,π6),所以直线OP 的极坐标方程为θ=π6(ρ∈R ).。
1.乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法规则: [a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22与列向量⎣⎢⎡⎦⎥⎤x 0y 0的乘法规则:⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22 =⎣⎢⎡⎦⎥⎤a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律. 即(AB )C =A (BC ), AB ≠BA ,由AB =AC 不一定能推出B =C .一般地,两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算. 2.常见的平面变换 (1)恒等变换:如⎣⎢⎡⎦⎥⎤1 001;(2)伸压变换:如⎣⎢⎢⎡⎦⎥⎥⎤100 12; (3)反射变换:如⎣⎢⎡⎦⎥⎤1 00 -1;(4)旋转变换:如⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ,其中θ为旋转角度;(5)投影变换:如⎣⎢⎡⎦⎥⎤1 00 0,⎣⎢⎡⎦⎥⎤1 01 0;(6)切变变换:如⎣⎢⎡⎦⎥⎤1 k 0 1(k ∈R ,且k ≠0).3.逆变换与逆矩阵(1)对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵; (2)若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.4.特征值与特征向量设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量. 5.特征多项式设A =⎣⎢⎡⎦⎥⎤a b cd 是一个二阶矩阵,λ∈R ,我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc ,称为A 的特征多项式.1.已知A =⎣⎢⎡⎦⎥⎤12 1212 12,B =⎣⎢⎡⎦⎥⎤12 -12-12 12,求AB .解 AB =⎣⎢⎡⎦⎥⎤12 1212 12⎣⎢⎡⎦⎥⎤12 -12-12 12=⎣⎢⎡⎦⎥⎤12×12+12×(-12) 12×(-12)+12×1212×12+12×(-12) 12×(-12)+12×12=⎣⎢⎡⎦⎥⎤0 000.2.设A =⎣⎢⎡⎦⎥⎤-10 01,B =⎣⎢⎡⎦⎥⎤0 -11 0,求AB 的逆矩阵.解 ∵A -1=⎣⎢⎡⎦⎥⎤-1 0 01,B -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0,∴(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤ 01-10⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤0 110.3.求矩阵M =⎣⎢⎡⎦⎥⎤6 -36 -3的特征值.解 f (λ)=⎪⎪⎪⎪⎪⎪λ-6 3-6 λ+3=(λ-6)(λ+3)+18=0.∴λ1=0,λ2=3. ∴M 的特征值为0和3.题型一 矩阵与变换例1 已知a ,b 是实数,如果矩阵M =⎣⎢⎡⎦⎥⎤2a b1所对应的变换将直线x -y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎡⎦⎥⎤2 a b1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎪⎨⎪⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′)在直线x +2y =1上,所以(2+2b )x +(a +2)y =1,即⎩⎪⎨⎪⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.思维升华 已知变换前后的坐标,求变换对应的矩阵时,通常用待定系数法求解.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换作用下得到了直线m :x -y =4,求l 的方程. 解 (1)设M =⎣⎢⎡⎦⎥⎤a b cd ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1, ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234.(2)因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤123 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y , 且m :x ′-y ′=4,所以(x +2y )-(3x +4y )=4, 整理得x +y +2=0,所以直线l 的方程为x +y +2=0. 题型二 求逆矩阵例2 (2015·福建)已知矩阵A =⎣⎡⎦⎤2 14 3,B =⎣⎡⎦⎤1 10 -1. (1)求A 的逆矩阵A -1;(2)求矩阵C ,使得AC =B . 解 (1)因为|A |=2×3-1×4=2,所以A-1=⎣⎢⎡⎦⎥⎤32 -12-42 22=⎣⎢⎢⎡⎦⎥⎥⎤32 -12-2 1. (2)由AC =B 得(A -1A )C =A -1B ,故C =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤32-12-2 1⎣⎢⎡⎦⎥⎤1 10 -1 =⎣⎢⎢⎡⎦⎥⎥⎤322-2 -3. 思维升华 求逆矩阵的方法(1)待定系数法设A 是一个二阶可逆矩阵⎣⎢⎡⎦⎥⎤a b c d ,AB =BA =E ; (2)公式法|A |=⎪⎪⎪⎪⎪⎪a b c d =ad -bc ≠0,有A -1=⎣⎢⎢⎡⎦⎥⎥⎤d |A |-b |A |-c |A | a |A |. 已知矩阵A =⎣⎢⎡⎦⎥⎤-1 0 0 2,B =⎣⎢⎡⎦⎥⎤120 6,求矩阵A -1B .解 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤-1 0 0 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 001故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12, 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3.题型三 特征值与特征向量例3 (2016·南京质检)已知矩阵A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤2 112.(1)求矩阵A ; (2)求矩阵A-1的特征值以及属于每个特征值的一个特征向量.解 (1)因为矩阵A 是矩阵A-1的逆矩阵,且|A -1|=2×2-1×1=3≠0,所以A =13⎣⎢⎡⎦⎥⎤2 -1-1 2=⎣⎢⎡⎦⎥⎤23 -13-13 23.(2)矩阵A -1的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -1 -1 λ-2=λ2-4λ+3=(λ-1)(λ-3),令f (λ)=0,得矩阵A-1的特征值为λ1=1或λ2=3,所以ξ1=⎣⎢⎡⎦⎥⎤1 -1是矩阵A -1的属于特征值λ1=1的一个特征向量,ξ2=⎣⎢⎡⎦⎥⎤11是矩阵A -1的属于特征值λ2=3的一个特征向量.思维升华 已知A =⎣⎢⎡⎦⎥⎤a b c d ,求特征值和特征向量的步骤(1)令f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =(λ-a )(λ-d )-bc =0,求出特征值λ; (2)列方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量.已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,其中a ∈R ,若点P (1,1)在矩阵A 的变换下得到点P ′(0,-3).(1)求实数a 的值;(2)求矩阵A 的特征值及特征向量.解 (1)由题意得⎣⎢⎡⎦⎥⎤1 -1a 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-3,所以a +1=-3,所以a =-4.(2)由(1)知A =⎣⎢⎡⎦⎥⎤1 -1-4 1,令f (λ)=⎪⎪⎪⎪⎪⎪λ-1 1 4 λ-1=(λ-1)2-4=0.解得A 的特征值为λ=-1或3.当λ=-1时,由⎩⎪⎨⎪⎧-2x +y =0,4x -2y =0得矩阵A 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤12,当λ=3时,由⎩⎪⎨⎪⎧2x +y =0,4x +2y =0得矩阵A 的属于特征值3的一个特征向量为⎣⎢⎡⎦⎥⎤ 1-2.1.已知A =⎣⎢⎡⎦⎥⎤1 562,求A 的特征值.解 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2=(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 故A 的特征值为7和-4.2.(2016·江苏)已知矩阵A =⎣⎡⎦⎤10 2-2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB . 解 B =(B -1)-1=⎣⎢⎢⎡⎦⎥⎥⎤22 12202 12=⎣⎢⎡⎦⎥⎤1 140 12. ∴AB =⎣⎢⎡⎦⎥⎤1 20 -2·⎣⎢⎡⎦⎥⎤1 140 12=⎣⎢⎢⎡⎦⎥⎥⎤1540 -1.3.已知矩阵M =⎣⎢⎡⎦⎥⎤1 23 4,α=⎣⎢⎡⎦⎥⎤12,β=⎣⎢⎡⎦⎥⎤ 0-3,求M (2α+4β).解 2α+4β=⎣⎢⎡⎦⎥⎤24+⎣⎢⎡⎦⎥⎤ 0-12=⎣⎢⎡⎦⎥⎤ 2-8,M (2α+4β)=⎣⎢⎡⎦⎥⎤1 234⎣⎢⎡⎦⎥⎤ 2-8=⎣⎢⎡⎦⎥⎤-14-26.4.已知矩阵A 将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是⎣⎢⎡⎦⎥⎤11,求矩阵A . 解 设A =⎣⎢⎡⎦⎥⎤a b c d ,由⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤23, 得⎩⎪⎨⎪⎧a =2,c =3.由⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33,得⎩⎪⎨⎪⎧ a +b =3,c +d =3.所以⎩⎪⎨⎪⎧b =1,d =0.所以A =⎣⎢⎡⎦⎥⎤2 13 0.5.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎡⎦⎥⎤1 201的作用下变换为曲线C 2,求C 2的方程.解 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎡⎦⎥⎤1 201⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x y , 即⎩⎪⎨⎪⎧ x =x ′+2y ′,y =y ′⇒⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y .因为P ′是曲线C 1上的点, 所以C 2的方程为(x -2y )2+2y 2=1.6.(2015·江苏)已知x ,y ∈R ,向量α=⎣⎢⎡⎦⎥⎤ 1-1是矩阵A =⎣⎢⎡⎦⎥⎤x 1y 0的属于特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值. 解 由已知,得Aα=-2α,即⎣⎢⎡⎦⎥⎤x1y 0⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-2 2, 则⎩⎪⎨⎪⎧ x -1=-2,y =2,即⎩⎪⎨⎪⎧x =-1,y =2,所以矩阵A =⎣⎢⎡⎦⎥⎤-1 1 2 0.从而矩阵A 的特征多项式f (λ)=(λ+2)(λ-1), 所以矩阵A 的另一个特征值为1.7.设A 是一个二阶矩阵,如果A 是可逆的,证明A 的逆矩阵是唯一的. 证明 设B 1,B 2都是A 的逆矩阵,则 B 1A =AB 1=E 2,B 2A =AB 2=E 2,从而B 1=E 2B 1=(B 2A )B 1=B 2(AB 1)=B 2E 2=B 2. 即B 1=B 2.故A 的逆矩阵是唯一的.8.(2016·苏中四校联考)求曲线|x |+|y |=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 13对应的变换作用下得到的曲线所围成图形的面积.解 设点(x 0,y 0)为曲线|x |+|y |=1上的任一点,在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10013对应的变换作用下得到的点为(x ′,y ′),则由⎣⎢⎢⎡⎦⎥⎥⎤1 00 13⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x ′y ′, 得⎩⎪⎨⎪⎧x ′=x 0y ′=13y 0, 即⎩⎪⎨⎪⎧x 0=x ′y 0=3y ′, 所以曲线|x |+|y |=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 13对应的变换作用下得到的曲线为|x |+3|y |=1, 所以围成的图形为菱形,其面积为12×2×23=23.9.设数列{a n },{b n }满足a n +1=2a n +3b n ,b n +1=2b n ,且满足⎣⎢⎡⎦⎥⎤a n +4b n +4=M ⎣⎢⎡⎦⎥⎤a nb n ,求二阶矩阵M .解 依题设有⎣⎢⎡⎦⎥⎤a n +1b n +1=⎣⎢⎡⎦⎥⎤2302⎣⎢⎡⎦⎥⎤a n b n ,令A =⎣⎢⎡⎦⎥⎤2 302,则M =A 4,A 2=⎣⎢⎡⎦⎥⎤230 2⎣⎢⎡⎦⎥⎤2 30 2=⎣⎢⎡⎦⎥⎤4 120 4. M =A 4=(A 2)2=⎣⎢⎡⎦⎥⎤4 120 4⎣⎢⎡⎦⎥⎤4 120 4=⎣⎢⎡⎦⎥⎤16 96 0 16. 10.已知矩阵A =⎣⎢⎡⎦⎥⎤101 1,B =⎣⎢⎡⎦⎥⎤0 23 2.(1)求满足条件AM =B 的矩阵M ;(2)矩阵M 对应的变换将曲线C :x 2+y 2=1变换为曲线C ′,求曲线C ′的方程.解 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,AM =⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤ a b a +c b +d =⎣⎢⎡⎦⎥⎤0 23 2,得⎩⎪⎨⎪⎧ a =0,a +c =3,b =2,b +d =2,∴a =0,b =2,c =3,d =0.∴M =⎣⎢⎡⎦⎥⎤0 23 0.(2)设曲线C 上任意一点P (x ,y )在矩阵M 对应的变换作用下变为点P ′(x ′,y ′),则M ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 23 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2y 3x =⎣⎢⎡⎦⎥⎤x ′y ′, ∴⎩⎪⎨⎪⎧ 2y =x ′,3x =y ′,即⎩⎨⎧ y =x ′2,x =y ′3,代入曲线C :x 2+y 2=1,得(x ′2)2+(y ′3)2=1. ∴曲线C ′的方程是x 24+y 29=1.。
第2课时 参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程1.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =2-3t (t 为参数),求直线l 的斜率.解 将直线l 的参数方程化为普通方程为y -2=-3(x -1),因此直线l 的斜率为-3.2.已知直线l 1:⎩⎪⎨⎪⎧ x =1-2t ,y =2+kt (t 为参数)与直线l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数)垂直,求k 的值.解 直线l 1的方程为y =-k 2x +4+k 2,斜率为-k2;直线l 2的方程为y =-2x +1,斜率为-2. ∵l 1与l 2垂直,∴(-k2)×(-2)=-1⇒k =-1.3.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数)上,求|PF|的值.解 将抛物线的参数方程化为普通方程为y 2=4x ,则焦点F (1,0),准线方程为x =-1,又P (3,m )在抛物线上,由抛物线的定义知|PF|=3-(-1)=4.4.(2016·北京东城区模拟)已知曲线C 的极坐标方程是ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+4t ,y =3t (t 为参数),求直线l 与曲线C 相交所截的弦长. 解 曲线C 的直角坐标方程为x 2+y 2=1, 直线l 的普通方程为3x -4y +3=0. 圆心到直线的距离d =|3×0-4×0+3|32+42=35.∴直线l 与曲线C 相交所截的弦长为21-(35)2=85.题型一 参数方程与普通方程的互化例1 (1)如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.(2)在平面直角坐标系中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A ,B 两点,求|AB|的长. 解 (1)圆的半径为12,记圆心为C (12,0),连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).(2)直线l 的普通方程为x +y =2,曲线C 的普通方程为y =(x -2)2(y ≥0),联立两方程得x 2-3x +2=0,求得两交点坐标为(1,1),(2,0),所以|AB|= 2. 思维升华 消去参数的方法一般有三种:(1)利用解方程的技巧求出参数的表示式,然后代入消去参数; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.(1)求直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数. (2)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.解 (1)将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点. (2)直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,∴椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0), 则3-a =0,∴a =3. 题型二 参数方程的应用例2 已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解 (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16.(2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.思维升华 已知圆、圆锥曲线的参数方程解决有关问题时,一般是把参数方程化为普通方程,通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ⎝⎛⎭⎫θ为参数,0≤θ≤π2和⎩⎨⎧x =1-22t ,y =-22t (t 为参数),求曲线C 1与C 2的交点坐标.解 曲线C 1的普通方程为x 2+y 2=5(x ≥0,y ≥0). 曲线C 2的普通方程为x -y -1=0.解方程组⎩⎪⎨⎪⎧ x -y -1=0,x 2+y 2=5(x ≥0,y ≥0),得⎩⎪⎨⎪⎧x =2,y =1.∴曲线C 1与C 2的交点坐标为(2,1). 题型三 极坐标方程和参数方程的综合应用例3 (2015·课标全国Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,曲线C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值.解 (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB|=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3.当α=5π6时,|AB|取得最大值,最大值为4.思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以使问题得到简捷的解答.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos(θ+π4),直线l 的参数方程为⎩⎨⎧x =t ,y =-1+22t (t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点. (1)求圆心的极坐标; (2)求△P AB 面积的最大值. 解 (1)由圆C 的极坐标方程为 ρ=22cos(θ+π4),得ρ2=22(22ρcos θ-22ρsin θ), 把⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可得圆C 的直角坐标方程为x 2+y 2-2x +2y =0, 即(x -1)2+(y +1)2=2. ∴圆心坐标为(1,-1), ∴圆心的极坐标为(2,7π4). (2)由题意,得直线l 的直角坐标方程为22x -y -1=0. ∴圆心(1,-1)到直线l 的距离d =|22+1-1|(22)2+(-1)2=223,∴|AB|=2r 2-d 2=22-89=2103. 点P 到直线l 的距离的最大值为r +d =2+223=523, ∴S max =12×2103×523=1059.1.求直线⎩⎨⎧x =1-12t ,y =32t(t 为参数)被曲线⎩⎨⎧x =cos θ,y =3sin θ(θ为参数)所截得的弦长.解 直线方程可化为3x +y -3=0, 曲线方程可化为x 2+y 23=1.由⎩⎪⎨⎪⎧y =-3x +3,x 2+y 23=1,得x 2-x =0, ∴x =0或x =1.可得交点为A (0,3),B (1,0). ∴AB =1+3=2. ∴所截得的弦长为2.2.直线⎩⎪⎨⎪⎧x =4+at ,y =bt (t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,求切线的倾斜角. 解 直线的普通方程为bx -ay -4b =0,圆的普通方程为(x -2)2+y 2=3,直线与圆相切,则圆心(2,0)到直线的距离为3,从而有3=|2b -a ·0-4b |a 2+b2,即3a 2+3b 2=4b 2,∴b =±3a ,而直线的倾斜角的正切值为tan α=b a ,∴tan α=±3,因此切线的倾斜角为π3或2π3.3.已知直角坐标系xOy 中,直线l 的参数方程:⎩⎨⎧x =22t -2,y =22t(t 为参数),以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,求以极点为圆心且与直线l 相切的圆的极坐标方程.解 ∵直线l 的直角坐标方程为x -y +2=0. ∴原点到直线的距离r =22=1. ∴以极点为圆心且与直线l 相切的圆的极坐标方程为ρ=1.4.(2015·湖北)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎨⎧x =t -1t,y =t +1t(t 为参数),l 与C 相交于A ,B 两点,求|AB|的长.解 直线l 的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x -y =0,曲线C 的参数方程⎩⎨⎧x =t -1t ,y =t +1t 两式经过平方相减,化为普通方程为y 2-x 2=4,联立⎩⎪⎨⎪⎧3x -y =0,y 2-x 2=4解得⎩⎨⎧x =-22,y =-322或⎩⎨⎧x =22,y =322.所以A ⎝⎛⎭⎫-22,-322,B ⎝⎛⎭⎫22,322. 所以|AB|=⎝⎛⎭⎫-22-222+⎝⎛⎭⎫-322-3222=2 5.5.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2(t 为参数),在以O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 2的方程为ρsin(θ+π4)=22,求曲线C 1与曲线C 2的交点个数.解 曲线C 1,C 2化为普通方程和直角坐标方程分别为x 2=2y ,x +y -4=0,联立⎩⎪⎨⎪⎧x 2=2y ,x +y -4=0,消去y 得x 2+2x -8=0,因为判别式Δ>0,所以方程有两个实数解.故曲线C 1与曲线C 2的交点个数为2.6.(2016·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A 、B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.7.(2015·陕西)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解 (1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y , 所以x 2+(y -3)2=3.(2)设P ⎝⎛⎭⎫3+12t ,32t ,又C (0,3),则|PC|=⎝⎛⎭⎫3+12t 2+⎝⎛⎭⎫32t -32=t 2+12, 故当t =0时,PC 取得最小值, 此时,P 点的直角坐标为(3,0).8.(2016·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1. a =1时,极点也为C 1,C 2的公共点,在C 3上. 所以a =1.9.(2016·江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段|AB|的长.解 直线l 的方程化为普通方程为3x -y -3=0, 椭圆C 的方程化为普通方程为x 2+y 24=1,联立方程组得⎩⎪⎨⎪⎧3x -y -3=0,x 2+y 24=1,解得⎩⎪⎨⎪⎧x 1=1y 1=0或⎩⎨⎧x 2=-17,y 2=-837,∴A (1,0),B ⎝⎛⎭⎫-17,-837.故|AB|=⎝⎛⎭⎫1+172+⎝⎛⎭⎫0+8372=167.10.(2016·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标系方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12.。
第2课时 不等式的证明1.不等式证明的方法 (1)比较法: ①作差比较法:知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b 只要证明a -b >0即可,这种方法称为作差比较法. ②作商比较法:由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明a b>1即可,这种方法称为作商比较法. (2)综合法:从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫综合法.即“由因导果”的方法. (3)分析法:从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫分析法.即“执果索因”的方法. (4)反证法和放缩法:①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫做反证法.②在证明不等式时,有时要把所证不等式的一边适当地放大或缩小,此利于化简并使它与不等式的另一边的关系更为明显,从而得出原不等式成立,这种方法称为放缩法. (5)数学归纳法:一般地,当要证明一个命题对于不小于某正整数n 0的所有正整数n 都成立时,可以用以下两个步骤:①证明当n =n 0时命题成立;②假设当n =k (k ∈N *,且k ≥n 0)时命题成立,证明n =k +1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n 0的所有正整数都成立.这种证明方法称为数学归纳法. 2.几个常用基本不等式 (1)柯西不等式:①柯西不等式的代数形式:设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2(当且仅当ad =bc 时,等号成立).②柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,等号当且仅当α,β共线时成立.③柯西不等式的三角不等式:设x 1,y 1,x 2,y 2,x 3,y 3∈R ,则 x 1-x 2 2+ y 1-y 2 2+ x 2-x 3 2+ y 2-y 3 2≥ x 1-x 3 2+ y 1-y 3 2.④柯西不等式的一般形式:设n 为大于1的自然数,a i ,b i (i =1,2,…,n )为实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,等号当且仅当b 1a 1=b 2a 2=…=b n a n时成立(当a i =0时,约定b i =0,i =1,2,…,n ). (2)算术—几何平均不等式 若a 1,a 2,…,a n 为正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.1.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,求m 2+n 2的最小值.解 根据柯西不等式(ma +nb )2≤(a 2+b 2)(m 2+n 2),得25≤5(m 2+n 2),m 2+n 2≥5,m 2+n 2的最小值为 5.2.若a ,b ,c ∈(0,+∞),且a +b +c =1,求a +b +c 的最大值. 解 (a +b +c )2=(1×a +1×b +1×c )2≤(12+12+12)(a +b +c )=3. 当且仅当a =b =c =13时,等号成立.∴(a +b +c )2≤3. 故a +b +c 的最大值为 3.3.设x >0,y >0,若不等式1x +1y +λx +y ≥0恒成立,求实数λ的最小值.解 ∵x >0,y >0,∴原不等式可化为-λ≤(1x +1y )(x +y )=2+y x +xy.∵2+y x +x y ≥2+2y x ·xy=4,当且仅当x =y 时等号成立. ∴⎣⎢⎡⎦⎥⎤ 1x +1yx +y min =4,即-λ≤4,λ≥-4.题型一 用综合法与分析法证明不等式例1 (2016·南通二模)(1)已知x ,y 均为正数,且x >y ,求证:2x +1x 2-2xy +y 2≥2y +3;(2)设a ,b ,c >0且ab +bc +ca =1,求证:a +b +c ≥ 3. 证明 (1)因为x >0,y >0,x -y >0, 2x +1x 2-2xy +y 2-2y =2(x -y )+1x -y2=(x -y )+(x -y )+1x -y2≥33 x -y21x -y2=3,所以2x +1x 2-2xy +y 2≥2y +3.(2)因为a ,b ,c >0,所以要证a +b +c ≥3, 只需证明(a +b +c )2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca )≥3, 而ab +bc +ca =1,故需证明:a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ). 即证:a 2+b 2+c 2≥ab +bc +ca . 而ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)成立.所以原不等式成立.思维升华 用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c2a≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a≥1.题型二 放缩法证明不等式 例2 若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.证明 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.思维升华 (1)在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: ①变换分式的分子和分母,如1k 2<1k k -1 ,1k 2>1k k +1 ,1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1; ②利用函数的单调性;③真分数性质“若0<a <b ,m >0,则a b <a +mb +m”. (2)在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明 由2n ≥n +k >n (k =1,2,…,n ),得 12n ≤1n +k <1n. 当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,∴12=n 2n ≤1n +1+1n +2+…+12n <n n =1. ∴原不等式成立. 题型三 柯西不等式的应用 例3 已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值.(1)证明 因为(3x +1+3y +2+3z +3)2≤(12+12+12)(3x +1+3y +2+3z +3)=27. 所以3x +1+3y +2+3z +3≤3 3. 当且仅当x =23,y =13,z =0时取等号.(2)解 因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2≥187,当且仅当x =y 2=z 3即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187.思维升华 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n )(1a 21+1a 22+…+1a 2n)≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.已知大于1的正数x ,y ,z 满足x +y +z =3 3.求证:x 2x +2y +3z +y 2y +2z +3x+z 2z +2x +3y ≥32.证明 由柯西不等式及题意得,(x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y) ·[(x +2y +3z )+(y +2z +3x )+(z +2x +3y )]≥(x +y +z )2=27. 又(x +2y +3z )+(y +2z +3x )+(z +2x +3y )=6(x +y +z )=183,∴x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥27183=32, 当且仅当x =y =z =3时,等号成立.1.已知x +y =1,求2x 2+3y 2的最小值. 解 由柯西不等式(2x 2+3y 2)·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫ 132 ≥⎝⎛⎭⎪⎫2x ·12+3y ·132=(x +y )2=1,∴2x 2+3y 2≥65,当且仅当2x =3y ,即x =35,y =25时,等号成立.所以2x 2+3y 2的最小值为65.2.设a +b =2,b >0,当12|a |+|a |b取得最小值时,求a 的值. 解 由于a +b =2,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b,由于b >0,|a |>0,所以b 4|a |+|a |b ≥2b 4|a |·|a |b =1,因此当a >0时,12|a |+|a |b 的最小值是14+1=54;当a <0时,12|a |+|a |b 的最小值是-14+1=34.故12|a |+|a |b 的最小值为34,此时⎩⎪⎨⎪⎧b 4|a |=|a |b ,a <0,即a =-2.3.(2016·徐州模拟)设a 、b 、c 是正实数,且a +b +c =9,求2a +2b +2c的最小值.解 ∵(a +b +c )⎝ ⎛⎭⎪⎫2a +2b +2c=[(a )2+(b )2+(c )2]·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2a 2+⎝⎛⎭⎪⎫2b 2+⎝⎛⎭⎪⎫2c 2≥⎝⎛⎭⎪⎫a ·2a+b ·2b+c ·2c 2=18.∴2a +2b +2c ≥2.∴2a +2b +2c的最小值为2.4.设x ,y ,z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,求x +y +z .解 由柯西不等式可得(x 2+y 2+z 2)(12+22+32)≥(x +2y +3z )2,即(x +2y +3z )2≤14,因此x +2y +3z ≤14.因为x +2y +3z =14,所以x =y 2=z 3,解得x =1414,y =147,z =31414,于是x +y +z =3147.5.(2016·江苏)设a >0,||x -1<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明 由a >0,|x -1|<a 3可得|2x -2|<2a3,又|y -2|<a3,∴|2x +y -4|=|(2x -2)+(y -2)|≤|2x -2|+|y -2|<2a 3+a3=a .即|2x +y -4|<a .6.(2016·苏州模拟)已知a ,b ,c ∈R ,且2a +2b +c =8,求(a -1)2+(b +2)2+(c -3)2的最小值.解 由柯西不等式得(4+4+1)×[(a -1)2+(b +2)2+(c -3)2]≥[2(a -1)+2(b +2)+c -3]2, ∴9[(a -1)2+(b +2)2+(c -3)2]≥(2a +2b +c -1)2. ∵2a +2b +c =8,∴(a -1)2+(b +2)2+(c -3)2≥499,当且仅当a -12=b +22=c -3时等号成立,∴(a -1)2+(b +2)2+(c -3)2的最小值是499.7.(2015·湖南)设a >0,b >0,且a +b =1a +1b.证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.证明 由a +b =1a +1b =a +bab,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立, 则由a 2+a <2及a >0得0<a <1;同理,0<b <1,从而ab <1,这与ab =1矛盾. 故a 2+a <2与b 2+b <2不可能同时成立.8.(2016·南京质检)已知:a n =1×2+2×3+3×4+…+n n +1 (n ∈N *),求证:n n +12<a n <n n +22.证明 ∵n n +1 =n 2+n ,n ∈N *, ∴n n +1 >n ,∴a n =1×2+2×3+…+n n +1 >1+2+3+…+n =n n +12.∵n n +1 <n + n +12,∴a n <1+22+2+32+3+42+…+n + n +1 2=12+(2+3+…+n )+n +12=n n +2 2. 综上得n n +12<a n <n n +22.9.(1)关于x 的不等式|x -3|+|x -4|<a 的解集不是空集,求a 的取值范围; (2)设x ,y ,z ∈R ,且x 216+y 25+z 24=1,求x +y +z 的取值范围.解 (1)∵|x -3|+|x -4|≥|(x -3)-(x -4)|=1, 且|x -3|+|x -4|<a 的解集不是空集, ∴a >1,即a 的取值范围是(1,+∞). (2)由柯西不等式,得[42+(5)2+22]·[(x4)2+(y5)2+(z2)2]≥(4×x 4+5×y 5+2×z2)2=(x +y +z )2, 即25×1≥(x +y +z )2.∴5≥|x +y +z |,∴-5≤x +y +z ≤5. ∴x +y +z 的取值范围是[-5,5].10.(2016·南京模拟)已知a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞).(1)求x 1a +x 2b +2x 1x 2的最小值;(2)求证:(ax 1+bx 2)(ax 2+bx 1)≥x 1x 2. (1)解 因为a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞),所以x 1a +x 2b +2x 1x 2≥3·3x 1a ·x 2b ·2x 1x 2=3·32ab≥3·32 a +b 22=3×38=6,当且仅当x 1a =x 2b =2x 1x 2且a =b ,即a =b =12且x 1=x 2=1时,x 1a +x 2b +2x 1x 2有最小值6.(2)证明 方法一 由a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞),及柯西不等式可得:(ax 1+bx 2)(ax 2+bx 1)=[(ax 1)2+(bx 2)2]·[(ax 2)2+ bx 1)2]≥(ax 1·ax 2+bx 2·bx 1)2=(a x 1x 2+b x 1x 2)2=x 1x 2,当且仅当ax 1ax 2=bx 2bx 1,即x 1=x 2时取得等号. 所以(ax 1+bx 2)(ax 2+bx 1)≥x 1x 2.方法二 因为a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞), 所以(ax 1+bx 2)(ax 2+bx 1) =a 2x 1x 2+abx 22+abx 21+b 2x 1x 2 =x 1x 2(a 2+b 2)+ab (x 22+x 21) ≥x 1x 2(a 2+b 2)+ab (2x 1x 2) =x 1x 2(a 2+b 2+2ab ) =x 1x 2(a +b )2=x 1x 2,当且仅当x 1=x 2时,取得等号. 所以(ax 1+bx 2)(ax 2+bx 1)≥x 1x 2.。