河南省漯河市临颍县2015-2016年八年级上期中数学试卷含答案解析
- 格式:doc
- 大小:473.00 KB
- 文档页数:16
河南省漯河市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列代数式:① ,② ,③ ,.其中是分式的有()A . ①②③B . ①②③④C . ①③④D . ①②④2. (2分) (2016·衢州) 若式子的值为0,则()A . x=﹣2B . x=3C . x≠3D . x≠﹣23. (2分)计算﹣÷(﹣)的结果是()A .B .C .D .4. (2分)计算(xy3) 2的结果是()A . xy6B . x2y3C . x2y6D . x2y55. (2分) (2016八上·蕲春期中) 如图△ABC≌△AEF,点F在BC上,下列结论:①AC=AF②∠FAB=∠EAB③∠FAC=∠BAE④若∠C=50°,则∠BFE=80°其中错误结论有()A . 1个B . 2个C . 3个D . 4个6. (2分)为预防禽流感,学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()A .B .C .D .7. (2分) (2017八下·东台期中) 若方程 =7有增根,则k=()A . ﹣1B . 0C . 1D . 68. (2分)下列语句中,是真命题的是()A . 任何实数都有相反数、倒数B . 过一点有且只有一条直线与已知直线平行C . 在同一平面内不相交的两条直线叫做平行线D . 两条直线被第三条直线所截,同位角相等二、填空题 (共8题;共10分)9. (2分)若(x﹣5)0有意义,则x________;若(x+1)﹣1无意义,则x________.10. (1分)计算: =________11. (1分) (2020八下·邵阳期中) 随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示是________。
2015~2016学年第一学期中考试初二数学试卷试卷说明:本次考试满分100分,考试时间 100分钟。
一、精心选一选(每小题3分,共30分)1.计算33-的结果是( ).A .9-B .27-C .271D .271- 2.若分式221x x -+的值为0,则x 的值为( ). A .2 B .-2 C .12D .-123.下列各式中,正确的是( ).A .2121+=++a b a b B .21422-=--a a a C . 22)2(422--=-+a a a a D .a b a b --=--11 4.下列条件中,不能..判定两个直角三角形全等的是( ). A .两锐角对应相等 B .斜边和一条直角边对应相等 C .两直角边对应相等 D .一个锐角和斜边对应相等5. 计算32a b(-)的结果是( ). A. 332a b - B. 336a b - C. 338a b- D. 338a b6.如图,AC 与BD 交于O 点,若OA=OD ,用“SAS ”证明△AOB ≌△DOC ,还需条件为 .( ) A. AB=DC B.OB=OCC. ∠A=∠DD. ∠AOB=∠DOC7.下列各式变形中,是因式分解的是( )2015.11A .a 2-2ab +b 2-1=(a -b )2-1 B.)11(22222xx x x +=+C .(x +2)(x -2)=x 2-4D .x 4-1=(x 2+1)(x +1)(x -1)8.下列命题中正确的有 ( )个①三个内角对应相等的两个三角形全等; ②三条边对应相等的两个三角形全等; ③有两角和一边分别相等的两个三角形全等; ④等底等高的两个三角形全等. A .1B .2C .3D .49.下列各式中,能用完全平方公式分解因式的有( )①9a 2-1; ②x 2+4x +4; ③m 2-4mn +n 2; ④-a 2-b 2+2ab ;⑤;913222n mn m +- ⑥(x -y )2-6z (x +y )+9z 2.A .2个B .3个C .4个D .5个10.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后 得到的是( )① ②A .B .C . D二.、耐心填一填(每小题2分,共16分)11.当m_______时,(3- m)0=1.12.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为 米. 13.当x _________时,分式12x -有意义. 14.若2214a b -= ,12a b -= ,则a b +的值为 .15.若分式)3)(2(2+--a a a 的值为0,则a = .16题图 17题图16.如图,在△ABC 中,∠A=900,BD 平分∠ABC ,AC=8cm ,CD=5cm ,那么D 点到直线BC 的距离是 cm .17.如图,把△ABC 绕C 点顺时针旋转30°,得到△A ’B ’C , A ’B ’交AC 于点D ,若∠A ’DC=80°,则∠A= °.18.对于实数a 、b ,定义一种运算“⊗”为:2(1)a a b ab a-⊗=-.有下列命题:① 1(3)3⊗-=; ② a b b a ⊗=⊗; ③ 方程1()102x -⊗=的解为12x =;其中正确命题的序号是 .(把所有..正确命题的序号都填上).三、解答题(54分)CB'A A'BDABCD19.把下列各式因式分解(本小题满分10分)(1)3222a a b ab -+ (2) 3a 2﹣12 解: 解:20.已知:如图, A 、B 、C 、D 四点在同一直线上, AB =CD ,AE ∥BF 且AE =BF .求证: EC =FD .(5分) 证明: 21.计算2m n mm n n m ++-- (5分)EAC B DF22.先化简,再求值:2112()3369mm m m m +÷-+-+,其中9m =.(5分)23.解方程:3111x x x -=-+.(5分) 解:初中 年级 班 姓名 学号装订线内请不 要答题24.列方程解决问题(5分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?25. 已知2310x x -+=求221x x +的值(5分)26.已知: 如图, 在△ABC 中, ∠CAB = 2α, 且030α<<, AP 平分∠CAB. 若︒=21α, ∠ABC = 32°, 且AP 交BC 于点P, 试探究线段AB, AC 与PB 之间的数量关系, 并对你的结论加以证明; (6分)ABCP27.在△ABC 中,AD 是△ABC 的角平分线.(1)如图1,过C 作CE ∥AD 交BA 延长线于点E ,求证:AE=AC.(2)如图2,M 为BC 的中点,过M 作MN ∥AD 交AC 于点N ,若AB =4, AC =7,求NC 的长.(8分)图1图2ABD MCNEBCAD初二数学试题参考答案及评分标准一、选择题(共10个小题,每小题3分,共30分) 题号 123 4 5 6 7 8 9 10 答案 CA CACBDABC二、填空题(共10个小题,每小题2分,共20分). 11.m ≠3 12. 8-102.5× 13. 2x ≠ 14.21 15. -216. 3 17. 70° 18. (1)三、解答题(共50分)19.(1))(2b a a - (2)3(a+2)(a-2) 20.略21.解:.原式=2m n mm n m n+--- . =2m n mm n +--……..3分. =n mm n --……5分.=1- ……6分22.化简得:33-+m m ,值为0.5 23.. 解:去分母,得.)1)(1()1(3)1(-+=--+x x x x x. 去括号,得13322-=+-+x x x x移项,得 31322--=--+x x x x .....-2x=-4x=2 .......经检验:x=2是原方程的解. .....∴原方程的解为:x=224. 解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. ...1分据题意:12001200101.5x x =+ ..... 3分解得: 40x = 4分经检验:40x =是原方程的解. ..... 5分 所以1.560x =答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品、25. 726.关系:AB=AC+PB 证明:略 27.(1)略 (2)5.5辅助线:延长BA,MN 交与E 点,做AB 的平行线交NM的延长线于FEF。
12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。
2015-----2016学年上学期八年数学参考答案一、B D A D C B D C二、(9).17或19 (10).1800 (11).8㎝ (12).-4 (13).22.5 (14).1 (15).4 (16).2(17).15三、18.(1)证明过程正确.推理依据:①等边对等角.② AAS.③全等三角形的对应边相等.……3分(2)证明:连接AD,∵AB=AC,D是底边BC的中点,∴AD平分∠BAC(三线合一) .……………6分又∵DE⊥AB于E,DF⊥AC于F.∴DE=DF(角平分线上的点到角两边的距离相等).……………10分19.(1)AB=DC-----------------------------------1分∵BE=CF∴BE+EF=CF+FE即BF=CE---------------------------------2分在ABF和DCE中∠A=∠D∠B=∠CBF=CE∴ABF≌DCE(AAS)∴AB=DC(全等三角形对应边相等) -----------4分(2)CEF是等腰三角形 -----------------------6分∵ABF≌DCE∴∠AFE=∠DEC ----------------------------8分∴OE=CF(等角对等边)∴0EF是等腰三角形 ---------------------10分20.(1)△ACD≌△CBE ------------------------2分证明过程略----------------------6分(2)AD=CE=CD+DE=BE+DE=3+5=8 ---------------10分21.(1)“ASA”证全等………………5分;(2)∠ADE=10°………………10分。
22.(1)20°;……………2分(2)当DC=2时,△ABD≌△DCE.……………3分证明:∵∠ADE=40°,∠B=40°,又∵∠ADC=∠B+∠BAD ,∠ADC=∠ADE+∠EDC.∴∠BAD=∠EDC .……………5分在△ABD和△DCE中,∠B=∠C,AB=DC,∠BAD=∠EDC .∴△ABD≌△DCE.……………8分(3)当∠BAD= 30°时,DA=DE,这时△ADE为等腰三角形;……………10分当∠BAD= 60°时,EA=ED,这时△ADE为等腰三角形.……………12分。
八年级数学参考答案一、1——5 ADDCA 6——8 CCB二、9.50°或80° 10.(3,2) 11.4cm 12.40°13.∠C=∠E或AB=FD或AD=FB 14.15 15.2.516.68° 17.6 18.13cm三、19.略20.(1)画图略;(2)A1(-1,-1)、B1(-2,2)、C1(2,3) (3)S△ABC=6.521.(1)10°(2)∠ECD=(∠B-∠A)22.先证明△ABE≌△DCE(AAS),得出AE=DE,BE=CE,∴AE+CE=DE+BE 即BD=CA,又∵BC=BC,所以△ABC≌△DCB (SSS).(本题还可以用其它方法,只要合理即可得分)23.(1)∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC, 即∠BAD=∠CAE,又∵AB=AC,AD=AE, ∴△ABD≌△ACE, ∴BD=EC.(2) ∵△ABD≌△ACE, ∴∠BDA=∠E,又∵∠E+∠ADE=90°,∴∠BDA+∠ADE=90°,即∠BDE=90°,∴BD⊥DE24.(1) ∵△ABC是等边三角形,∴AB=AC, ∠BAE=∠ACD,又∵AE=CD, ∴△ABE≌△CAD(SAS).(2) ∵△ABE≌△CAD, ∴∠ABE=∠CAD,AD=BE,又∵∠BFP=∠BAD+∠ABE, ∴∠BFP=∠BAD+∠CAD,又∵∠BAD+∠CAD=60°,∴∠BFP=60°,又∵BP⊥AD, ∴∠BPF=90°,∴∠FBP=30°,∴BF=2PF=18,∴BE=18+3=21,∴AD=2125. (1)∵AD是∠BAC的角平分线,AB=AC,∴∠BDP=90°,BD=CD∵BE⊥AC, ∴∠AEP=∠BEC=90°,在△BPD和△APE中,∠AEP=∠BDP=90°,∠BPD=∠APE∴∠EBC=∠EAP,在△BCE和△APE中, ∵∠AEP=∠BEC, BE=AE, ∠EBC=∠EAP,∴△BCE≌△APE.(2)∵△BCE≌△APE,∴BC=AP,∵BD=CD, ∴BD=BC, ∴BD=AP.(3) △BDQ是等腰直角三角形.∵BE=AE,F是AB的中点,∴EF是线段AB的垂直平分线,∴AQ=BQ, ∴∠BAQ=∠ABQ, ,∵BE=AE, ∠BEA=90°,∴∠BAE=45°,∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=22.5°, ∵∠BAD=∠ABQ, ∴∠BAD=∠ABQ=22.5°,∴∠BQD=22.5°×2=45°,∵∠ADB=90°,∴△BDQ是等腰直角三角形.。
2015-2016学年河南省漯河市召陵区八年级(上)期中数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.下面所给的交通标志是轴对称图形的是()A.B.C.D.2.将一副三角板按图中方式叠放,则角α等于()A.30°B.45°C.60°D.75°3.下列说法错误的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等4.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm5.若一个多边形的内角和为900°,则从这个多边形的其中一个顶点出发引的对角线的条数为()A.4 B.5 C.6 D.76.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的E处.若∠A=23°,则∠BDC等于()A.46°B.60°C.68°D.77°7.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定8.如图,在△ABC中,AB=AC,D为AC上一点,E为AB上一点,且BC=BD,AD=DE=BE,那么∠A的度数为()A.36°B.45°C.60°D.75°二、填空题(本题共10小题,每小题3分,共30分)9.等腰三角形中,如果一个外角为130°,那么这个等腰三角形的顶角的度数为.10.如果点P关于x轴的对称点为(﹣3,﹣2),那么点P关于y轴的对称点的坐标为.11.一个三角形的周长为48cm,最大边与最小边的差为14cm,另一边与最小边之和为25cm,那么这个三角形最小边的长为.12.如图,将△ABC绕点C顺时针方向旋转50°得到△A′CB′,若AC⊥A′B′,连接AA′,则∠BAC 等于.13.如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.15.如图,在△ABC中,E是BC上一点,EC=2BE,点D是AC的中点,若S△ABC=15,则S△ADF =.﹣S△BEF16.如图,在△ABC中,按以下步骤作图:①分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为.17.如图,△ABC中,∠BAC=90°,∠B=30°,AD⊥BC于D,CE是∠ACB的平分线,且交AD于P点.如果AP=2,则AB的长为.18.如图,P为∠AOB的平分线上的一点,PC⊥OA于点C,D为OA上一点,E为OB上一点,∠ODP+∠OEP=180°,当OC=6.5cm时,OD+OE=.三、解答题(本大题共7小题,共66分)19.如图,已知△ABC,请你在这个三角形内求作一点P,使PA=PB,且点P到边AB、BC的距离也相等(写出作法,保留作图痕迹).20.如图,完成下列各题:(1)画出△ABC关于x轴的对称△A1B1C1,并写出点A1、B1、C1的坐标;(2)写出△ABC的面积(不要求过程).21.如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD的度数;(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)22.如图,已知AB=CD,∠A=∠D,求证:△ABC≌△DCB.23.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E在同一直线上,连结BD.(1)求证:BD=EC;(2)BD与CE有何位置关系?请证你的猜想.24.如图,已知△ABC为等边三角形,AE=CD,AD、BE相交于点F.(1)求证:△ABE≌△CAD;(2)若BP⊥AD于点P,PF=9,EF=3,求AD的长.25.如图,在△ABC中,AB=AC,BE⊥AC于点E,BE=AE,AD是∠BAC的角平分线,和BE相交于点P,和BC边交于点D,点F是AB边的中点,连结EF,交AD于点Q,连结BQ.(1)求证:△BCE≌△APE;(2)求证:BD=AP;(3)判断△BDQ的形状,并证明你的结论.2015-2016学年河南省漯河市召陵区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.下面所给的交通标志是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故正确;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选A.2.将一副三角板按图中方式叠放,则角α等于()A.30°B.45°C.60°D.75°【考点】三角形的外角性质;平行线的性质.【分析】利用两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和计算.【解答】解:如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选D.3.下列说法错误的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等【考点】全等图形.【分析】根据全等图形概念和性质对各个选项进行判断即可.【解答】解:全等三角形的三条边相等,三个角也相等,A正确;判定两个三角形全等的条件中至少有一个是边,B正确;面积相等的两个图形不一定是全等形,C错误;全等三角形的面积和周长都相等,D正确,故选:C.4.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指明哪个是底哪个是腰,则应该分两种情况进行分析,从而得到答案.【解答】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选C.5.若一个多边形的内角和为900°,则从这个多边形的其中一个顶点出发引的对角线的条数为()A.4 B.5 C.6 D.7【考点】多边形内角与外角;多边形的对角线.【分析】根据题意和多边形内角和公式求出多边形的边数,根据多边形的对角线的条数的计算公式计算即可.【解答】解:设这个多边形的边数为n,则(n﹣2)×180°=900°,解得,n=7,从七边形的其中一个顶点出发引的对角线的条数:7﹣3=4,故选:A.6.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的E处.若∠A=23°,则∠BDC等于()A.46°B.60°C.68°D.77°【考点】翻折变换(折叠问题).【分析】在△ABC中,先求得∠B=67°,由翻折的性质可知∠DEC=67°,由∠A+∠ADE=∠DEC可求得∠ADE=44°,然后根据∠BDC=求解即可.【解答】解:∵∠A+∠B=90°,∴∠B=90°﹣23°=67°.由翻折的性质可知:∠B=∠DEC=67°,∠BDC=∠EDC.∵∠A+∠ADE=∠DEC,∴∠EDA=67°﹣23°=44°.∴∠BDC===68°.故选:C.7.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定【考点】角平分线的性质;平行线之间的距离.【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥BC于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故选:C.8.如图,在△ABC中,AB=AC,D为AC上一点,E为AB上一点,且BC=BD,AD=DE=BE,那么∠A的度数为()A.36°B.45°C.60°D.75°【考点】等腰三角形的性质.【分析】根据DE=BE,得到∠EBD=∠EDB=α,根据外角的性质得到∠AED=∠EBD+∠EDB=2α,根据等腰三角形的性质得到∠A=∠AED=2α,于是得到∠BDC=∠A+∠ABD=3α,由于∠ABC=∠C=∠BDC=3α,根据三角形的内角和列方程即可得到结论.【解答】解:∵DE=BE,∴∠EBD=∠EDB,设∠EBD=∠EDB=α,∴∠AED=∠EBD+∠EDB=2α,∵AD=DE,∴∠A=∠AED=2α,∴∠BDC=∠A+∠ABD=3α,∵BD=BC,AB=AB,∴∠ABC=∠C=∠BDC=3α,∴3α+3α+2α=180°,∴α=22.5°,∴∠A=45°.故选:B.二、填空题(本题共10小题,每小题3分,共30分)9.等腰三角形中,如果一个外角为130°,那么这个等腰三角形的顶角的度数为50°或80°.【考点】等腰三角形的性质.【分析】等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【解答】解:∵一个外角为130°,∴三角形的一个内角为50°,当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角为50°或80°.故答案为:50°或80°.10.如果点P关于x轴的对称点为(﹣3,﹣2),那么点P关于y轴的对称点的坐标为(3,2).【考点】关于x轴、y轴对称的点的坐标.【分析】分别利用关于x,y轴对称点的性质得出点的坐标即可.【解答】解:∵点P关于x轴的对称点为(﹣3,﹣2),∴P(﹣3,2),∴点P关于y轴的对称点的坐标为:(3,2).故答案为:(3,2).11.一个三角形的周长为48cm,最大边与最小边的差为14cm,另一边与最小边之和为25cm,那么这个三角形最小边的长为9cm.【考点】三元一次方程组的应用;三角形三边关系.【分析】设三角形的最长边为a,最小边为b,另一边为c,根据三角形的周长为48cm,得出a+b+c=48,再根据最大边与最小边的差为14cm,得出a﹣b=14,最后根据另一边与最小边之和为25cm,得出c+b=25,然后组成方程组求解即可.【解答】解:设三角形的最长边为a,最小边为b,另一边为c,根据题意得:,②+③得:a+c=39④,把④代入①得:b=9,则这个三角形最小边的长为9cm;故答案为:9cm.12.如图,将△ABC绕点C顺时针方向旋转50°得到△A′CB′,若AC⊥A′B′,连接AA′,则∠BAC 等于40°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ACA′=50°,∠A=∠A′,则根据AC⊥A′B′,利用互余可计算出∠A′=40°,从而得到∠BAC的度数.【解答】解:∵△ABC绕点C顺时针方向旋转50°得到△A′CB′,∴∠ACA′=50°,∠A=∠A′,∵AC⊥A′B′,∴∠A′=90°﹣50°=40°,∴∠BAC=40°.故答案为40°.13.如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠C=∠E(答案不惟一,也可以是AB=FD或AD=FB).【考点】全等三角形的判定.【分析】要判定△ABC≌△FDE,已知AC=FE,BC=DE,具备了两组边对应相等,故添加∠C=∠E,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠C=∠E,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等.(答案不唯一).故填:∠C=∠E.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.【考点】角平分线的性质.【分析】过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【解答】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.15.如图,在△ABC中,E是BC上一点,EC=2BE,点D是AC的中点,若S△ABC=15,则S△ADF = 2.5.﹣S△BEF【考点】三角形的面积.【分析】根据题意先分别求出S △ABD ,S △ABE ,再根据S △ADF ﹣S △BEF =S △ABD ﹣S △ABE 即可求出结果.【解答】解:∵点D 是AC 的中点,∴AD=AC ,∵S △ABC =15,∴S △ABD =S △ABC =×15=7.5.∵EC=2BE ,S △ABC =15,∴S △ABE =S △ABC =×15=5,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF ,即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =7.5﹣5=2.5.故答案为:2.5.16.如图,在△ABC 中,按以下步骤作图:①分别以点A 、C 为圆心,以大于AC 的长为半径画弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接AD ,若∠C=28°,AB=BD ,则∠B 的度数为 68° .【考点】作图—基本作图;线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得出AD=DC ,再利用等腰三角形的性质结合三角形内角和定理得出答案.【解答】解:由题意可得:MN 是AC 的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=28°,∴∠DAC=28°,∴∠ADB=56°,∵AB=BD,∴∠BAD=∠BDA=56°,∴∠B=180°﹣56°﹣56°=68°.故答案为:68°.17.如图,△ABC中,∠BAC=90°,∠B=30°,AD⊥BC于D,CE是∠ACB的平分线,且交AD于P点.如果AP=2,则AB的长为6.【考点】含30度角的直角三角形;角平分线的性质;等边三角形的判定与性质.【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEC中,利用含30度角的直角三角形的性质来求EC的长度,然后在等腰△BEC中得到BE的长度,则易求AB的长度.【解答】解:∵△ABC中,∠BAC=90°,∠B=30°,∴∠ACB=60°.又∵CE是∠ACB的平分线,∴∠ECB=30°,∴∠AEC=∠B+∠ECB=60°,∠B=∠ECB∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠BAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEC中,∠ACE=30°,则EC=2AE=4,∴BE=EC=4,∴AB=BE+AE=6.故答案是:6.18.如图,P为∠AOB的平分线上的一点,PC⊥OA于点C,D为OA上一点,E为OB上一点,∠ODP+∠OEP=180°,当OC=6.5cm时,OD+OE=13cm.【考点】全等三角形的判定与性质;角平分线的性质.【分析】作PF⊥OB于F,根据角平分线的性质就可以得出PC=PF,根据HL可以判断Rt△PCO ≌Rt△PFO,从而可得OC=OF,然后根据AAS就可以得出△CDP≌△EFP,从而得到CD=EF,进而得出DO+E0=13cm.【解答】证明:过P作PF⊥OB于F,∴∠PFO=90°,∵P为∠AOB的平分线OP上一点,PC⊥OA,∴PC=PF,∠PCA=90°,∴∠PCA=∠PFO,在Rt△PCO和RtPFO中,,∴Rt△PCO≌Rt△PFO(HL),∴OC=OF.∵∠ODP+∠OEP=180°,且∠OEP+∠PEB=180°,∴∠ODP=∠FEP,在△CDP和△EFP中,,∴△CDP≌△EFP(AAS),∴CD=EF,∵DO+EO=DC+CO+EO,∴DO+EO=EF+EO+CO,∴DO+EO=FO+CO,∴DO+EO=2CO,∵CO=6.5cm,∴DO+E0=13cm.故答案为:13cm.三、解答题(本大题共7小题,共66分)19.如图,已知△ABC,请你在这个三角形内求作一点P,使PA=PB,且点P到边AB、BC的距离也相等(写出作法,保留作图痕迹).【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】作AB的垂直平分线和∠ABC的角平分线,两线相交于点P,则根据垂直平分线的性质定理有PA=PB,根据角平分线的性质定理得到点P到边AB、BC的距离相等,所以点P为满足条件的点.【解答】解:如图,20.如图,完成下列各题:(1)画出△ABC关于x轴的对称△A1B1C1,并写出点A1、B1、C1的坐标;(2)写出△ABC的面积(不要求过程).【考点】作图﹣轴对称变换.【分析】(1)分别作出点A、B、C关于x轴的对称点,然后顺次连接,并写出点A1、B1、C1的坐标;(2)用三角形ABC所在的矩形的面积减去三个小三角形的面积即可求解.【解答】解:(1)所作图形如图所示:A1(﹣1,﹣1)、B1(﹣2,2)、C1(2,3);=4×4﹣×1×3﹣×1×4﹣×3×4(3)S△ABC=6.5.21.如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD的度数;(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)【考点】三角形内角和定理;三角形的外角性质.【分析】(1)利用高的定义和互余得到∠BCD=90°﹣∠B,再根据角平分线定义得到∠BCE=∠ACB,接着根据三角形内角和定理得到∠ACB=180°﹣∠A﹣∠B,于是得到∠BCE=90°﹣(∠A+∠B),然后计算∠BCE﹣∠BCD得到∠ECD=(∠B﹣∠A),再把∠A=30°,∠B=50°代入计算即可;(2)直接由(1)得到结论.【解答】解:(1)∵CD为高,∴∠CDB=90°,∴∠BCD=90°﹣∠B,∵CE为角平分线,∴∠BCE=∠ACB,而∠ACB=180°﹣∠A﹣∠B,∴∠BCE==90°﹣(∠A+∠B),∴∠ECD=∠BCE﹣∠BCD=90°﹣(∠A+∠B)﹣(90°﹣∠B)=(∠B﹣∠A),当∠A=30°,∠B=50°时,∠ECD=×(50°﹣30°)=10°;(2)由(1)得∠ECD=(∠B﹣∠A).22.如图,已知AB=CD,∠A=∠D,求证:△ABC≌△DCB.【考点】全等三角形的判定.【分析】先证明△ABE≌△DCE可得出AE=DE,BE=CE,根据等式的性质可得AE+CE=DE+BE 即BD=CA,再加上公共边BC=BC,可证明△ABC≌△DCB.【解答】证明:∵在△ABE和△DCE中,∴△ABE≌△DCE(AAS),∴AE=ED,BE=CE,∴AC=DB,在△ABC和△DCB中,,∴△ABC≌△DCB(SSS).23.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E在同一直线上,连结BD.(1)求证:BD=EC;(2)BD与CE有何位置关系?请证你的猜想.【考点】全等三角形的判定与性质.【分析】(1)求出∠BAD=∠CAE,根据SAS推出△ABD≌△ACE,根据全等三角形的性质推出即可;(2)根据全等三角形的性质得出∠BDA=∠E,根据∠E+∠ADE=90°求出∠BDA+∠ADE=90°即可.【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=EC;(2)BD⊥CE,证明:∵△ABD≌△ACE,∴∠BDA=∠E,又∵∠E+∠ADE=90°,∴∠BDA+∠ADE=90°,即∠BDE=90°,∴BD⊥DE.24.如图,已知△ABC为等边三角形,AE=CD,AD、BE相交于点F.(1)求证:△ABE≌△CAD;(2)若BP⊥AD于点P,PF=9,EF=3,求AD的长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的三条边都相等可得AB=CA,每一个角都是60°可得,∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE和△CAD全等.(2)根据全等三角形对应角相等可得∠CAD=∠ABE,然后求出∠BFP=60°,再根据直角三角形两锐角互余求出∠FBP=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BF=2FP,再根据AD=BE=BF+FE代入数据进行计算即可得解.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠ACD,又∵AE=CD,在△ABE与△CAD中,,∴△ABE≌△CAD(SAS).(2)解:∵△ABE≌△CAD,∴∠ABE=∠CAD,AD=BE,又∵∠BFP=∠BAD+∠ABE,∴∠BFP=∠BAD+∠CAD,又∵∠BAD+∠CAD=60°,∴∠BFP=60°,又∵BP⊥AD,∴∠BPF=90°,∴∠FBP=30°,∴BF=2PF=18,∴BE=18+3=21,∴AD=21.25.如图,在△ABC中,AB=AC,BE⊥AC于点E,BE=AE,AD是∠BAC的角平分线,和BE相交于点P,和BC边交于点D,点F是AB边的中点,连结EF,交AD于点Q,连结BQ.(1)求证:△BCE≌△APE;(2)求证:BD=AP;(3)判断△BDQ的形状,并证明你的结论.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)求出∠AEP=∠BEC=90°,根据三角形内角和定理求出∠EBC=∠EAP,根据ASA推出△BCE≌△APE即可;(2)根据全等得出BC=AP,根据等腰三角形的性质得出BD=BC,即可求出答案;(3)根据线段垂直平分线的性质求出AQ=BQ,求出∠BAE=45°,根据角平分线的定义求出∠BAD=∠ABQ=22.5°,根据三角形外角性质求出∠BQD=45°,即可得出答案.【解答】证明:(1)如图:∵AD是∠BAC的角平分线,AB=AC,∴∠BDP=90°,BD=CD,∵BE⊥AC,∴∠AEP=∠BEC=90°,∵在△BPD和△APE中,∠AEP=∠BDP=90°,∠BPD=∠APE,∠PAE+∠PEA+∠APE=180°,∠BDP+∠BPD+∠EBC=180°,∴∠EBC=∠EAP,在△BCE和△APE中,,∴△BCE≌△APE;(2)∵△BCE≌△APE,∴BC=AP,∵BD=CD,∴BD=BC,∴BD=AP;(3)△BDQ是等腰直角三角形,证明:∵BE=AE,F是AB的中点,∴EF是线段AB的垂直平分线,∴AQ=BQ,∴∠BAQ=∠ABQ,∵BE=AE,∠BEA=90°,∴∠BAE=45°,∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=22.5°,∵∠BAD=∠ABQ,∴∠BAD=∠ABQ=22.5°,∴∠BQD=22.5°×2=45°,∵∠ADB=90°,∴△BDQ是等腰直角三角形.2017年3月2日。
2015-2016学年八年级(上)期中数学试卷一、选择题.(每小题3分,共24分)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个2.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.93.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A. 3 B. 2 C.D. 15.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A. 1 B.﹣1 C. 5 D.﹣57.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A. 5 B. 4 C. 3 D. 28.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),则经过第2014次变换后所得A点坐标是()A.(a,﹣b)B.(﹣a,﹣b)C.(﹣a,b)D.(a,b)二、填空题.(每小题3分,共21分)9.已知△ABC的一个外角为50°,则△ABC一定是三角形.10.要使五边形木架(用5根木条钉成)不变形,至少要再钉根木条.11.如图,△ABE≌△ACD,点B、C是对应顶点,△ABE的周长为32,AB=14,BE=11,则AD的长为.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为.13.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.14.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.15.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.三、解答题.(本大题共8个小题,满分75分)16.如图,∠A=90°,E为BC上的一点,A点和E点关于BD的对称,B点、C点关于DE 对称,求∠ABC和∠C的度数.17.已知:如图AD⊥BE,垂足C是BE的中点,AB=DE.AB与DE有何位置关系?请说明理由.18.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.19.如图,BD是∠ABC的角平分线,DE⊥AB于点E,DF⊥BC于点F,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为cm.20.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.21.(10分)(2012•泸州)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.22.(10分)(2012秋•宁江区校级期末)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.23.(10分)(2014秋•扶沟县期中)已知△ABC中,三边长a,b,c都是整数,且满足a >b>c,a=8,那么满足条件的三角形共多少个?2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题.(每小题3分,共24分)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个考点:轴对称图形.分析:根据轴对称图形的概念结合图形求解.解答:解:轴对称图形有:第一个、第二个、第三个、第五个.故选B.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.9考点:多边形内角与外角.专题:计算题.分析:根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.解答:解:∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数==12.故选A.点评:本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.3.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°考点:全等三角形的应用.分析:先根据BC=EF,AC=DF判断出Rt△ABC≌Rt△DEF,再根据全等三角形的性质可知,∠1=∠4,再由直角三角形的两锐角互余即可解答.解答:解:∵滑梯、墙、地面正好构成直角三角形,∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF,∴∠2=∠3,∠1=∠4,∵∠3+∠4=90°,∴∠ABC+∠DFE=90°.故选B.点评:本题考查的是全等三角形的判定及性质,直角三角形的性质,属较简单题目.4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A. 3 B. 2 C.D. 1考点:线段垂直平分线的性质;角平分线的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,求出AF=BF,求出∠AFD、∠B,得出∠BAC=30°,求出AE,求出∠FAC=∠AFE=30°,推出AE=EF,代入求出即可.解答:解:连接AF,∵AB的垂直平分线DE交于BC的延长线于F,∴AF=BF,∵FD⊥AB,∴∠AFD=∠BFD=30°,∠B=∠FAB=90°﹣30°=60°,∵∠ACB=90°,∴∠BAC=30°,∠FAC=60°﹣30°=30°,∵DE=1,∴AE=2DE=2,∵∠FAE=∠AFD=30°,∴EF=AE=2,故选B.点评:本题考查了含30度角的直角三角形,线段垂直平分线,角平分线的性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强.5.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C考点:全等三角形的性质.分析:根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.解答:解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.点评:本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.﹣1 C. 5 D.﹣5考点:关于x轴、y轴对称的点的坐标.分析:根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y)即求关于y轴的对称点时:纵坐标不变,横坐标变成相反数,根据这一关系,就可以求出a=﹣(﹣2)=2,b=3.解答:解:根据两点关于y轴对称,则横坐标互为相反数,纵坐标不变,得a=﹣(﹣2)=2,b=3.∴a+b=5故选C.点评:本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.7.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A. 5 B. 4 C. 3 D. 2考点:三角形的外角性质;角平分线的性质;直角三角形斜边上的中线.分析:过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE∥AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.解答:解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.点评:本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.8.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),则经过第2014次变换后所得A点坐标是()A.(a,﹣b)B.(﹣a,﹣b)C.(﹣a,b)D.(a,b)考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.专题:规律型.分析:利用已知得出图形的变换规律,进而得出经过第2014次变换后所得A点坐标与第2次变换后的坐标相同求出即可.解答:解:∵在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2014÷4=503…2,∴经过第2014次变换后所得A点坐标与第2次变换后的坐标相同,故其坐标为:(a,﹣b).故选:A.点评:此题主要考查了关于坐标轴以及原点对称点的性质,得出A点变化规律是解题关键.二、填空题.(每小题3分,共21分)9.已知△ABC的一个外角为50°,则△ABC一定是钝角三角形.考点:三角形的外角性质.分析:根据三角形的外角与相邻的内角互为邻补角求出内角,再根据三角形的形状定义判断即可.解答:解:∵△ABC的一个外角为50°,∴与它相邻的内角为180°﹣50°=130°,∴△ABC一定是钝角三角形.故答案为:钝角.点评:本题考查了三角形的外角性质,求出与它相邻的内角是钝角是解题的关键.10.要使五边形木架(用5根木条钉成)不变形,至少要再钉2根木条.考点:三角形的稳定性.分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解答:解:再钉上两根木条,就可以使五边形分成三个三角形.故至少要再钉两根木条.点评:本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.11.如图,△ABE≌△ACD,点B、C是对应顶点,△ABE的周长为32,AB=14,BE=11,则AD的长为7.考点:全等三角形的性质.分析:根据△ABE的周长求出AE,再根据全等三角形对应边相等解答即可.解答:解:∵△ABE的周长为32,AB=14,BE=11,∴AE=32﹣14﹣11=32﹣25=7,∵△ABE≌△ACD,∴AD=AE=7.故答案为:7.点评:本题考查了全等三角形对应边相等的性质,三角形的周长,熟记性质并准确找出对应边是解题的关键.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为2.考点:角平分线的性质;垂线段最短.专题:动点型.分析:过P作PE⊥OM于E,根据垂线段最短,得出当Q与E重合时,PQ最小,根据角平分线性质求出PE=PA,即可求出答案.解答:解:过P作PE⊥OM于E,当Q与E重合时,PQ最小,∵PE⊥OM,PA⊥ON,OP平分∠MON,∴PE=PA=2,即PQ的最小值是2,故答案为:2.点评:本题考查了垂线段最短和角平分线的性质的应用,能根据题意得出PQ最小时Q的位置是解此题的关键,此题主要培养学生的理解能力.13.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.考点:轴对称的性质.分析:P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.解答:解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:15点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.14.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.考点:多边形内角与外角.专题:应用题.分析:由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.解答:解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.15.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.考点:关于x轴、y轴对称的点的坐标.分析:熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.解答:解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).点评:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.三、解答题.(本大题共8个小题,满分75分)16.如图,∠A=90°,E为BC上的一点,A点和E点关于BD的对称,B点、C点关于DE 对称,求∠ABC和∠C的度数.考点:轴对称的性质.分析:根据轴对称的性质可得∠ABD=∠EBD,∠C=∠DBC,进而可得∠ABC=2∠ABD=2∠DBE,∠ABC=2∠C,再根据∠A=90°,可得∠ABC+∠BCD=90°,进而可得答案.解答:解:∵A点和E点关于BD的对称,∴∠ABD=∠EBD,即∠ABC=2∠ABD=2∠DBE,∵B点、C点关于DE对称,∴∠C=∠DBC,∴∠ABC=2∠C,∵∠A=90°,∴∠ABC+∠BCD=90°,∴∠ABC=60°,∠C=30°.点评:此题主要考查了轴对称的性质,以及直角三角形的性质,关键是掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.17.已知:如图AD⊥BE,垂足C是BE的中点,AB=DE.AB与DE有何位置关系?请说明理由.考点:全等三角形的性质;全等三角形的判定;旋转的性质.分析:根据条件易证△ABC≌△DEC,即可判断.解答:解:AB∥DE;理由:∵AD垂直平分BE,且AB=DE,又∵BC=EC,BE⊥AD∴Rt△ABC≌Rt△DEC∴∠A=∠D,∴AB∥DE.点评:掌握三角形全等的判定定理,通过已知条件能够正确证明△ABC≌△DEC是解决本题的关键.18.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.考点:全等三角形的性质.分析:根据全等三角形的性质得出∠BEA=∠CDE=100°,同时利用三角形的内角和求出∠DEC=45°,再根据角的计算得出即可.解答:解:∵△EAB≌△DCE,∴∠BEA=∠CDE=100°,∵∠A=∠C=35°,∠CDE=100°,∴∠DEC=180°﹣100°﹣35°=45°,∵∠DEB=10°,∴∠BEC=45°﹣10°=35°,∴∠CEA=100°﹣35°=65°.点评:此题考查全等三角形的性质,关键是根据全等三角形的对应角相等分析.19.如图,BD是∠ABC的角平分线,DE⊥AB于点E,DF⊥BC于点F,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为cm.考点:角平分线的性质.分析:把S△ABC=36cm2分成两部分即△ABD和△BCD,利用三角形的面积公式可得等量关系式,求这个等量关系即可.解答:解:∵BD是∠ABC的角平分线,DE⊥AB,DF⊥BC,∴DE=DF,∵S△ABC=36cm2,S△BCD=BC•DF,又∵S△ABC=S△ABD+S△BCD,AB=18cm,BC=12cm,∴×18•DE+×12•DF=36,∴9DE+6DF=36.又∵DE=DF,∴9DE+6DE=36,∴DE=cm.点评:本题主要考查了三角形的面积公式和角的平分线上的点到角的两边的距离相等的性质.解题的关键是得到DE=DF.20.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.考点:等边三角形的性质.专题:证明题.分析:要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.解答:证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.点评:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.21.(10分)(2012•泸州)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.考点:全等三角形的判定与性质;平行线的判定;等边三角形的性质.专题:证明题.分析:根据等边三角形性质推出BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,求出∠BCD=∠ACE,根据SAS证△ACE≌△BCD,推出∠EAC=∠DBC=∠ACB,根据平行线的判定推出即可.解答:证明:∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,∴∠BCA﹣∠DCA=∠ECD﹣∠DCA,即∠BCD=∠ACE,∵在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴∠EAC=∠B=60°=∠ACB,∴AE∥BC.点评:本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE≌△BCD,主要考查学生的推理能力.22.(10分)(2012秋•宁江区校级期末)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.考点:线段垂直平分线的性质;等腰三角形的判定与性质.分析:(1)已知AB=AC,要求∠EBC就先求出∠ABE的度数,利用线段垂直平分线的性质易求解.(2)已知△ABC的周长为41cm,一边长为15cm,AB>BC,则AB=15cm,求△BCE周长只需证明BE+CE=AC即可.解答:解:(1)已知AB=AC,DE是AB的垂直平分线∴∠ABE=∠A=40°.又因为∠A=40°∴∠ABC=∠ACB=70°,∴∠EBC=∠ABC﹣∠ABE=30°.(2)已知△ABC的周长为41cm,一边长为15cm,AB>BC,则AB=15cm,∴BC=11cm.根据垂直平分线的性质可得BE+CE=AC,∴△BCE周长=BE+CE+BC=26cm.点评:本题考查了线段的垂直平分线的性质以及等腰三角形的性质;进行线段以及角的有效转移是正确解答本题的关键.23.(10分)(2014秋•扶沟县期中)已知△ABC中,三边长a,b,c都是整数,且满足a >b>c,a=8,那么满足条件的三角形共多少个?考点:三角形三边关系.分析:首先根据三角形的三边关系可得b+c>a,再根据条件b>c可确定b>4,再由a>b可得4<b<8,进而可确定b的值,然后再确定c的值即可.解答:解:根据三角形的三边关系可得b+c>a,∵b>c,∴b>4,∵a>b,a=8,∴4<b<8,∵b为整数,∴b=5,6,7,∴a=8,b=5,c=4,a=8,b=6,c=5或4或3,a=8,b=7,c=6或5或4或3或2.因此满足条件的三角形共有1+3+5=9(个).点评:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.。
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2015-2016学年河南省八年级(上)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)9的算术平方根是()A.B.C.3 D.±32.(3分)实数3.14159,0.050050005…(相邻两个5之间依次多一个0),π,0,﹣,中无理数的个数是()A.2 B.3 C.4 D.53.(3分)下列各式计算正确的是()A.(a+b)2=a2+b2B.a•a2=a3C.a8÷a2=a4D.3a2+2a2=5a44.(3分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x•2)+aC.(a﹣b)(b﹣a)=(b﹣a)(a﹣b)D.(x﹣1)(x﹣3)+1=(x﹣2)2 5.(3分)下列命题中,真命题是()A.相等的角是直角 B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有且只有一条直线6.(3分)等腰三角形一腰上的高与另一腰的夹角为15°,则顶角的度数为()A.75°B.15°C.15°或165°D.75°或105°7.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角8.(3分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.3a+5 B.6a+9 C.2a2+5a D.6a+159.(3分)如图,已知D是BC上一点,且满足AB=AC=BD,那么∠1与∠2的关系是()A.3∠2﹣∠1=180° B.∠1+2∠2=180°C.2∠1+∠2=180°D.∠1=2∠2 10.(3分)()2014•(﹣1.5)2015=()A.()2014B.﹣ C.﹣ D.(﹣)2014二、填空题(每小题3分,共24分)11.(3分)比较大小:,1﹣1﹣(填“>”“<”或“=”).12.(3分)(8a4﹣4a3﹣2a2)÷(﹣2a)2=.13.(3分)如图所示,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当三角形APQ是以PQ 为底的等腰三角形时,运动的时间是.14.(3分)如图,已知△ABC≌△ADC,∠BAC=60°,∠ACD=25°,那么∠D=.15.(3分)如果x2+2(m﹣3)x+81是一个完全平方式,那么m=.16.(3分)某正数的平方根为和,则这个数是.17.(3分)﹣2的相反数是,绝对值是.18.(3分)设x﹣=1,则x2+=.三、解答题(本大题共8个小题,满分66分)19.(8分)计算(1)﹣(2).20.(8分)计算:(1)(﹣m+n2)(﹣n2﹣m)(2)(﹣6a2b5c)÷(﹣2ab2)2.21.(8分)分解因式(1)3(x﹣2y)2﹣3x+6y(2)4x2﹣3y(4x﹣3y)22.(10分)化简求值(1)[(x﹣2y)2﹣4y2+2xy]÷2x,其中x=1,y=2;(2)4(x+1)2﹣7(x﹣1)(x+1)+3(1﹣x)2,其中x=﹣.23.(6分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.24.(8分)如图AB=a,P是线段AB上的一点,分别以AP、BP为边作正方形,(1)设AP=x,求两个正方形的面积之和S(用含x的代数式表示,并注意化简)(2)设当x=a时,两个正方形面积的和为S1;当x=a时,两个正方形的面积的和为S2,试比较S1与S2的大小.25.(8分)某同学剪出若干张长方形和正方形的卡片,利用这些卡片他拼成了如图2中的大正方形,由此验证了我们学过的公式(a+b)2=a2+2ab+b2.(1)如图1,请运用拼图的方法,选取一定数量的卡片拼成一个大长方形,使它的面积等于a2+4ab+3b2,并根据你拼成的图形和面积,把此多项式分解因式;(2)小明想用类似的方法拼成一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片张,3号卡片张.26.(10分)如图1所示,在△ABC中,AB=AC,∠BAC=90°,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.2015-2016学年河南省八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)9的算术平方根是()A.B.C.3 D.±3【解答】解:∵32=9,∴9的算术平方根是3.故选:C.2.(3分)实数3.14159,0.050050005…(相邻两个5之间依次多一个0),π,0,﹣,中无理数的个数是()A.2 B.3 C.4 D.5【解答】解:0.050050005…(相邻两个5之间依次多一个0),π,﹣是无理数,故选:B.3.(3分)下列各式计算正确的是()A.(a+b)2=a2+b2B.a•a2=a3C.a8÷a2=a4D.3a2+2a2=5a4【解答】解:A、(a+b)2=a2+b2+2ab,错误;B、a•a2=a3,正确;C、a8÷a2=a6,错误;D、3a2+2a2=5a2,错误.故选:B.4.(3分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x•2)+aC.(a﹣b)(b﹣a)=(b﹣a)(a﹣b)D.(x﹣1)(x﹣3)+1=(x﹣2)2【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.5.(3分)下列命题中,真命题是()A.相等的角是直角 B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有且只有一条直线【解答】解:A,不正确,因为相等的角也可能是锐角或钝角;B,不正确,因为前提是在同一平面内;C,不正确,因为两直线平行同位角相等;D,正确,因为两点确定一条直线;故选:D.6.(3分)等腰三角形一腰上的高与另一腰的夹角为15°,则顶角的度数为()A.75°B.15°C.15°或165°D.75°或105°【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+15°=105°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣15°=75°.故选:D.7.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选:B.8.(3分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.3a+5 B.6a+9 C.2a2+5a D.6a+15【解答】解:矩形的面积是(a+4)2﹣(a+1)2=a+8a+16﹣a﹣2a﹣1=6a+15.故选:D.9.(3分)如图,已知D是BC上一点,且满足AB=AC=BD,那么∠1与∠2的关系是()A.3∠2﹣∠1=180° B.∠1+2∠2=180°C.2∠1+∠2=180°D.∠1=2∠2【解答】解:∵AB=BD,∴∠BAD=∠2,∵AB=AC,∴∠B=∠C,∵∠B+∠C+∠BAC=180°,∴2∠C+∠2+∠1=180°,∵∠C=∠2﹣∠1,∴3∠2﹣∠1=180°故选:A.10.(3分)()2014•(﹣1.5)2015=()A.()2014B.﹣ C.﹣ D.(﹣)2014【解答】解:()2014•(﹣1.5)2015=()2014•(﹣1.5)2014×(﹣1.5)=[()•(﹣1.5)]2014×(﹣1.5)=﹣1.5=﹣.故选:C.二、填空题(每小题3分,共24分)11.(3分)比较大小:>,1﹣<1﹣(填“>”“<”或“=”).【解答】解:>,1﹣<1﹣.故答案为:>,<.12.(3分)(8a4﹣4a3﹣2a2)÷(﹣2a)2=2a2﹣a﹣.【解答】解:原式=(8a4﹣4a3﹣2a2)÷4a2=8a4÷4a2﹣4a3÷4a2﹣2a2÷4a2=2a2﹣a﹣.故答案是:2a2﹣a﹣.13.(3分)如图所示,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当三角形APQ是以PQ 为底的等腰三角形时,运动的时间是 3.6s.【解答】解:设运动的时间为x,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm 的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=18﹣3x,AQ=2x,即18﹣3x=2x,解得x=3.6.故答案为:3.6s.14.(3分)如图,已知△ABC≌△ADC,∠BAC=60°,∠ACD=25°,那么∠D=95°.【解答】解:∵△ABC≌△ADC,∴∠DAC=∠BAC=60°,∵∠DAC+∠ACD+∠D=180°,∴∠D=180°﹣25°﹣60°=95°.故答案为95°.15.(3分)如果x2+2(m﹣3)x+81是一个完全平方式,那么m=12或﹣6.【解答】解:∵x2+2(m﹣3)x+81是一个完全平方式,∴2(m﹣3)=±18,解得:m=12或﹣6.故答案为:12或﹣6.16.(3分)某正数的平方根为和,则这个数是1.【解答】解:依题意得:+=0即a+2a﹣9=0∴a=3∴=﹣=1∴这个数为1.故填1.17.(3分)﹣2的相反数是2﹣,绝对值是2﹣.【解答】解:﹣2的相反数是﹣(﹣2)=2﹣;绝对值是|﹣2|=2﹣.故本题的答案是2﹣,2﹣.18.(3分)设x﹣=1,则x2+=3.【解答】解:∵x﹣=1,∴x2+==12+2=1+2=3,故答案为:3.三、解答题(本大题共8个小题,满分66分)19.(8分)计算(1)﹣(2).【解答】解:(1)原式=+=;(2)原式===17.20.(8分)计算:(1)(﹣m+n2)(﹣n2﹣m)(2)(﹣6a2b5c)÷(﹣2ab2)2.【解答】解:(1)原式=(﹣m)2﹣(n2)2=m2﹣n4;(2)原式=(﹣6a2b5c)÷(4a2b4)=﹣bc.21.(8分)分解因式(1)3(x﹣2y)2﹣3x+6y(2)4x2﹣3y(4x﹣3y)【解答】解:(1)原式=3(x﹣2y)2﹣3(x﹣2y)=(x﹣2y)(3x﹣6y﹣3)=3(x﹣2y)(x﹣2y﹣1);(2)原式=4x2﹣12xy+9y2=(2x﹣3y)2.22.(10分)化简求值(1)[(x﹣2y)2﹣4y2+2xy]÷2x,其中x=1,y=2;(2)4(x+1)2﹣7(x﹣1)(x+1)+3(1﹣x)2,其中x=﹣.【解答】解:(1)原式=(x2﹣4xy+4y2﹣4y2+2xy)÷2x=x﹣y.当x=2,y=1时,原式=0(2)原式=2x+14 当x=﹣时,原式=13.23.(6分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AB=CD;(2)∵△ABE≌△CDF,∴AB=CD,BE=CF,∵AB=CF,∠B=30°,∴AB=BE,∴△ABE是等腰三角形,∴∠D=.24.(8分)如图AB=a,P是线段AB上的一点,分别以AP、BP为边作正方形,(1)设AP=x,求两个正方形的面积之和S(用含x的代数式表示,并注意化简)(2)设当x=a时,两个正方形面积的和为S1;当x=a时,两个正方形的面积的和为S2,试比较S1与S2的大小.【解答】解:(1)∵AB=a,AP=x,∴BP=a﹣x,∴两个正方形的面积之和S=x2+(a﹣x)2=2x2﹣2ax+a2;(2)∵当x=a时,两个正方形面积的和为S1=2×﹣2×a×+a2=,当x=a时,两个正方形的面积的和为S2=2×﹣2a×+a2=,∴S1>S2.25.(8分)某同学剪出若干张长方形和正方形的卡片,利用这些卡片他拼成了如图2中的大正方形,由此验证了我们学过的公式(a+b)2=a2+2ab+b2.(1)如图1,请运用拼图的方法,选取一定数量的卡片拼成一个大长方形,使它的面积等于a2+4ab+3b2,并根据你拼成的图形和面积,把此多项式分解因式;(2)小明想用类似的方法拼成一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片7张,3号卡片3张.【解答】解:(1)用一张大正方形卡片,4张矩形卡片和3张小正方形卡片,即可拼成题目所要求的矩形.如下图所示:由图形的面积可知:a2+4ab+3b2=(a+b)(a+3b).(2)(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,需用2号卡片7张,3号卡片3张.26.(10分)如图1所示,在△ABC中,AB=AC,∠BAC=90°,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.【解答】解:(1)CF=BD,且CF⊥BD,证明如下:∵∠FAD=∠CAB=90°,∴∠FAC=∠DAB.在△ACF和△ABD中,,∴△ACF≌△ABD∴CF=BD,∠FCA=∠DBA,∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,∴FC⊥CB,故CF=BD,且CF⊥BD.(2)(1)的结论仍然成立,如图2,∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;∴CF=BD,且CF⊥BD.。
2015-2016学年河南省漯河市临颍县八年级(上)期中数学试卷一、选择题(每小题4分,共32分)1.下面图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个2.以下各组线段为边,能组成三角形的是( )A.2cm,4cm,6cm B.8cm,6cm,4cm C.14cm,6cm,7cm D.2cm,3cm,6cm3.到三角形三边的距离都相等的点是三角形的( )A.三条角平分线的交点B.三条边的中线的交点C.三条高的交点 D.三条边的垂直平分线的交点4.一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A.115°B.120°C.125°D.130°5.如图所示,D是△ABC的角平分线BD和CD的交点,若∠A=50°,则∠D=( )A.120°B.130°C.115°D.110°6.如图所示,在Rt△ABC中,E为斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=1:7,则∠BAC的度数为( )A.70°B.48°C.45°D.60°7.如图,在长方形纸片ABCD中,AB=2,BC=1,点E、F分别在AB、CD上,将纸片沿EF折叠,使点A、D分别落在点A1、D1处,则阴影部分图形的周长为( )A.3 B.4 C.5 D.68.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是( )A.6 B.7 C.8 D.9二、填空题(每空4分,共36分)9.等腰三角形的一边等于5cm,另一边等于7cm,则此三角形的周长为__________cm.10.一个多边形的每一个内角都等于150°,则这个多边形的内角和是__________.11.在Rt△ABC中,∠A=30°,∠C=90°,AB+BC=12cm,AB=__________.12.已知点A(m+1,2),B(2,n+1)关于y轴对称,则m﹣n=__________.13.如图,AB⊥AC,点D在BC的延长线上,且AB=AC=CD,则∠ADB=__________°.14.如图所示,在△ABC中,D、E分别为BC、AD的中点,且S△ABC=4,则S阴影=__________.15.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB 的距离是__________.16.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交AB于E,交BC于F.BC=6,则BF=__________.17.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为__________cm.三、解答题(共52分)18.如图,△ABC中,AB=AC,D是底边BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.(1)下面的证明过程是否正确?若正确,请写出①、②和③的推理根据.证明:∵AB=AC,∴∠B=∠C.①在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF.②∴DE=DF.③(2)请你再用另法证明此题.19.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.20.直角三角形ABC的直角顶点C置于直线l上,AC=BC,现过A、B两点分别作直线l 的垂线,垂足分别为D、E,(1)请你在图中找出一对全等三角形,并写出证明过程;(2)若BE=3,DE=5,求出AD的长.21.已知:如图,点E、A、C在同一条直线上,AB∥CD,AB=CE,∠B=∠E.(1)求证:△ABC≌△CED;(2)若∠B=25°,∠ACB=45°,求∠ADE的度数.22.如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=__________°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.2015-2016学年河南省漯河市临颍县八年级(上)期中数学试卷一、选择题(每小题4分,共32分)1.下面图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.以下各组线段为边,能组成三角形的是( )A.2cm,4cm,6cm B.8cm,6cm,4cm C.14cm,6cm,7cm D.2cm,3cm,6cm 【考点】三角形三边关系.【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+4=6,不能组成三角形;B、4+6=10>8,能组成三角形;C、6+7=13<14,不能够组成三角形;D、2+3=5<6,不能组成三角形.故选B.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.3.到三角形三边的距离都相等的点是三角形的( )A.三条角平分线的交点B.三条边的中线的交点C.三条高的交点 D.三条边的垂直平分线的交点【考点】线段垂直平分线的性质.【分析】由到三角形三边的距离都相等的点是三角形的三条角平分线的交点;到三角形三个顶点的距离都相等的点是三角形的三条边的垂直平分线的交点.即可求得答案.【解答】解:到三角形三边的距离都相等的点是三角形的三条角平分线的交点.故选A.【点评】此题考查了线段垂直平分线的性质以及角平分线的性质.此题比较简单,注意熟记定理是解此题的关键.4.一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A.115°B.120°C.125°D.130°【考点】三角形内角和定理;三角形的外角性质.【专题】常规题型.【分析】先根据三角形的内角和为180°求出第三个内角,然后根据内角和相邻外角的关系,求出答案.【解答】解:∵三角形的内角和为180°,已知三角形的两个内角分别为55°和65°,所∴第三个内角为180°﹣55°﹣65°=60°.那么55°角相邻的外角为125°,65°相邻的外角为115°,60°相邻的外角为120°;所以这个三角形的外角不可能是130°.故选:D.【点评】本题主要考查三角形内角和定理的知识,利用三角形内角和外角的关系比较容易求出答案.5.如图所示,D是△ABC的角平分线BD和CD的交点,若∠A=50°,则∠D=( )A.120°B.130°C.115°D.110°【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】根据三角形的内角和定理求出∠ABC+∠ACB,再根据角平分线的定义求出∠DBC+∠DCB,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,∵D是△ABC的角平分线BD和CD的交点,∴∠DBC+∠DCB=(∠ABC+∠ACB)=×130°=65°,在△BCD中,∠D=180°﹣(∠DBC+∠DCB)=180°﹣65°=115°.故选C.【点评】本题考查了三角形的角平分线,三角形的内角和定理,整体思想的利用是解题的关键.6.如图所示,在Rt△ABC中,E为斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=1:7,则∠BAC的度数为( )A.70°B.48°C.45°D.60°【考点】线段垂直平分线的性质.【分析】由已知条件易得DE垂直平分AB,利用线段的垂直平分线的性质得∠BAD=∠DBA,再结合∠CAD:∠BAD=1:7可得出答案.【解答】解:∵E为斜边AB的中点,ED⊥AB可得△ADB为等腰三角形.(线段垂直平分线的性质:垂直平分线上任意一点,和线段两端点的距离相等).又∠CAD:∠BAD=1:7,∠BAD=∠DBA设∠CAD=x,∴x+7x+7x=90°解得x=6°∴∠BAD=7x=7×6°=42°∴∠BAC=∠CAD+∠BAD=6°+42°=48°故选B.【点评】本题主要考查的是线段垂直平分线的性质:垂直平分线上任意一点,和线段两端点的距离相等.难度中等.由角度的比结合三角形内角和求各角是比较重要的方法,应熟练掌握.7.如图,在长方形纸片ABCD中,AB=2,BC=1,点E、F分别在AB、CD上,将纸片沿EF折叠,使点A、D分别落在点A1、D1处,则阴影部分图形的周长为( )A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】根据折叠的性质,得A1E=AE,A1D1=AD,D1F=DF,则阴影部分的周长即为矩形的周长.【解答】解:根据折叠的性质,得A1E=AE,A1D1=AD,D1F=DF.则阴影部分的周长=矩形的周长=2×(2+1)=6.故选:D.【点评】此题主要考查了翻折变换,关键是要能够根据折叠的性质得到对应的线段相等,从而求得阴影部分的周长.8.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是( )A.6 B.7C.8 D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.二、填空题(每空4分,共36分)9.等腰三角形的一边等于5cm,另一边等于7cm,则此三角形的周长为17或19cm.【考点】等腰三角形的性质;三角形三边关系.【分析】分别从5cm为底边长,7cm为腰长与7cm为底边长,5cm为腰长,去分析求解即可求得答案.【解答】解:若5cm为底边长,7cm为腰长,则它的周长为:5+7+7=19(cm);若7cm为底边长,5c m为腰长,则它的周长为:5+5+7=17(cm);∴它的周长为19cm或17cm.故答案为:17或19.【点评】此题考查了等腰梯形的性质.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.10.一个多边形的每一个内角都等于150°,则这个多边形的内角和是1800°.【考点】多边形内角与外角.【分析】先求出多边形的每一个外角的度数,再用360°除以外角的度数求出边数,然后利用多边形的内角和公式(n﹣2)•180°列式计算即可得解.【解答】解:∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于30°,∴多边形的边数为360°÷30°=12,∴这个多边形的内角和=(12﹣2)•180°=1800°.故答案为:1800°.【点评】本题考查了多边形的内角与外角,求出相等的外角的度数然后求出边数是解题的关键.11.在Rt△ABC中,∠A=30°,∠C=90°,AB+BC=12cm,AB=8cm.【考点】含30度角的直角三角形.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得BC=AB,然后代入求解即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB,∵BC+AB=12cm,∴AB+AB=12,解得AB=8cm.故答案为:8cm.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键,作出图形更形象直观.12.已知点A(m+1,2),B(2,n+1)关于y轴对称,则m﹣n=﹣4.【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于y轴对称点的性质得出m,n的值,进而得出答案.【解答】解:∵点A(m+1,2),B(2,n+1)关于y轴对称,∴m+1=﹣2,2=n+1,解得:m=﹣3,n=1,则m﹣n=﹣4.故答案为:﹣4.【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标关系是解题关键.13.如图,AB⊥AC,点D在BC的延长线上,且AB=AC=CD,则∠ADB=22.5°.【考点】等腰三角形的性质;三角形的外角性质.【专题】计算题.【分析】由已知可得到∠B=∠ACB=45°,∠CAD=∠CDA,再根据三角形外角的性质可得到∠ACB与∠ADB之间的关系,从而不难求解.【解答】解:∵AB=AC=CD,AB⊥AC,∴∠B=∠ACB=45°,∠CAD=∠CDA∵∠ACB=∠CAD+∠CDA=2∠ADB=45°∴∠ADB=22.5°.故答案为:22.5°.【点评】此题主要考查等腰三角形的性质及三角形的外角的性质的综合运用.14.如图所示,在△ABC中,D、E分别为BC、AD的中点,且S△ABC=4,则S阴影=1.【考点】三角形的面积.【分析】根据中线将三角形面积分为相等的两部分可知:△ADC是阴影部分的面积的2倍,△ABC的面积是△ADC的面积的2倍,依此即可求解.【解答】解:4÷2÷2=2÷2=1.答:阴影部分的面积等于1.故答案为:1【点评】考查了三角形的面积和中线的性质:三角形的中线将三角形分为相等的两部分.15.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB 的距离是4.【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,然后根据角平分线上的点到角的两边距离相等可得DE=CD,即可得解.【解答】解:如图,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∴DE=CD,∵CD=4,∴DE=4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,作出图形并熟记性质是解题的关键.16.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交AB于E,交BC于F.BC=6,则BF=2.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】连接AF,根据等腰三角形的性质得到∠B=∠C=30°,根据线段的垂直平分线的性质得到FA=FB,根据直角三角形的性质得到答案.【解答】解:连接AF,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵EF是AB的垂直平分线,∴FA=FB,∴∠FAB=∠B=30°,∴∠FAC=90°,又∠C=30°,∴FA=FC,又FA=FB,∴BF=BC=2,故答案为:2.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15cm.【考点】全等三角形的判定与性质.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(共52分)18.如图,△ABC中,AB=AC,D是底边BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.(1)下面的证明过程是否正确?若正确,请写出①、②和③的推理根据.证明:∵AB=AC,∴∠B=∠C.①在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF.②∴DE=DF.③(2)请你再用另法证明此题.【考点】全等三角形的性质.【分析】(1)根据等边对等角的性质和全等三角形的判定方法判断解答;(2)连接AD,根据等腰三角形三线合一的性质和角平分线上的点到角的两边的距离相等的性质证明.【解答】(1)解:证明过程正确.推理依据:①等边对等角.②AAS.③全等三角形的对应边相等;(2)证明:连接AD,∵AB=AC,D是底边BC的中点,∴AD平分∠BAC(三线合一),又∵DE⊥AB于E,DF⊥AC于F,∴DE=DF(角平分线上的点到角两边的距离相等).【点评】本题考查了全等三角形的性质,等腰三角形三线合一的性质,熟练掌握三角形全等的判定方法和全等三角形的性质以及等腰三角形的性质和角平分线的性质是解题的关键.19.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】证明题.【分析】(1)根据BE=CF得到BF=CE,又∠A=∠D,∠B=∠C,所以△ABF≌△DCE,根据全等三角形对应边相等即可得证;(2)根据三角形全等得∠AFB=∠DEC,所以是等腰三角形.【解答】(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)解:△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC,∴OE=OF,∴△OEF为等腰三角形.【点评】本题主要考查三角形全等的判定和全等三角形对应角相等的性质及等腰三角形的判定;根据BE=CF得到BF=CE是证明三角形全等的关键.20.直角三角形ABC的直角顶点C置于直线l上,AC=BC,现过A、B两点分别作直线l 的垂线,垂足分别为D、E,(1)请你在图中找出一对全等三角形,并写出证明过程;(2)若BE=3,DE=5,求出AD的长.【考点】全等三角形的判定与性质.【分析】(1)观察图形,结合已知条件,可知全等三角形为:△ACD≌△CBE.根据AAS 即可证明;(2)由(1)知△ACD≌△CBE,根据全等三角形的对应边相等,得出CD=BE=3,AD=CE,所而CE=3+5=8,从而求出AD的长.【解答】解:(1)△ACD≌△CBE.理由如下:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=∠CBE=90°﹣∠ECB.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)∵△ACD≌△CBE,∴CD=BE=3,AD=CE,又∵CE=CD+DE=3+5=8,∴AD=8.【点评】本题考查全等三角形的判定与性质,余角的性质,难度中等.21.已知:如图,点E、A、C在同一条直线上,AB∥CD,AB=CE,∠B=∠E.(1)求证:△ABC≌△CED;(2)若∠B=25°,∠ACB=45°,求∠ADE的度数.【考点】全等三角形的判定与性质.【分析】(1)由AB∥CD就可以得出∠BAC=∠ECD,由ASA就可以得出△ABC≌△CED;(2)根据△ABC≌△CED就可以得出∠BAC=∠ECD,∠ACB=∠CDE,AC=CD,求出∠ADC 的值就可以得出∠ADE的值.【解答】解:(1)∵AB∥CD,∴∠BAC=∠ECD.在△ABC和△CED中,,∴△ABC≌△CED(ASA);(2)∵△ABC≌△CED,∴∠BAC=∠ECD,∠ACB=∠CDE,AC=CD,∴∠CAD=∠CDA.∵∠B=25°,∠ACB=45°,∴∠BAC=110°.∠EDC=45°,∴∠CDA=35°.∴∠ADE=10°.答:∠ADE=10°.【点评】本题考查了全等三角形的判定与性质的运用,等腰三角形的性质的运用,平行线的性质的运用,解答时证明三角形全等是关键.22.如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=20°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】(1)利用三角形的外角的性质得出答案即可;(2)利用∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC得出∠BAD=∠EDC,进而求出△ABD≌△DCE;(3)根据等腰三角形的判定以及分类讨论得出即可.【解答】解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=60°﹣40°=20°,故答案为:20;(2)当DC=2时,△ABD≌△DCE;理由:∵∠ADE=40°,∠B=40°,又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.∴∠BAD=∠EDC.在△ABD和△DCE中,.∴△ABD≌△DCE(ASA);(3)当∠BAD=30°时,∵∠B=∠C=40°,∴∠BAC=100°,∵∠ADE=40°,∠BAD=30°,∴∠DAE=70°,∴∠AED=180°﹣40°﹣70°=70°,∴DA=DE,这时△ADE为等腰三角形;当∠BAD=60°时,∵∠B=∠C=40°,∴∠BAC=100°,∵∠ADE=40°,∠BAD=60°,∠DAE=40°,∴EA=ED,这时△ADE为等腰三角形.【点评】此题主要考查了全等三角形的判定与性质和三角形内角和定理以及等腰三角形的性质等知识,根据已知得出△ABD≌△DCE是解题关键.。