七上第一次月考卷
- 格式:doc
- 大小:150.50 KB
- 文档页数:6
七年级上册第一次月考卷子一、语文部分。
(一)基础知识。
1. 下列加点字注音完全正确的一项是()A. 确凿(záo)菜畦(qí)倜傥(tì tǎng)收敛(liǎn)B. 秕谷(bǐ)蝉蜕(tuō)盔甲(kuī)锡箔(bó)C. 木屐(jī)脑髓(suí)觅食(mì)骊歌(lí)D. 桑椹(shèn)斑蝥(máo)宿儒(xiǔ)攒成(cuán)这题啊,就像在找宝藏一样。
你得把每个字的读音都在脑海里过一遍。
B选项里“蝉蜕”的“蜕”应该读“tuì”;C选项“脑髓”的“髓”读“suǐ”;D选项“宿儒”的“宿”在这里是有学问的老年人的意思,得读“sù”。
所以正确答案是A啦。
2. 下列词语书写无误的一项是()A. 人迹罕至人声鼎沸来势汹汹荒草凄凄。
B. 九曲连环一泻万里奇趣横生亦复如是。
C. 锋芒必露家喻户晓截然不同炯炯有神。
D. 当之无愧杂乱无章惹人注目鞠躬尽粹。
A选项里“荒草凄凄”不对,应该是“荒草萋萋”,“萋萋”形容草长得茂盛的样子。
C选项“锋芒必露”错啦,是“锋芒毕露”,“毕”是完全的意思,表示锐气和才华全都显露出来。
D选项“鞠躬尽粹”应为“鞠躬尽瘁”,“瘁”是劳累的意思,表示恭敬谨慎,竭尽心力。
所以正确答案是B。
(二)古诗词默写。
这曹操站在碣石山上看大海,那感觉肯定很壮阔。
答案是“水何澹澹,山岛竦峙”。
“澹澹”形容水波荡漾的样子,“竦峙”就是高高地挺立。
李白对王昌龄那是真够朋友啊,把自己的愁心都寄给明月了,答案是“随君直到夜郎西”。
(三)阅读理解。
不必说碧绿的菜畦,光滑的石井栏,高大的皂荚树,紫红的桑椹;也不必说鸣蝉在树叶里长吟,肥胖的黄蜂伏在菜花上,轻捷的叫天子(云雀)忽然从草间直窜向云霄里去了。
单是周围的短短的泥墙根一带,就有无限趣味。
油蛉在这里低唱,蟋蟀们在这里弹琴。
翻开断砖来,有时会遇见蜈蚣;还有斑蝥,倘若用手指按住它的脊梁,便会拍的一声,从后窍喷出一阵烟雾。
四川省成都地区2024—2025学年七年级语文上学期第一次月考卷(满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上。
用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号。
将条形码粘贴在答题卡“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.测试范围:七年级上册第1-2单元。
5.难度系数:0.7。
6.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
A 卷(共100分)第Ⅰ卷(选择题,共24分)一、基础知识(每小题3分,共12分)1.下列加点字注音完全正确的一项是()A.抖擞(sǒu)应和(hé)一霎(shà)呼朋引伴(yǐn)B.着落(zhuó)粗犷(guǎng)分歧(qí)咄咄逼人(duō)C.澄清(chéng)徘徊(huí)莅临(lì)絮絮叨叨(xù)D.棱镜(líng)酝酿(niàng)心绪(xù)繁花嫩叶(nèn)2.下列语句中书写完全正确的一项是()A.“一年之际在于春”,刚起头儿,有的是工夫,有的是希望。
B.心中的雨点来了,除了你,谁是我在无遮拦天空下的荫蔽?C.看着三轮车远去,也绝没有想到那竟是永远的决别。
D.你只会感到更高藐、深远,并让凄冷的雨滴,去纯净你的灵魂。
3.下列语句中加点的成语运用有误的一项是()A.南国的冬天的那种清冷是柔和的,绝没有北国冬日那样咄咄逼人。
吉林省长春市第一〇八学校2024-2025学年七年级上学期第一次月考数学试题一、单选题1.负数的概念最早记载于我国古代著作《九章算术》.若零上20C ︒记作20C +︒,则零下30C ︒应记作( )A .30C -︒B .10C -︒ C .10C +︒D .30C +︒2.有3,12-,0,7-四个数,其中最大的数是( ) A .3 B .12- C .0 D .7-3.()3--的相反数是( )A .3B .3-C .3±D .134.计算12-的结果是( )A .1-B .2-C .1D .25.如图,在数轴上,手掌遮挡住的点表示的数可能是( )A .0.5-B .0.5C . 1.5-D . 2.5-6.有理数a b ,在数轴上对应点的位置如图所示,下列式子正确的是( )A .0b a >-B .0a b ->C .0a b ->D .0a b +> 7.下列各组数中,相等的一组是( )A .()1--与1--B .23-与()23-C .()34-与34-D .223与223⎛⎫ ⎪⎝⎭ 8.形如acbd 的式子叫做二阶行列式,它的运算法则用公式表示为acbd =ad ﹣bc ,依此法则计算2134-的结果为 ( )A .11B .﹣11C .5D .﹣2二、填空题9.一次身高测量,全班同学的平均身高是155cm ,如果老师把168cm 记作13cm +,那么148cm 记作 cm .10.若,a b 互为相反数,c 的倒数是4,则334a b c +-的值为.11.在数轴上,将表示2-的点向左移动4个单位后,对应点表示的数是.12.在一条可以折叠的数轴上,A ,B 表示的数分别是-7,4,如图,以点C 为折点,将此数轴向右对折,若点A 在点B 的右边,且AB =1,则C 点表示的数是.13.对于一个运算()()a b a b a b a b a b +<⎧=⎨->⎩※,已知3,2a b ==,那么a b =※. 14.a 、b 两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①0a b -<:②0a b +<:③0ab <;④a b >-.中一定成立的是.(只填序号,答案格式如:“①②③④”).三、解答题15.直接写出计算结果:(1)()123--=__(2) 2.70.8--=____(3)()7312⎛⎫-⨯-= ⎪⎝⎭____ (4)()326÷-=____16.计算:(1)()()1251617-++---;(2)()216825÷---⨯; (3)531241286⎛⎫⨯-+ ⎪⎝⎭; (4)421250215⎛⎫-++⨯-- ⎪⎝⎭. 17.已知130x y +-=+,则xy 的值是多少?18.根据下列语句列式并计算:(1) 1.1+与 3.2-的绝对值的和(2)2.5的相反数和23-的倒数的商 19.小明与小红两位同学计算()321428⎛⎫÷-⨯- ⎪的过程如下:(1)小明与小红在计算中均出现了错误,请指出小红出错的步骤;(2)写出正确的解答过程.20.下面是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:3-;3.5;122⎛⎫-- ⎪⎝⎭;1--. 21.为了有效控制酒后驾驶,广州交警的汽车在一条东西方向的公路上巡逻.约定向东为正方向.从出发点A 开始所走的路程为(单位:千米):14+,9-,8+,7-,13+,6-,15+,5-.(1)请你帮忙确定交警最后所在地相对于A 地的方位?(2)若汽车每千米耗油0.21升,如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?22.阅读材料,回答问题:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当0a ≥时a a =,如22=,21211-=-=;当0a ≤时,a a =-,如22-=,()1212211-=--=-=.根据以上信息完成下列问题: (1)75-=__________;3.14π-=__________;(2)计算:111111111111112324354657687-+-+-+-+-+-+-. 23.同学们都知道()73--表示7与()3-之差的绝对值,也可理解为7与3-两数在数轴上所对的两点之间的距离,试探索:(1)()73--= ,25x +=,则x = ;(2)找出所有符合条件的整数x ,使得123x x ++-=成立的整数是 .(3)由以上探索猜想,对于任何有理数x ,36x x -++是否有最小值?如果有,写出最小值;如果没有,说明理由.24.已知数轴上两点A 、B 对应的数分别为1-、3,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,点B 的距离相等,求出x 的值;(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为6?若存在,请求出x 的值;若不存在,说明理由;(3)当P 到A 、B 两点中一点的距离是到另一点距离的2倍,请直接写出x 的值.。
2024-2025学年七上数学第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1-2章。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.5的相反数是( )A .5B .5-C .15D .15-【答案】B【分析】本题主要考查了求一个数的相反数,根据只有符号不同的两个数互为相反数进行求解即可.【详解】解:5的相反数是5-,故选:B .2.将如图的长方形沿着对称轴旋转一周,可以得到一个( )A .长方体B .圆锥C .圆柱【答案】C【分析】本题考查了点、线、面、体的性质.根据面动成体,以及圆柱的特征即可解答.【详解】解:将如图的长方形沿着对称轴旋转一周,可以得到一个圆柱,故选:C .3.如果向南走10米记作10+米,那么向北走5米记作( )米A .5+B .15+C .0D .5-【答案】D【分析】本题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵向南走10米记作10+米,∴向北走5米记作5-米,故选:D .4.如图,与A 相对的面是( ).A .1B .2C .3D .4【答案】C【分析】本题考查了正方体展开图的相对面,解题的关键是掌握正方体展开图相对面的特征:隔一个或成Z 字端.【详解】解:A 和3在同一排,且中间只隔一个面,所以与A 相对的面是3.故答案为:C .5.在()22-,()22201-,2-,0,()2--中,负数的个数有( ).A .1个B .2个C .3个D .4个【答案】A【分析】本题考查了化简多重符号,有理数的乘方以及负数的概念,小于0的数为负数,先运用有理数的乘方化简各数,再与0比较大小,即可作答.【详解】解:()2240-=>,()2220101=>-,()220--=>,20-<∴负数的个数有1个故选:A6.如图,有一个正方体纸盒(无盖),将其展开成平面图形,这个平面图形是( ).A .B .C .D .【答案】C【分析】此题考查正方体展开图,由图可以看出,沿“W ”的三边剪开,且与“W ”相连的一边只有一边是剪开的,据此即可作出选择.关键是看清沿“W ”的几边剪开,与“W ”相连的一边只有几边是剪开的.【详解】解:如图:一个无盖的正方体纸盒,下底标有字母“W ”,沿图中虚线将其剪开,展开成平面图形.这个平面图形应该是 .故选:C .7.2024年4月25日,叶光富、李聪、李广苏乘坐速度约为每小时28080000m 的神舟十八号飞船去 太空轮换回杨洪波、唐胜杰、江新林三位宇航员.其中28080000用科学记数法表示为( )A .72.80810-´B .72.80810´C .82.80810-´D .32.80810´8.如图所示,几何体截面的形状是( )A.B.C.D.【答案】B【分析】根据几何体长方体,进行截面即可判断形状.本题考查了截一个几何体的应用,目的是培养学生的空间想象能力和动手操作能力.【详解】解:截面的形状是长方形.B选项是长方形故选:B.9.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是().A.6B.8C.7D.5【答案】C【分析】本题考查的是几何体的展开图,想想正方体展开图的形状;根据题目中所给的三幅图,可推断出数字1与2、4、5、6相邻,从而可知与1相对的数字是3;根据前两幅图,结合“1对面的数字是3”,可推出:2与1、3、4、5相邻,从而可知与2相对的数字是6;据此可知与5相对的数字是4,从而可求出1和5对面的数字之和.【详解】解:∵第一幅图中数字1相邻的数是:2和5;第二幅图中数字1相邻的数是:2和4;第三幅号图中数字1相邻的数是:4和6,∴正方体中与数字1相邻的数是:2、4、5、6,∴数字1对面的数字是:3;∵第一幅图中数字2相邻的数是:1和5;第二幅图中数字2相邻的数是:1和4;且数字2与数字1对面的数字也相邻即与数字3相邻,∴正方体中与数字2相邻的数是:1、3、4、5,∴数字2对面的数字是:6,∴数字5对面的数字是:4,∴数字1和5对面的数字和是:347+=故选:C .10.又到了荔枝成熟的季节,家住宝安的张华同学想给远在老家的亲人们寄一些荔枝,某快递公司规定每件重量不超标的普通小件包裹的收费标准如下:首重续重10元/千克6元/千克说明:①单件包裹重量不超过5千克;②运费计算方式:首重运费+续重´续重运费, 首重为1千克,超过1千克即要续重,续重以1千克为一个计重单位(不足1千克按1千克计算)例如:寄出的包裹为3.7千克,则总运费为106328+´=元.若张华想要寄7.5千克的荔枝回老家,在不考虑保价及其它优惠活动的情况下,至少需要付运费( )元.A .46B .52C .56D .60【答案】C【分析】本题考查了列代数式,根据表中给出的运费计算方式应当分5千克和2.5千克,然后计算运费即可,解题的关键是读懂题意,理解表中给出的运费计算方式.【详解】解:张华想要寄7.5千克的荔枝回老家,根据表中给出的运费计算方式应当分5千克和2.5千克,则总运费为()()106511063156+´-++´-=(元),故选:C .第Ⅱ卷二、填空题:本题共8小题,每小题3分,共24分。
2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥 4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A 点M B. 点N C. 点P D. 点Q5. 下列运算中,错误的是( ) A. ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数的和为0,则它们必定互为相反数D. 倒数是它本身的数只有17. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的.面展开图可能是( )A. B. C. D. 9. 有理数,a b 在数轴上的位置如图所示,则化简a b a −+的结果为( )A. bB. b −C. 2a b −−D. 2a b −10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1112=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A 3 B. 23 C. 12− D. 无法确定二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C表示.的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 17. 计算: (1)1564358−÷×; (2)35344 +−−−−; (3)()()0.350.60.25 5.4+−++−;(4)()457369612 −×−+− ; (5)18991819−×; (6)22218134333 ×−+×−×. 四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,.19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.21 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km ,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情.的况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm ,求出小明所搭的几何体的表面积(包括底面).23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−【答案】D【解析】【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小,进行比较判断即可. 【详解】解:53 1.51−>−>−>− 53 1.51∴−<−<−<−故选D .【点睛】本题考查了有理数比较大小,解决本题的关键是掌握有理数间的大小比较方法. 2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 的值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值. 根据绝对值大于1的数,用科学记数法表示为10n a ×,其中110a ≤<,n 的值为整数位数少1,即可得出结果.【详解】解:3150000000大于1,用科学记数法表示为10n a ×,其中 3.15a =,9n =, 故选:B .3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥【答案】D【解析】【详解】解:根据有四个三角形的面,且有8条棱,可知是四棱锥,而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A. 点MB. 点NC. 点PD. 点Q【答案】D【解析】【分析】本题考查了数轴、相反数以及绝对值的意义,解题的关键是确定原点的位置.由“点M ,N 表示的有理数互为相反数”可知原点在点M 与点N 的中点,再根据离原点越远,绝对值越大即可解答.【详解】 点M ,N 表示的有理数互为相反数, ∴原点在点M 与点N 的中点,根据数轴可知,点Q 到原点的距离最大,即点Q 的绝对值最大,故选:D5. 下列运算中,错误的是( )A ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=【答案】A【解析】 【分析】本题考查有理数的除法.掌握有理数的除法运算的法则是解题关键.根据有理数的除法运算法则逐项计算即可. 【详解】()1115555 ÷−=×−,故A 错误,符合题意; ()()()15522 −÷−=−×−,故B 正确,不符合题意; ()18484 ÷−=×−,故C 正确,不符合题意; 080÷=,故D 正确,不符合题意..6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数和为0,则它们必定互为相反数D. 倒数是它本身的数只有1【答案】C【解析】【分析】分别利用有理数的定义、绝对值的性质、有理数的加法法则、倒数的定义得出即可.【详解】解:A 、一个有理数可能是正数、0、负数,故此选项错误;B 、绝对值等于它本身的数是非负数,故此选项错误;C 、若两个有理数的和为0,则它们必定互为相反数,此选项正确;D 、倒数等于它本身的数有:±1,故此选项错误.故选:C .【点睛】此题主要考查了有理数的定义、绝对值的性质、有理数的加法、倒数,正确区分它们是解题关键.7. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 【答案】A【解析】【分析】本题考查了相反数的定义,有理数的乘方以及化简绝对值,先分别算出每个选项的值,再结合相反数的定义进行逐个比较分析,即可作答.【详解】解:A 、229(33)9, ,它们是互为相反数,符合题意,故该选项是正确的; B 、223939−==,,它们不是互为相反数,不符合题意,故该选项是错误的; C 、2211113939−== ,,它们不是互为相反数,不符合题意,故该选项是错误的; D 、223939−−=−−=−,,它们不是互为相反数,不符合题意,故该选项是错误的;故选:A .8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的面展开图可能是()A. B. C. D.【答案】D【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∵相对面上的两数之和为7,∴3与4相对,5与2相对,6与1相对观察选项,只有选项D符合题意.故选D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 有理数,a b在数轴上的位置如图所示,则化简a b a−+的结果为()A. bB. b−C. 2a b−− D. 2a b−【答案】A【解析】【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】由数轴得:0a b<<,即0a b−<则原式b a a b=−+=故选:A【点睛】本题考查了数轴和绝对值,解答此题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质进行化简.10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1121=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A. 3B. 23C. 12−D. 无法确定 【答案】C【解析】【分析】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出2a 、3a 、4a ,找出数字变化的规律.根据规则计算出2a 、3a 、4a ,即可发现每3个数为一个循环,然后用2024除以3,即可得出答案.【详解】解:由题意可得,13a =,211213a =−=−, 3121312a == −−, 413213a ==−, …,由上可得,每三个数一个循环,202436742÷=⋅⋅⋅,∴202412a =−. 故选:C . 二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.【答案】面动成体【解析】分析】根据点动成面、面动成体原理即可解答.【详解】解:硬币桌面上快速地转动时,看上去像球,这说明了面动成体.【在故答案为:面动成体.【点睛】本题主要考查了面动成体,这是面动成体的原理在现实中的具体表现.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.【答案】7【解析】【分析】本题主要考查了从不同方向看几何体,从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,得出组成这个几何体的小正方体的个数最少有7个.【详解】解:从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,∴组成这个几何体的小正方体的个数最少有7个,∴n 的最小值为7,故答案为:7.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.【答案】12【解析】【分析】根据题中“数对”的新定义,求出所求即可.【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.【答案】5【解析】【分析】根据绝对值的意义和正负数的意义,求出x 和y 的值然后求解即可. 【详解】∵2x =, 3y =,∴xx =2或-2,3y =或-3,∵0xy <,∴x 和y 异号,又∵0x y +<,∴xx =2,3y =−,∴()235x y −=−−=,故答案为:5.【点睛】本题考查了绝对值和正负数的意义,解决本题的关键是正确理解题意,熟练掌握绝对值的意义.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C 表示的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.【答案】6【解析】【分析】先由|2||1|0a b +++=,根据绝对值的非负性,得出a 和b 的值,根据倒数的定义,得出点C 表示的数,再根据对折的要求,得出对折点,从而根据对折的性质得出与点B 重合的点表示的数.【详解】解:∵|2||1|0a b +++=,|2|0a +≥,|1|0b +≥, ∴20a +=,10b +=, ∴2a =−,1b =−,∵点C 表示的数是17的倒数, ∴点C 表示的数是7,∵7(2)9−−=, 将数轴折叠,使得点A 与点C 重合, ∴对折点表示的数为:97 2.52−=, ∴[]2.5(2.5(1) 2.5 3.56+−−=+=.【点睛】本题考查了绝对值非负性、倒数的定义,对折的性质等基础知识,根据题意正确地用数学语言表示相关概念,是解题的关键.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 【答案】(1)10−(2)22(3)16−(4)52− 【解析】(1)先计算乘方,再计算乘法,最后计算加法即可;(2)先计算乘方,再计算除法,最后计算减法即可;(3)先计算除法,再计算乘法即可;(4)先计算乘方,再计算乘除法,最后计算减法即可.【小问1详解】解:()()2832+−×− ()892=+×−818=−10=−;【小问2详解】解:()()22100223 ÷−−−÷−的()1004232=÷−−×−25322=;【小问3详解】解:()()3434⎛⎫⎪-÷-⨯- ⎪⎝⎭()()4433=−×−×−16=−;【小问4详解】 解:231114332−÷−−×−1811394=−÷−×−132=−+52=−.17. 计算:(1)1564358−÷×;(2)35344+−−−− ;(3)()()0.350.60.25 5.4+−++−;(4)()457369612−×−+− ;(5)18991819−×;(6)22218134333×−+×−× .【答案】(1)252−(2)1−(3) 5.4−(4)7(5)1179919− (6)6−【解析】【分析】本题考查了有理数的混合运算,乘法运算律,绝对值等知识.熟练掌握有理数的混合运算,乘法运算律,绝对值是解题的关键.(1)先进行除法运算,然后进行乘法运算即可;(2)先去括号,计算绝对值,然后进行加减运算即可;(3)利用乘法运算律计算求解即可;(4)利用乘法运算律计算求解即可;(5)利用乘法运算律计算求解即可;(6)利用乘法运算律计算求解即可.【小问1详解】 解:1564358−÷× 5564168=−×× 252=−; 【小问2详解】 解:35344 +−−−− 35344=+− 23=−1=−;【小问3详解】解:()()0.350.60.25 5.4+−++−0.350.60.25 5.4−+−()0.350.250.6 5.4=+−−5.4=−;【小问4详解】解:()457369612 −×−+−()()()4573636369612 =−×−+−×−−×163021=−+7=;【小问5详解】 解:18991819−× 11001819 =−−×1100181819=−×+× 18180019=−+ 1179919=−; 【小问6详解】 解:22218134333 ×−+×−× ()2181343=×−+− ()293=×− 6=−四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,. 【答案】(1)3−,3.5,2, 0,0.5;300.52 3.5−<<<<(2)见详解,443.50753−<−<<< 【解析】【分析】本题考查了有理数大小比较,数轴,准确熟练地进行计算是解题的关键.(1)先根据数轴得出各点代表的有理数,然后根据数轴比较有理数的大小即可.(2)先在数轴上把各数表示出来,然后根据数轴比较有理数的大小即可.【详解】解:(1)点A 表示的有理数为:3−,点B 表示的有理数为:3.5,点C 表示的有理数为:2,点D 表示的有理数为:0,点E 表示的有理数为:0.5,用<将它们连接起来为:300.52 3.5−<<<<.(2)各数在数轴上的表示如图:大小如下:443.50753−<−<<< 19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26) =6÷(﹣16) =6×(﹣6)=﹣36【点睛】本题考查有理数的混合运算,解答本题的关键是掌握乘法分配律.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.【答案】(1)36 (2)330【解析】【分析】本题主要考查了图形类的规律探索,根据已知图形的面积得出变化规律,第n 个几何体的表面积为:()31n n +是解题的关键.(1)只需要写出第3个几何体露在外面的小正方形面即可得到答案;(2)根据前3个几何体的表面积找到规律第n 个几何体的表面积为:()31n n +,在代入10n =进行求解即可.【小问1详解】解:由题意得,第3个几何体的表面积是66666636+++++=;【小问2详解】解:第1个几何体的表面积为()31116××+=, 第2个几何体的表面积为()322118××+=, 第3个几何体的表面积是()333136××+=, ......,以此类推,第n 个几何体的表面积是()31n n +,∴第10个几何体的表面积为()310101330××+=. 21. 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市的什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?【答案】(1)图详见解析,小明家在超市西边,距超市5km;(2)8km;(3)19km.【解析】【分析】(1)根据题意画出数轴,根据数轴信息即可知小明家在超市的方向;(2)根据题意列出算式,计算即可得到结果;(3)将行驶的路程相加即可得到结果.【详解】(1)如图,小明家在超市西边,距超市5km;(2)小明家距小李家3-(-5)=8(千米).答:小明家距小李家有8千米.(3)3+1.5+9.5+5=19(千米).答:货车一共行驶了19千米.【点睛】此题考查了有理数加减混合运算的应用,弄清题意是解本题的关键.22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm,求出小明所搭的几何体的表面积(包括底面).【答案】(1)见解析(2)①10个;②表面积为3800平方厘米【解析】【分析】本题主要考查了正方体的展开图,求几何体的表面积:(1)根据正方体展开图“33型”有1种,“222型”有1种,“141型”有6种,“132型”有3种,结合已给图形进行求解即可;(2)①根据从不同方向看的图形分别确定每个位置小正方体的个数即可得到答案;②根据几何体表面积计算公式求解即可.【小问1详解】解:如图所示,即为所求;【小问2详解】解:①如图所示,每个位置的小立方体数如下所示:+++++=个正方体盒子组成这个几何体;∴小明用了23111210第16页/共17页 ②()()26662210103800cm ++×+××=,答:表面积为3800平方厘米. 23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.【答案】(1)0 (2)<;>;<(3)a【解析】【分析】(1)根据相反数的意义,即可求解;(2)观察数轴得:0c b a <<<,且c b a >=,即可求解; (3)先根据绝对值的性质化简,再合并,即可求解.【小问1详解】解:∵||||a b =,且a ,b 所对应的点分别位于原点的两侧,∴a ,b 互为相反数,∴0a b +=;故答案为:0【小问2详解】解:观察数轴得:0c b a <<<,且c b a >=, ∴0b c +<;0a c −>;0ac <;故答案为:<;>;<【小问3详解】解:|2|||||||c b c a b c −+−+−+−()2c b a c b c =−−−+−+−2c b a c b c −+−+−a =.【点睛】本题主要考查了数轴,绝对值的性质,整式的加减,利用数形结合思想解答是解题的关键.。
2024-2025学年七年级数学上学期第一次月考卷(北京版2024)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:北京版2024七年级上册第1章。
5.难度系数:0.9。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如果a 与2互为相反数,那么a 等于( )A .2B .12-C .12D .2-2.习近平总书记指出“善于学习,就是善于进步”.“国家中小学智慧云平台”上线的某天,全国大约有5450000人在平台上学习,将5450000 )A .54510´B .0.54510´C .65.4510´D .854.510´3.下列说法正确的是( )A .2.9万精确到十分位B .42.910´精确十分位C .2.9精确十分位D .12950精确到万位4.下列说法正确的是( )A .0是最小的整数B .正整数和负整数统称为整数C .0的相反数、绝对值、倒数仍然都是0D .互为相反数的两个数的绝对值相等5.下列式子中正确的是( )A .﹣24=﹣16B .﹣24=16C .(﹣2)4=8D .(﹣2)4=﹣166.设a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于自身的有理数,则a -b +c 的值为( )A .0B .-2C .0或3D .0或-27.下面的说法中,正确的个数是( )①若a+b=0,则|a|=|b|②若a <0,则|a|=﹣a③若|a|=|b|,则a=b④若a 为有理数,则a 2=(﹣a )2A .1个B .2个C .3个D .4个8.已知有理数a ,b ,c 在数轴上的对应点的位置如图所示,且满足a c b <<,则下列各式:①b c a ->->-;②0ab ac ab ac-=;③a b +=a b +,其中正确的有( )A .0个B .1个C .2个D .3个第Ⅱ卷二、填空题:本题共8小题,每小题2分,共16分。
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)考前须知:1.本卷试题共24题,单选6题,填空10题,解答8题。
2.测试范围:第一章~第二章(苏科版2024)。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a 一定是负数,其中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a 不一定是负数,故④不正确,故选:B .【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.3.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.4.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.5.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A6.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)7.将数据52.93万用科学记数法表示为.【答案】5.293×105【分析】本题主要考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.【详解】解:52.93万=529300=5.293×105.故答案为:5.293×105.8.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.9.绝对值大于1且不大于5的负整数有.【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.10.下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京早的点时数):城市纽约伦敦东京巴黎时差/时―13―8+1―7如果北京时间是9月13日17时,那么伦敦的当地时间是9月日时.【答案】13 9【分析】本题考查了正负数在实际生活中的应用.这是一个典型的正数与负数的实际运用问题,我们应联系现实生活认清正数与负数所代表的实际意义.此题中正数表示在北京时间向后推几个小时,即加上这个正数;负数表示向前推几个小时,即加上这个负数,据此解答即可.【详解】解:17―8=9,∵―8表示向前推8个小时,∴北京时间是9月13日17时,那么伦敦的当地时间是9月13日9时,故答案为:13,9.11.如图,将一刻度尺放在数轴上.若刻度尺上0cm和5cm对应数轴上的点表示的数分别为―3和2,则刻度尺上7cm对应数轴上的点表示的数是.【答案】4【分析】本题考查数轴的概念.由数轴的概念即可求解.【详解】解:∵0cm和5cm对应数轴上的点表示的数分别为―3和2,∴数轴的单位长度是1cm,∴原点对应3cm的刻度,∴数轴上与7cm刻度对齐的点表示的数是4,故答案为:4.12.如图所示是计算机程序计算,若开始输入x=―2,则最后输出的结果是.【答案】16【分析】本题主要考查了与程序流程图有关的有理数计算.先代入x=―2,计算出结果,若结果不大于10,则把计算的结果重新输入计算,如此往复直至计算的结果大于10即可.【详解】解:―2+4―(―2)=―2+4+2=4<10,4+4―(―2)=4+4+2=10,10+4―(―2)=10+4+2=16>0,故答案为:16.13.若(2a―1)2与2|b―3|互为相反数,则a b=.【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a―1)2与2|b―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a,b.【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.若a |a |+b |b |+c |c |+d |d |=2,则|abcd |abcd 的值为 .【答案】-1【分析】先根据a |a |+b |b |+c |c |+d |d |=2,a |a |,b |b |,c |c |,d |d |的值为1或-1,得出a 、b 、c 、d 中有3个正数,1个负数,进而得出abcd 为负数,即可得出答案.【详解】解:∵当a 、b 、c 、d 为正数时,a |a |,b |b |,c |c |,d |d |的值为1,当a 、b 、c 、d 为负数时,a |a |,b |b |,c |c |,d |d |的值为-1,又∵a |a |+b |b |+c |c |+d |d |=2,∴a 、b 、c 、d 中有3个正数,1个负数,∴abcd 为负数,∴|abcd |abcd =-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a 、b 、c 、d 中有3个正数,1个负数,是解题的关键.15.新定义如下:f(x)=|x ―3|, g(y)=|y +2|; 例如:f(―2)=|―2―3|=5,g(3)=|3+2|=5;根据上述知识, 若f(x)+g(x)=6, 则x 的值为 .【答案】72或―52【分析】本题考查了新定义,求代数式的值,化简绝对值,绝对值方程,正确理解新定义是解题的关键.根据f(x)+g(x)=6得出含绝对值的方程,解方程可得答案.【详解】解:由题可得:|x ―3|+|x +2|=6,当x ≥3时,x ―3+x +2=6,解得x =72;当―2<x <3时,3―x +x +2=6,方程无解;当x ≤―2时,3―x ―x ―2=6,解得x =―52;故答案为:72或―52.16.定义一种关于整数n 的“F ”运算:(1)当n 是奇数时,结果为3n +5;(2)当n 是偶数时,结果是n 2k (其中k 是使n 2k 是奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74,……;若n =9,则第2023次运算结果是 .【答案】8【分析】此题考查的是探索规律题.由题意所给的定义新运算可得当n =9时,第一次经F 运算是32,第二次经F 运算是1,第三次经F 运算是8,第四次经F 运算是1,⋯,由此规律可进行求解.【详解】解:由题意n =9时,第一次经F 运算是3×9+5=32,第二次经F 运算是3225=1,第三次经F 运算是3×1+5=8,第四次经F 运算是823=1,⋯;从第二次开始出现1、8循环,奇数次是8,偶数次是1,∴第2023次运算结果8,故答案为:8.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―(+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)= 1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a|=5,|b|=3,且|a―b|=b―a,可以得到a、b的值,然后代入所求式子计算即可;(2)根据a与b互为相反数,c与d互为倒数,x的绝对值等于2,可以得到a+b=0,cd=1,x=±2,然后代入所求式子计算即可.【详解】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,∵|a―b|=b―a,∴b≥a,∴a=―5,b=±3,当a=―5,b=3时,a―b=―5―3=―8,当a=―5,b=―3时,a―b=―5―(―3)=―5+3=―2,由上可得,a+b的值是―8或―2;(2)∵a与b互为相反数,c与d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴当x=2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN 保持长度不变).(1)当t =20时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ =PM 时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t 的代数式表示点运动后所表示的数.(1)当t =20时,根据起点位置以及运动方向和运动速度,即可得点M 表示的数为8、点Q 表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t=18.25或t=19.75,∴重合部分长度为1.5时所对应的t的值是5.5或8.5或18.25或19.75.。
2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七上第一章~第二章。
5.难度系数:0.8。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列说法中不正确的是( ).A .-3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .-2 000既是负数,也是整数,但不是有理数D .0是正数和负数的分界2.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出100元记作100−元,那么80+元表示( ) A .支出80元B .收入80元C .支出20元D .收入20元3.在数轴上表示2−与8的点的距离是( ) A .6B .10C .10−D .15−4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075.将()()()3652−−+−−+−写成省略括号和加号的形式是( )A .1B .1−C .10D .10−8.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,例如将2(101),2(1011)换算成十进制数应为: 2102(101)1202124015=×+×+×=++=;32102(1011)12021212802111=×+×+×+×=+++=.按此方式,将二进制2(1001)换算成十进制数的结果为( ) A .17B .9C .10D .189.下列说法中正确的个数有( ).①最大的负整数是1−;②相反数是本身的数是正数;③有理数分为正有理数和负有理数:④数轴上表示a −的点一定在原点的左边:⑤几个有理数相乘,负因数的个数是奇数个时,积为负数. A .1个B .2个C .3个D .4个abc19.(9分)上午八时,张、王两同学分别从A、B两地同时骑摩托车出发,相向而行.已知张同学每小时比王多行2千米,到上午十时,两人仍相距36千米的路程.相遇后,两人停车闲谈了15分钟,再同时按各自的方向和原来的速度继续前进,到中午十二时十五分,两人又相距36千米的路程.A、B两地间的路程有多少千米?20.(10分)操作与探索:请你自己画出数轴并表示有理数:52−,3.①大于3−并且小于3的整数有哪几个?②在数轴上表示到1−的点的距离等于2个单位长度的点表示的数是什么?21.(10分)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”, ()()()()3333−÷−÷−÷−记作()3−④,读作:“()3−的圈4次方”.一般地,把n 个a 相除记作a ⓝ,读作“a 的圈n 次方”.22.(12分)递等式计算,能简便计算的要简便计算:×,请在下面长方形内写出相应的算式.请你按照小布的方法计算2.4 2.1有理数x的点与表示6的点之间的距离.这种数形结合的方法,可以用来解决一些问题.如图,已知数之间的距离PA=________(用含2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2024-2025学年七年级数学上学期第一次月考卷(苏科版2024)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题和解答题时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版2024七年级上册第1章-第2章。
5.难度系数:0.8。
一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在数学史上,中国古代著作《九章算术》是最早采用正负数表示相反意义量的.如果公元前500年记作500-,那么公元2024年记作( )A .2024-B .2024C .1524D .25242.下列各组数中,互为相反数的是( )A .()7-+与()7+-B .(0.5)-+与()0.5+-C .114æöç÷-+ç÷èø与45æö--ç÷èøD .()0.01+-与1100æö--ç÷èø3.2024年6月25日14时07分,嫦娥六号返回器准确着陆于内蒙古四子王旗预定区域,标志着探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回.嫦娥六号返回器在距地面高度约120公里处,以接近第二宇宙速度(约为112000米/秒)高速在大西洋上空第一次进入地球大气层,实施初次气动减速.其中112000用科学记数法可表示为( )A .311210´B .411.210´C .51.1210´D .61.1210´4.将()()()()5632--+++--+写成省略加号后的形式是( )A .5632+--B .5632-+--C .5632++-D .5632-+-+5.实数,a b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0ab >B .0a b +<C .a b >D .0a b -<6.下列计算不正确的是( )A .()212343--´-+=-B .()2123415--´--=-C .()2(1)23415--´--=D .()2(1)2341--´-+=-7.如图,正六边形ABCDEF (每条边都相等)在数轴上的位置如图所示,点A 、F 对应的数分别为2-和1-,现将正六边形ABCDEF 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E 所对应的数为0,连续翻转后数轴上2025这个数所对应的点是( )A .A 点B .B 点C .C 点D .F 点8.把长为2022个单位长度的线段AB 放在单位长度为1的数轴上,则线段AB 能盖住的整点有( )A .2021个B .2022个C .2021或2022个D .2022或2023个9.数轴上的三点A 、B 、C 所表示的数分别为a 、b 、c 且满足0a b +>,0a c ×<,则原点在( )A .点A 左侧B .点A 点B 之间(不含点A 点B )C .点B 点C 之间(不含点B 点C )D .点C 右侧10.数形结合是解决一些数学问题的重要思想方法,比如12x x -在数轴上表示数1x ,2x 对应的点之间的距离.现定义一种“H 运算”,对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和.例如:对1-,1,2进行“H 运算”,得1112126--+--+-=.下列说法:①对m ,1-进行“H 运算”的结果是3,则m 的值是4-;②对n ,3-,5进行“H 运算”的结果是16,则n 的取值范围是35n -<<;③对a a b c ,,,进行“H 运算”,化简后的结果可能存在6种不同的表达式.其中正确的个数是( )A .0B .1C .2D .3二、填空题:本题共8小题,每小题4分,共32分。
2024-2025学年河北省石家庄六中七年级上学期第一次数学月考卷一、单选题1.一种面粉的质量标识为“250.25±千克”,则下列面粉中合格的有( ) A .25.28千克 B .25.18千克 C .24.69千克 D .24.25千克 2.月球表面的白天平均温度零上126C ︒,记作+126C ︒,夜间平均温度零下150C ︒,应记作( )A .+150C ︒B .150C -︒ C .+276C ︒D .276C -︒ 3.下列四个数表示在数轴上,它们对应的点中,离原点最近的是( )A .1-B .1.1C .0.2-D .0.34.下列说法中,错误的是( )A .互为倒数的两个数积为1B .115-与2.2互为相反数 C .若两个数互为相反数,则它们的绝对值相等D .0.3的倒数是0.3-5.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .6.如图,在数轴上,点A 、B 分别表示数a 、b ,且a +b =0,若AB =8,则点A 表示的数为( )A .﹣4B .0C .4D .87.若3m =,5n =,且m ,n 异号,则m n +的值为( )A .8或2B .2或2-C .2D .2-8.已知等式()44--W的值为0,则“□”内应填入的运算符号为( ) A .+ B .- C .⨯ D .÷9.下列各算式中,结果是负数的是( )A .()238--+B .()31--+C .()221--D .()3210-+ 10.有一只蜗牛从数轴的原点出发,先向左(负方向)爬行9个单位长度,再向右爬行3个单位长度,用算式表示上述过程与结果,正确的是( )A .936-+=-B .9312--=-C .936-=D .9312+=11.下列各数中:24-,0,2024(1)-,(6)--,35--中,非负数有( ) A .2个 B .3个 C .4个D .5个 12.通常情况下,海拔高度每增加1km ,气温就降低大约6C ︒(气温降低为负),某校七年级科技兴趣小组在海拔高度为1km 的山腰上,测得气温为12C ︒,此山海拔高度为5500m 处的气温大约是( )A .21C -︒B .15C -︒ C .27C -︒D .24C -︒13.如图,将刻度尺放在数轴上,让3cm 和5cm 刻度线分别与数轴上表示2和4的两点重合对齐,则数轴上与0cm 刻度线对齐的点表示的数为( )A .2-B .0C .1-D .114.下列说法:①在一个数的前面加上负号,就变成了这个数的相反数;②正整数、负整数都是有理数;③数轴上在原点左侧的数,离原点越远,数越小;④两个数的和一定大于其中的任意一个加数.其中正确的有( )A .①②③B .③C .①②④D .①②③④15.如果a 、b 互为相反数c 、d 互为倒数,m 的绝对值是2,那么a+m+b ﹣cd 的值( )A .1B .﹣3C .1或﹣2D .1或﹣316.如图,下列式子成立的是( )A .a ﹣b >0B .a+b <0C .0<﹣a <bD .a <﹣b <0二、填空题17.﹣3的相反数是.18.在数轴上,在原点的左边,距原点6个单位长度的点表示的数为.19.若x ,y 为有理数,且()2|1|20x y -++=,则x =,y =.20.用符号[,]a b 表示a ,b 两数中的较大者,用符号(,)a b 表示a ,b 两数中的较小者,则:(1)15,2⎡⎤-⎢⎥⎣⎦的值为; (2)111,0,32⎡⎤⎛⎫--+- ⎪⎢⎥⎣⎦⎝⎭的值为.三、解答题21.把下列各数填入相应的大括号里.115,1,0,6,125.73,0.3,3,5,0.72.24---+- 正数集合:{ …}整数集合:{ …}负数集合:{ …}分数集合:{ …}22.计算:(1)()()3 5.22 5.2-+-+-+ (2)311.53 4.2531242⎛⎫⎛⎫---+-- ⎪ ⎪⎝⎭⎝⎭+ (3)()12342637⎛⎫-+⨯- ⎪⎝⎭(4)()()()2225325⎡⎤-⨯-÷-+⨯-⎣⎦23.某超市销售草莓,对一个月(按四周计算)的实际销售情况进行了统计.售价为每千克10元.现以每周的销售量300kg 为标准,超过或不足的数量分别用正数、负数来表示,记录如下:(1)在这个月内,草莓销量最高的是第________周,这一周的销量是_________千克.(2)这个月草莓实际销售数量是多少千克?(3)已知这种草莓的进价是每千克8元,则这家超市本月实际销售草莓的利润是多少元? 24.阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,如图,线段()213AB ==---;线段()541BC ==--.问题:(1)数轴上点M 、N 代表的数分别为4-和3,则线段MN =_______;(2)数轴上点E 、F 代表的数分别为5-和1-,则线段EF =_______;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为3-,求另一个点表示的数. 25.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,()()()()3333-÷-÷-÷-等.类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把a a a a ÷÷÷L (n 个a )(a ≠0)记作a ,读作“a 的圈n 次方”初步探究:直接写出计算结果:2=③________,1=2⎛⎫- ⎪⎝⎭③________; 深入思考:我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式, ()3-的圈4次方=________.5的圈5次方=________;12⎛⎫- ⎪⎝⎭的圈6次方=________. (2)算一算:()324282÷+-⨯③。
C.憎恶zâng 藤蔓wàn 戏谑xuâ潦倒liáo
D.蹒珊pán婀娜nà譬如pì屹立yì
3、下列词语中有四个错别字,把它们用横线出来,然后把正确的字写在后面。
(2分)
老树寒鸭津津乐道万事如意水天相接
落日残霞月残星疏大言不惭前扬后合
百无聊赖肆意忘为如法炮制渚清沙白
风姿绰约翩翩起舞惴惴不安莫明其妙
3、请选出下面加点字解释有误的一项( )(2分)
A.企望(期望)鉴赏(鉴别欣赏)雷霆万钧(形容威力很大)
B.辟头(开头)方正(方方正正)人声鼎沸(形容人声喧闹)
C.黄花 (菊花) 寂寥 (寂寞凄凉) 死乞白赖 (指纠缠个没完)
D. 敛(收藏)絮说 (罗嗦地说) 人迹罕至(少有人来)
4、下面各句中表达无误的一项是()(2分)
A.同学们端正了学习目的。
B.他夺得百米赛跑第一名的桂冠。
C.在会上,他虚心听取大家的意见。
D.读了这篇文章之后,对我的教育太大了。
5、根据课文内容选择正确词语,将其序号填在横线上(3分)
开一块雪,出地面,用一支短棒起一面大的竹筛来,下面些秕谷,棒上系一条长绳,人远远地着,看鸟雀下来啄食,走到竹筛底下的时候,将绳子一,便罩住了。
( A.撒 B.支 C.扫 D.露 E.拉 F.牵)
6、下面的文学常识无误的一项是()(2分)
A.《〔越调〕天净沙秋思》的题目是《天净沙》,是一篇悲秋作品。
B. 鲁迅原名周树人,浙江绍兴人,伟大的文学家、思想家和政治家。
C.《山行》的作者杜牧,字牧之,唐朝诗人,与李商隐并称“李杜”。
D.《山海经》是我国古代一部地理名著,保存了不少上古的神话传说。
7、古诗句填空(12分)
(二)阅读下文,完成下列各题。
(19分)
新年临近,邮局工作人员罗茜在阅读所有寄给圣诞老人的1005封信时,发现只有一名叫约翰〃万古的10岁儿童没有向圣诞老人要给自己的礼物。
信中写道:“亲爱的圣诞老人,我想要的惟一的一样礼物就是给我妈妈一辆电动轮椅。
她不能走路。
两手也没有力气,不能再使用那辆两年前慈善机构赠予的手摇车。
我是多么希望她能到室外看我做游戏呀!您能满足我的愿望吗?爱你的约翰〃万古”。
罗茜读完信,禁不住落下泪来,她立即决定为居住在巴宁市的万古和他的母亲尽些力。
于是,她拿起电话。
接着奇迹般的故事就发生了。
她首先打电话给加州一家名为“行动自如”的轮椅供应商店。
商店的总经理又与位于纽约的轮椅制造商取得了联系。
这家公司当即决定送一辆电动轮椅给万古的母亲,并且在星期四送到,他们还在车身上放一个圣诞礼物的红蝴蝶结。
显然,他们是圣诞老人的支持者。
星期五,这辆价值3000美元的轮椅送到了万古和他妈妈居住的一座小公寓门前。
在场的有10多位记者和前来祝福的人们。
万古的妈妈哭了。
她说道:“这是我度过的最美好的圣诞节。
今后,我不再终日因居在家中了。
”她和儿子都是在1981年的一次车祸中致残的。
由于她的脊骨骨节破裂,她得依靠别人扶着坐上这辆灰白色的新轮椅,在附近停车场上进行试车。
赠送轮椅的福都拉斯公司的代表奈克〃彼得斯说:“这是一个一心想到妈妈而不只是自己的孩子。
我们感到,应该为他做些事。
有时,金钱并不意味着一切。
”
邮局工作人员同时也赠送给他们一些食品以及显微镜、喷气飞机模型、电子游戏机等礼物。
万古把其中一些食品装在匣内,包起来送给楼内的一个邻居。
对此,万古解释说:“把东西赠给那些需要的人们,会使我们感到快乐。
”妈妈说,应该时时如此,也许天使就是这样来考验人们的。
14、本文记叙的人称是什么?选择答案,将它的字母写在括号内()(2分)
A、第一人称
B、第二人称
C、第三人称
15、请你用一句话概括万古的心愿。
(不超过15个字)(3分)
16、人们被万古的“心愿”感动的原因是什么?请用原文回答。
(不超过12个字)(3分)
17、文中哪两件事表明了“金钱并不意味着一切”?请用简练的语言加以概括。
(4分)
18、文中加线词“惟一”修饰哪个词?有怎样的表达作用?(3分)
19、从下列各项中选择一个能准确表达文章中心的题目。
()(3分)
A、天使的礼物
B、母子情深
C、世界充满爱
D、万古的心愿
三、古诗赏析:
阅读下面课内文章,完成9-12题。
(8分)
〔越调〕天净沙秋思
马致远
枯藤老树昏鸦,
小桥流水人家,
古道西风瘦马。
夕阳西下,
________________。
20、在横线处把文章补充完整。
(1分)
21、用自己的语言说说“枯藤老树昏鸦,小桥流水人家”这两句话的意思。
(2分)
22、《天净沙秋思》运用了什么写法?描绘了一幅怎样的画面?表现了什么样的情感?(3分)
23、对这首曲的赏析,不恰当的一项是()(2分)
A.这首曲的题目叫"秋思","秋思"的意思是"秋天的思考"。
B."枯藤"句中的"枯藤"、"老树"是最有特征性的秋景,给人以萧条、寂寞、悲凉的感觉。
C."小桥"一句读来令人亲切,可仔细想去,却更增添了"断肠人"的愁绪。
D."断肠人"句中的"断肠人"是一位"离人","天涯"即"极远的地方"。
四、作文(35分)
在人生这漫长的道路中,会遇见许多难忘的一刻。
它们像一颗颗宝石,在我们的人生路上闪闪
参考答案
(三)22、C
23、请圣诞老人送给妈妈一辆电动轮椅。
24、万古一心想着妈妈而不只是自己。
25、罗茜尽力帮助万古和他的母亲,轮椅供应商和制造商给万古的母亲一辆电动轮椅。
26、“惟一”修饰礼物,强调只有一个,那就是希望圣诞老人送给妈妈一辆电动轮椅,表明了万古一心想着妈妈而不是自己。
27、C
答案:这首小令极其出色地运用了景物烘托的写法,渲染出萧瑟悲凉的意境,烘托出游子孤寂、悲凉的心境。