2020春浙教版八年级数学下册课件:第3章质量评估试卷(共39张PPT)
- 格式:ppt
- 大小:1.49 MB
- 文档页数:39
浙教版八年级数学下册单元质量检测卷(一)第3章数据分析初步姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共27题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.为了增强学生对新型冠状病毒的认识与防控能力,某学校组织了“抗击疫情,我们在行动”学生手抄报比赛活动.其中八年级五个班收集的作品数量(单位:幅)分别为:42,48,45,46,49,则这组数据的平均数是()A.44幅B.45幅C.46幅D.47幅2.某企业复工之后,举行了一个简单的技工比赛,参赛的五名选手在单位时间内加工零件的合格率分别为:94.3%,96.1%,94.3%,91.7%,93.5%.关于这组数据,下列说法正确的是()A.平均数是93.96% B.方差是0C.中位数是93.5% D.众数是94.3%3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,则成绩最稳定的是()A.甲B.乙C.丙D.丁4.一组数据6,7,9,9,9,0,3,若去掉一个数据9,则下列统计量不发生变化的是()A.平均数B.众数C.中位数D.方差5.某校为了解学生的课外阅读情况,随机抽取了一个班的学生,对他们一周的课外阅读时间进行了统计,统计数据如下表,则该班学生一周课外阅读时间的中位数和众数分别是()读书时间6小时及以下7小时8小时9小时10小时及以上学生人数 6 11 8 8 7A.8,7 B.8,8 C.8.5,8 D.8.5,76.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5 请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁7.下列说法正确的是()A.为了解长沙市中学生的睡眠情况,应该采用全面调查的方式B.一组数据1,5,3,2,3,4,8的众数和中位数都是3C.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖D.若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则乙组数据比甲组数据稳定8.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②9.众志成城,抗击疫情,救助重灾区.某校某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):100,45,100,40,100,60,155.下面有四个推断:①这7名同学所捐的零花钱的平均数是150;②这7名同学所捐的零花钱的中位数是100;③这7名同学所捐的零花钱的众数是100;④由这7名同学所捐的零花钱的中位数是100,可以推断该校全体同学所捐的零花钱的中位数也一定是100.所有合理推断的序号是()A.①③B.②③C.②④D.②③④10.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数,例如:M;max{﹣1,2,3}=3,max若M{4,x2,x+2}=max{4,x2,x+2};则x的值为()A.2或B.2或﹣3 C.2 D.﹣3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.若一组数据1,3,x,5,4,6的平均数是4,则这组数据的中位数是.12.数学期末总评成绩是将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学期末总评成绩是分.13.男子跳高的10名运动员成绩如表所示:成绩/m 1.50 1.60 1.65 1.70人数 2 4 2 2根据表中信息可以获知这些运动员的平均成绩为m.14.在一场比赛中,甲、乙两名射击手的5次射击成绩统计如图所示,分别记甲、乙两人这场比赛成绩的方差为S甲2,S乙2,则S甲2S乙2(填“>”或“<”).15.某次射击练习,甲、乙二人各射靶5次,命中的环数如表,通过计算可知==7,S=0.8,S=2,所以射击成绩比较稳定的是.甲射靶环数7 8 6 8 6乙射靶环数9 5 6 7 816.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是.17.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.18.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)M{(﹣2)2,22,﹣22}=;(2)若min{3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.为了增强学生的防疫意识,某校团委组织了一次“防疫知识”考试,考题共10题.考试结束后,学校团委随机抽查了20名考生的考卷,对考生的答题情况进行分析统计,发现所抽查的考卷中答对题量最少为7题,并绘制成如图所示的不完整的条形统计图,回答下列问题:(1)这20名考生每人答对题数的众数:,中位数:;(2)通过计算补全条形统计图.20.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?21.某校七年级甲班、乙班举行一分钟投篮比赛,每班派10名学生参赛,在规定时间内进球数不少于8个为优秀学生.比赛数据的统计图表如下(数据不完整):甲班乙班1分钟投篮测试成绩统计表甲班乙班平均数 6.5 a中位数b 6方差 3.45 4.65优秀率30% c根据以上信息,解答下列问题:(1)直接写出a,b,c的值.(2)你认为哪个班的比赛成绩要好一些?请简要说明理由.22.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分100 93.5 100% 70% 100 80分数段统计(学生成绩记为x)分数段0≤x<80 80≤x<85 85≤x<90 90≤x<95 95≤x≤100频数0 5 25 30 40 请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.23.某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.小知识难度系数的计算公式为:L=,其中L为难度系数,X为样本平均数,W为试题满分值.《考试说明》指出:L在0.7以上的题为容易题;在0.4﹣0.7之间的题为中档题;L在0.2﹣0.4之间的题为较难题.解答下列问题:(1)m=,n=,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率;(3)根据右侧“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题?24.2019年9月,在祖国母亲70华诞即将来临之际,某校团委组织全校2000名学生参加“中国共产党党史”知识大赛.大赛结束后,为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x取整数,最低分50分,满分100分)作为样本进行统计,制成如图不完整的统计图和如下不完整的频数分布表:频数分布表成绩x(分)频数(人)50≤x<60 1060≤x<70 3070≤x<80 4080≤x<90 n90≤x≤100 50根据所给信息,解答下列问题:(1)n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数落在哪个分数段?(4)若成绩在80分或80分以上为“优”,请你估计该校参加本次比赛的2000名学生中成绩为“优”的学生有多少人?25.我乡某校举行全体学生“定点投篮”比赛,每位学生投40个,随机抽取了部分学生的投篮结果,并绘制成如下统计图表.组别投进个数人数A0≤x<8 10B8≤x<16 15C16≤x<24 30D24≤x<32 mE32≤x<40 n根据以上信息完成下列问题.①本次抽取的学生人数为多少?②统计表中的m=.③扇形统计图中E组所占的百分比;④补全频数分布直方图.⑤扇形统计图中“C组”所对应的圆心角的度数.⑥本次比赛中投篮个数的中位数落在哪一组.⑦已知该校共有900名学生,如投进个数少于24个定为不合格,请你估计该校本次投篮比赛不合格的学生人数.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.为了增强学生对新型冠状病毒的认识与防控能力,某学校组织了“抗击疫情,我们在行动”学生手抄报比赛活动.其中八年级五个班收集的作品数量(单位:幅)分别为:42,48,45,46,49,则这组数据的平均数是()A.44幅B.45幅C.46幅D.47幅【答案】C【分析】根据平均数的定义列式计算即可.【解答】解:(42+48+45+46+49)÷5=46(幅).即这组数据的平均数是46幅.故选:C.【知识点】算术平均数2.某企业复工之后,举行了一个简单的技工比赛,参赛的五名选手在单位时间内加工零件的合格率分别为:94.3%,96.1%,94.3%,91.7%,93.5%.关于这组数据,下列说法正确的是()A.平均数是93.96% B.方差是0C.中位数是93.5% D.众数是94.3%【答案】D【分析】求出该组数据的平均数、中位数、众数、方差,再进行判断即可.【解答】解:平均数为:(94.3%+96.1%+94.3%+91.7%+93.5%)=93.98%.因此选项A不符合题意;这组数据有波动,因此方差不为0,因此选项B不符合题意;这组数据的中位数是94.3%,因此选项C不符合题意;这组数据出现次数最多的数是94.3%,所以众数是94.3%,因此选项D符合题意;故选:D.【知识点】算术平均数、中位数、众数、方差3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,则成绩最稳定的是()A.甲B.乙C.丙D.丁【答案】A【分析】直接利用方差的意义求解可得答案.【解答】解:∵S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,∴S甲2<S乙2<S丙2<S丁2,∴成绩最稳定的是甲,故选:A.【知识点】算术平均数、方差4.一组数据6,7,9,9,9,0,3,若去掉一个数据9,则下列统计量不发生变化的是()A.平均数B.众数C.中位数D.方差【答案】B【分析】根据众数,中位数,平均数,方差的定义判断即可.【解答】解:∵数据6,7,9,9,9,0,3中,9出现了3次,∴这组数据的众数为9,去了一个9后,这组数据中,9出现了2次,众数仍然是9,∴众数没有变化,平均数,中位数,方差都发生了变化,故选:B.【知识点】算术平均数、统计量的选择、众数、中位数、方差5.某校为了解学生的课外阅读情况,随机抽取了一个班的学生,对他们一周的课外阅读时间进行了统计,统计数据如下表,则该班学生一周课外阅读时间的中位数和众数分别是()读书时间6小时及以下7小时8小时9小时10小时及以上学生人数 6 11 8 8 7A.8,7 B.8,8 C.8.5,8 D.8.5,7【答案】A【分析】根据中位数、众数的意义即可求出答案.【解答】解:学生一周课外阅读时间的出现次数最多的是7小时,因此众数是7;将40名学生的读书时间从小到大排列后处在中间位置的两个数都是8小时,因此中位数是8,故选:A.【知识点】众数、中位数6.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5 请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁【答案】D【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=4.5,∴S甲2>S乙2>S2丁=S2丙,∵丁的平均数大,∴最合适的人选是丁.故选:D.【知识点】方差、算术平均数7.下列说法正确的是()A.为了解长沙市中学生的睡眠情况,应该采用全面调查的方式B.一组数据1,5,3,2,3,4,8的众数和中位数都是3C.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖D.若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则乙组数据比甲组数据稳定【答案】B【分析】利用概率的意义,全面调查与抽样调查,中位数,众数,以及方差的定义判断即可.【解答】解:A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;C、某种彩票的中奖机会是1%,则买100张这种彩票可能会中奖,不符合题意;D、若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则甲组数据比乙组数据稳定,不符合题意;故选:B.【知识点】概率的意义、方差、全面调查与抽样调查、众数、中位数8.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②【答案】C【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【解答】解:①根据频数分布直方图,可得众数为60﹣80元范围,故每人乘坐地铁的月均花费最集中的区域在60﹣80元范围内,故①错误;②每人乘坐地铁的月均花费的平均数==87.6元,故每人乘坐地铁的月均花费不在40~60元范围内,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C.【知识点】加权平均数、中位数、频数(率)分布直方图9.众志成城,抗击疫情,救助重灾区.某校某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):100,45,100,40,100,60,155.下面有四个推断:①这7名同学所捐的零花钱的平均数是150;②这7名同学所捐的零花钱的中位数是100;③这7名同学所捐的零花钱的众数是100;④由这7名同学所捐的零花钱的中位数是100,可以推断该校全体同学所捐的零花钱的中位数也一定是100.所有合理推断的序号是()A.①③B.②③C.②④D.②③④【答案】B【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①这7名同学所捐的零花钱的平均数是,错误;②这7名同学所捐的零花钱的中位数是100,正确;③这7名同学所捐的零花钱的众数是100,正确;④由这7名同学所捐的零花钱的中位数是100,不能推断该校全体同学所捐的零花钱的中位数一定是100,错误;故选:B.【知识点】众数、算术平均数、中位数10.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数,例如:M;max{﹣1,2,3}=3,max若M{4,x2,x+2}=max{4,x2,x+2};则x的值为()A.2或B.2或﹣3 C.2 D.﹣3【答案】C【分析】本题直接按照定义计算应该可以求得结果,但是计算较为麻烦,故从选择题的角度出发,可以采用代值验证,并结合排除法来求解.【解答】解:观察选项,发现3个有2,故先令x=2,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,4,4}=4故x=2符合题意,排除D;令x=,则M{4,x2,x+2}==<4故x=不符合题意,排除A;令x=﹣3,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,9,﹣1}=94<9,故x=﹣3不符合题意,排除B;综上,故选:C.【知识点】算术平均数二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.若一组数据1,3,x,5,4,6的平均数是4,则这组数据的中位数是.【答案】4.5【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:×(1+3+x+5+4+6)=4,x=5,将这组数据按小到大排列:1,3,4,5,5,6,故中位数=4.5,故答案为4.5.【知识点】中位数、算术平均数12.数学期末总评成绩是将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学期末总评成绩是分.【答案】91【分析】利用加权平均数的定义列式计算即可.【解答】解:根据题意得:小红一学期的数学期末总评成绩是=91(分),故答案为:91.【知识点】加权平均数13.男子跳高的10名运动员成绩如表所示:成绩/m 1.50 1.60 1.65 1.70人数 2 4 2 2根据表中信息可以获知这些运动员的平均成绩为m.【答案】1.61【分析】直接利用加权平均数的定义列式计算可得.【解答】解:这些运动员的平均成绩为=1.61(m),故答案为:1.61.【知识点】加权平均数14.在一场比赛中,甲、乙两名射击手的5次射击成绩统计如图所示,分别记甲、乙两人这场比赛成绩的方差为S甲2,S乙2,则S甲2S乙2(填“>”或“<”).【答案】<【分析】根据方差的意义,直观判断即可,【解答】解:从统计图中可以直观得出,射击手甲的成绩比较稳定,离散程度较小,而射击手乙的成绩离散程度较大,不稳定,所有甲的方差小于乙的方差,故答案为:<.【知识点】方差、折线统计图15.某次射击练习,甲、乙二人各射靶5次,命中的环数如表,通过计算可知==7,S=0.8,S=2,所以射击成绩比较稳定的是.甲射靶环数7 8 6 8 6乙射靶环数9 5 6 7 8【答案】甲【分析】根据方差的意义即可得出答案.【解答】解:∵S甲2<S乙2,∴本题中成绩比较稳定的是甲.故答案为:甲.【知识点】方差、算术平均数16.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是.【分析】根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.【解答】解:∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84﹣(11+12+13+12)=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,∴S2=[(11﹣12)2+(12﹣12)2+(10﹣12)2+(13﹣12)2+(13﹣12)2+(13﹣12)2+(12﹣12)2]=,故答案为:.【知识点】算术平均数、方差、众数17.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.【答案】【第1空】6.8【第2空】6.5【第3空】6.5【分析】根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;【解答】解:观察条形图,可知这组样本数据的平均数是:=6.8,即这组样本数据的平均数为6.8(t).在这组样本数据中,6.5出现了4次,出现的次数最多,这组数据的众数是6.5(t).将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是6.5,有=6.5,即这组数据的中位数是6.5(t).故答案为:6.8,6.5,6.5.【知识点】众数、中位数、加权平均数、条形统计图18.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)M{(﹣2)2,22,﹣22}=;(2)若min{3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为.【分析】(1)根据平均数的定义计算即可.(2)根据题意列出一元一次不等式组解决问题即可.【解答】解:(1)M{(﹣2)2,22,﹣22}==;(2)∵min{3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4.故x的取值范围为﹣2≤x≤4.故答案为:;﹣2≤x≤4.【知识点】解一元一次不等式组、实数大小比较、算术平均数三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.为了增强学生的防疫意识,某校团委组织了一次“防疫知识”考试,考题共10题.考试结束后,学校团委随机抽查了20名考生的考卷,对考生的答题情况进行分析统计,发现所抽查的考卷中答对题量最少为7题,并绘制成如图所示的不完整的条形统计图,回答下列问题:(1)这20名考生每人答对题数的众数:,中位数:;(2)通过计算补全条形统计图.【答案】【第1空】8【第2空】8【分析】(1)根据中位数、众数的意义,找出出现次数最多的数,即为众数;排序后处在中间位置的两个数的平均数是中位数.【解答】解:(1)“答对10道题”的人数为20﹣4﹣8﹣6=2(人),答对8道题出现的次数最多,因此答对题目的众数是8;将20名学生的成绩从小到大排列后,处在第10、11位的两个数都是8,因此中位数是8,故答案为:8,8;(2)“答对10道题”的人数为2人,补全统计图如图所示:【知识点】条形统计图、众数、中位数20.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?【答案】【第1空】1.5【第2空】1.5【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,再用总人数减去学生劳动“0.5小时”、“1小时”、“2小时”的人数,得出学生劳动“1.5小时”的人数,从而补全条形图;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5,1.5;(3)1200×=216,答:估算该校学生参加义务劳动2小时的有216人.【知识点】中位数、全面调查与抽样调查、众数、条形统计图、用样本估计总体。
浙教版八年级数学下册第3章综合素质评价一、选择题(每题3分,共30分)1.已知一组数据5,4,3,4,9,则这组数据的中位数为()A.3 B.4 C.5 D.9 2.【2022·湖州】统计一名射击运动员在某次训练中10次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10.这组数据的众数是()A.7 B.8 C.9 D.103.某班3位同学进行投篮比赛,每人投10次,平均每人投中8次,已知第一、三位同学分别投中8次,10次,那么第二位同学投中()A.6次B.7次C.8次D.9次4.小明的妈妈经营一家皮鞋专卖店,为了提高收益,小明帮妈妈对上个月各种尺码的皮鞋的销售数量进行了一次统计分析,决定在这个月的进货中多进某种尺码的皮鞋,此时小明应重点参考()A.众数B.平均数C.方差D.中位数5.已知一组数据a1,a2,a3,a4,a5的平均数为5,则另一组数据a1+5,a2-5,a3+5,a4-5,a5+5的平均数为()A.4 B.5 C.6 D.10 6.【2022·嘉兴】A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.͞x A>͞x B且S2A>S2B B.͞x A<͞x B且S2A>S2BC.͞x A>͞x B且S2A<S2B D.͞x A<͞x B且S2A<S2B7.某校七年级学生的平均年龄为13岁,年龄的方差为3岁2,若学生人数没有变动,则两年后这些学生的()A.平均年龄为13岁,年龄的方差改变B.平均年龄为15岁,年龄的方差不变C.平均年龄为15岁,年龄的方差改变D.平均年龄为13岁,年龄的方差不变8.某校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分为()A.9分B.6.67分C.9.1分D.6.74分9.从A,B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图所示.下列统计量中,最能反映出这两组数据之间差异的是()A.平均数B.中位数C.众数D.方差10.为了解“睡眠管理”落实情况,某初中学校随机调查了50名学生的平均每天睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.下列关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差二、填空题(每题4分,共24分)11.【2022·温州】某校5个小组在一次植树活动中植树棵数的统计图如图所示,则平均每个小组植树________棵.12.某校学生会向全校学生发起爱心捐款活动,为了解学生捐款金额的情况,随机调查了该校的部分学生,根据调查结果,绘制出如图所示的统计图.则这些学生捐款金额的众数是________.13.某班为从甲、乙、丙、丁四名学生中选一名参加市中小学生运动会跳高项目比赛,组织了8次预选赛,甲、乙、丙、丁8次预选赛成绩的平均数及方差如下表所示,要选一名成绩较好且稳定的学生去参赛,应选________.甲乙丙丁x(米) 1.52 1.55 1.55 1.52S2(米2) 1 1.3 1 1.314.小明用S2=110[](x1-3)2+(x2-3)2+…+(x10-3)2计算一组数据的方差,那么x1+x2+…+x10=________.15.已知某七个数据的平均数为a,将这七个数据从大到小排列,前四个数据的平均数为b,后四个数据的平均数为c,则这七个数据的中位数为________(结果用含a,b,c的代数式表示).16.已知一组不完全相等的数据:x1,x2,x3,…,x n,平均数是2 023,方差是2 024,则新的一组数据:2 023,x1,x2,x3,…,x n的平均数是________,方差________2 024(填“=”“>”或“<”).三、解答题(共66分)17.(6分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在连续5天投篮的进球数(单位:个)进行统计,结果如下表:经过计算,得到甲进球数的平均数为8个,方差为3.2个2.(1)求乙进球数的平均数和方差;(2)如果综合考虑平均数和稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?18.(6分)在学校组织的知识竞赛中,每个班参加竞赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为10分,9分,8分,7分,学校将八年级一班和二班参赛人员的成绩整理并绘制成如下的统计图.(1)分别求出此次竞赛中两个班成绩的平均数;(2)从两个班成绩的平均数、中位数和众数的角度进行分析,你认为哪个班的成绩更好?19.(6分)初中毕业生体育学业考试在即,某校体育老师对九(1)班30名学生的体育学业模拟考试成绩统计如下表,39分及以上属于优秀.(1)求九(1)班学生的体育学业模拟考试成绩的平均数、中位数和优秀率;(2)已知九(2)班30名学生的体育学业模拟考试成绩的平均数为38分,中位数为38.5分,优秀率为60%,请从平均数、中位数、优秀率的角度进行分析,衡量两个班的体育学业模拟考试成绩的水平.20.(8分)要从甲、乙两名同学中选出一名代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察统计图,直接写出甲、乙这10次射击训练成绩的方差S2甲、S2乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选________参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.21.(8分)我校举行“中国梦·校园好声音”歌手大赛,初一、初二年级组根据年级初赛成绩,各选出5名选手参加学校总决赛,两组的5名选手的决赛成绩如图所示.(1)根据统计图填写表格.平均数(分) 中位数(分) 众数(分) 初一组85 ____ 85初二组____ 80 ____(2)结合两组决赛成绩的平均数和中位数进行分析,哪组的决赛成绩较好?(3)计算两组决赛成绩的方差,并判断哪组选手的决赛成绩较为稳定.22.(10分)【2022·株洲】某校组织了一次“校徽设计”竞赛活动,邀请5名老师作为专业评委,50名学生代表参与民主测评,且民主测评的结果无弃权票.某作品的评比数据统计如下:专业评委给分①88②87③94④91⑤90记“专业评委给分”的平均数为͞x.(1)求该作品在民主测评中得到“不赞成”的票数.(2)对于该作品,͞x的值是多少?(3)记“民主测评得分”为͞y,“综合得分”为S,若规定:①y=“赞成”的票数×3+“不赞成”的票数×(-1);②S=0.7͞x+0.3͞y.求该作品的“综合得分”S的值.23.(10分)某校初三年级进行踢毽子比赛活动,每个班派5名学生参加,按团体总数多少排列名次,在规定时间内每人踢100个及以上为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两个班的总数相等,此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)甲班的优秀率为______,乙班的优秀率为______;(2)甲班比赛数据的中位数为______个,乙班比赛数据的中位数为______个;(3)甲、乙两个班中,哪个班比赛数据的方差较小?(4)根据(1)~(3)中结果,你认为应该把冠军奖状发给哪个班?24.(12分)某校初一年级有600名男生,为增强学生体质,该校拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下统计调查活动.(1)A调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中________(填“A”或“B”)调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况.(2)根据合理的调查方式收集到的测试成绩数据记录如下表:这组测试成绩的平均数为多少个?中位数为多少个?(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.答案一、1.B 2.C 3.A 4.A 5.C 6.C 7.B8.C 提示:该班的平均得分为(5×8+8×9+7×10)×120=9.1(分). 9.D 提示:由图可得,x A =4.9+5+5+5+5+5.1+5.27≈5(kg),x B =4.4+5+5+5+5.2+5.3+5.47≈5(kg),故平均数不能反映出这两组数据之间的差异,故选项A 不符合题意; 易知这两组数据的中位数和众数都相等,故中位数、众数不能反映出这两组数据之间的差异,故选项B 和C 不符合题意;经分析知S 2A <S 2B ,则方差能反映出这两组数据之间的差异,故选项D 符合 题意.10.B 提示:计算平均数、方差需要全部数据,故A ,D 不符合题意;∵50-5-11-16=18>16,∴无法确定众数,故C 不符合题意;由统计图中已知的数据可得中位数为(9+9)÷2=9(小时),∴中位数与被遮盖的数据无关,故选B. 二、11.5 12.30元 13.丙14.30 提示:∵S 2=110[(x 1-3)2+(x 2-3)2+…+(x 10-3)2],∴x 1+x 2+…+x 10=10×3=30. 15.4b +4c -7a16.2 023;< 提示:∵x 1,x 2,x 3,…,x n 的平均数是2 023,方差是2 024,∴1n ·(x 1+x 2+x 3+…+x n )=2 023, 1n·[(x 1-2 023)2+(x 2-2 023)2+(x 3-2 023)2+…+(x n -2 023)2]=2 024, ∴x 1+x 2+x 3+…+x n =2 023n ,(x 1-2 023)2+(x 2-2 023)2+(x 3-2 023)2+…+(x n -2 023)2=2 024n , ∴2 023,x 1,x 2,x 3,…,x n 的平均数是1n +1·(2 023+x 1+x 2+x 3+…+x n )=1n +1·(2023+2 023n )=2 023,方差是1n +1·[(2 023-2 023)2+(x 1-2 023)2+(x 2-2 023)2+(x 3-2 023)2+…+(x n -2 023)2]=1n +1·[(x 1-2 023)2+(x 2-2 023)2+(x 3-2 023)2+…+(x n -2 023)2]= 2 024×nn +1<2 024.三、17.解:(1)乙进球数的平均数为(7+9+7+8+9)÷5=8(个),方差为[(7-8)2+(9-8)2+(7-8)2+(8-8)2+(9-8)2]÷5=0.8(个2).(2)应选乙,∵甲、乙的进球数的平均数相同,且乙进球数的方差比甲小,比较稳定,∴应选乙.18.解:(1)一班成绩的平均数为2×10+4×9+2×8+2×72+4+2+2=8.6(分),二班成绩的平均数为10×20%+9×30%+8×40%+7×10%=8.6(分). (2)一班的成绩更好,理由如下: 由(1)知一班和二班成绩的平均数相等.∵一班成绩的中位数为9+92=9(分),众数为9分, 二班成绩的中位数为9+82=8.5(分),众数为8分, ∴一班成绩的中位数和众数均大于二班,∴一班的成绩更好.19.解:(1)九(1)班学生的体育学业模拟考试成绩的平均数为(40×10+39×5+38×7+37×5+36×2+35×0+34×1)÷30=38.4(分), 中位数为39+382=38.5(分), 优秀率为(10+5)÷30×100%=50%.(2)九(1)班学生的体育学业模拟考试成绩的平均数高于九(2)班,九(1)班学生的体育学业模拟考试成绩的中位数与九(2)班相等,九(1)班学生的体育学业模拟考试成绩的优秀率低于九(2)班,综上可知,九(1)班学生的体育学业模拟考试成绩的总体水平较好,九(2)班学生的体育学业模拟考试成绩优秀的较多. 20.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)S 2甲大.(3)乙;甲21.解:(1)(从左到右)85;85;100(2)∵初一、初二组决赛成绩的平均数相同,而初一组决赛成绩的中位数大于初二组,∴初一组的决赛成绩较好.(3)S 2初一组=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]= 70(分2),S 2初二组=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]= 160(分2), ∴S 2初一组<S 2初二组,∴初一组选手的决赛成绩较为稳定. 22.解:(1)50-40=10(张).答:该作品在民主测评中得到“不赞成”的票数为10张. (2)͞x =(88+87+94+91+90)÷5=90. (3)͞y =40×3+10×(-1)=110.由(2)知͞x =90,∴S =0.7͞x +0.3͞y =0.7×90+0.3×110=96. 23.解:(1)60%;40%(2)100;97(3)甲班比赛数据的平均数是15×500=100(个),方差是15[(89-100)2+(98-100)2+(100-100)2+(103-100)2+(110-100)2]=46.8(个2);乙班比赛数据的平均数是15×500=100(个),方差是15[(89-100)2+(95-100)2+(97-100)2+(100-100)2+(119-100)2]=103.2(个2).46.8<103.2,所以甲班比赛数据的方差较小.(4)甲班.理由:因为甲班的优秀率高于乙班,甲班比赛数据的中位数高于乙班,甲班比赛数据的方差小于乙班,即甲班的成绩比乙班稳定. 24.解:(1)B(2)这组测试成绩的平均数为2+3+4+5×8+7×5+13+14×2+1520=7(个);将这组测试成绩从小到大排列,第10,第11个均为5个, ∴这组测试成绩的中位数为5+52=5(个).(3) 估计该校初一有600×1+1+120=90(名)男生不能达到合格标准.浙教版八年级数学下册期末综合素质评价一、选择题(每题3分,共30分)1.如果二次根式a -1有意义,那么实数a 的取值范围是( )A .a >1B .a ≥1C .a <1D .a ≤12.在下列环保标志中既是轴对称图形又是中心对称图形的是( )3.已知m 、n 是一元二次方程x 2+2x -5=0的两个根,则m 2+mn +2m 的值为( )A .0B .-10C .3D .104.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(℃) 36.2 36.3 36.5 36.6 36.8 天数(天)33422这14天中,小宁体温的众数和中位数分别为( ) A .36.6℃,36.4℃ B .36.5℃,36.5℃ C .36.8℃,36.4℃ D .36.8℃,36.5℃5.如图,在△ABC 中,AB =4,BC =8,AC =6,点D ,E ,F 分别为边AB ,AC ,BC 的中点,则△DEF 的周长为( ) A .9 B .12 C .14 D .166.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x37.今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这组数据的方差为()A.1.5 cm2B.1.4 cm2C.1.3 cm2D.1.2 cm28.如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连结DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°9.【2022·宿迁】如图,点A在反比例函数y=2x(x>0)的图象上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是() A.1 B. 2 C.2 2 D.410.【2022·绍兴】如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是() A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)11.计算(-2)2的结果是________.12.若关于x 的一元二次方程(k -1)x 2+4x +1=0有实数根,则k 的取值范围是________.13.已知矩形的一边长为6 cm ,一条对角线的长为10 cm ,则矩形的面积为________cm 2.14.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为________.15.如图,在▱ABCD 中,AB ⊥AC ,分别以A ,C 为圆心,以大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连结AE ,CF ,若AE =2.5,则四边形AECF 的周长为________.16.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC =3,BD =2,EF =5,则k 1-k 2的值是________. 三、解答题(共66分) 17.(6分)计算: (1)12-6 13+48; (2)2×3-24.18.(6分)解方程:(1)(x -3)2+2x (x -3)=0; (2)x 2-4x -5=0.19.(6分)若一次函数y=2x-1和反比例函数y=kx(k≠0)的图象都经过点(1,1).(1)求反比例函数的表达式;(2)已知点A在第三象限,且同时在两个函数的图象上,求点A的坐标.20.(8分)一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制计算,然后再按演讲内容∶演讲能力∶演讲效果=5∶4∶1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:请决出两人的名次.21.(8分)【2022·温州】如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形;(2)当AD=5,ADDC=52时,求FG的长.22.(10分)甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价.已知该商品现价为每件32.4元.(1)若该商场两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10 000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?23.(10分)心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,第________分钟时学生的注意力更集中;(2)一道数学题,需要讲18分钟,为了使学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?请说明理由.24.(12分)如图,在矩形ABCD中,AB=4 cm,BC=8 cm,点P从点D出发向点A运动,运动到点A即停止,同时,点Q从点B出发向点C运动,运动到点C 即停止,点P,Q的速度都是1 cm/s.连结PQ,AQ,CP.设点P,Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.答案一、1.B 2.B 3.A 4.B 5.A6.B 7.D8.C 提示:∵四边形ABCD 是正方形,∴AD =AB ,∠DAF =∠B =∠ADC =90°,∠BAC =45°,∵AE 平分∠BAC 交BC 于点E ,∴∠BAE =12∠BAC =22.5°,在△ABE 和△DAF 中,⎩⎨⎧AB =AD ,∠B =∠DAF ,BE =AF ,∴△ABE ≌△DAF (SAS),∴∠ADF =∠BAE =22.5°,∴∠CDF =∠ADC -∠ADF =90°-22.5°=67.5°.9.C 提示:如图,过A 作AM ∥x 轴,交y 轴于M ,过B 作BD ⊥x 轴,垂足为D ,交MA 的延长线于H ,则∠OMA =∠AHB =90°,∴∠MOA +∠MAO =90°,∵∠OAB =90°,∴∠MAO +∠BAH =90°,∴∠MOA =∠BAH ,又∵AO =AB ,∴△AOM ≌△BAH ,∴OM =AH ,AM =BH ,设A (m ,2m ), 则AM =m ,OM =2m ,MH =m +2m ,BD =2m -m ,∴ B (m +2m ,2m -m ),∴OB =(m +2m )2+(2m -m )2=2m 2+8m 2, ∵⎝⎛⎭⎪⎫2m -2 2m 2≥0, ∴2m 2+8m 2-8≥0,∴2m 2+8m 2≥8,∴2m 2+8m 2的最小值是8,∴OB 的最小值是2 2.10.C 提示:如图,连结AC ,与BD 交于点O ,连结ME ,MF ,NF ,EN ,MN , ∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵BE =DF ,∴OE =OF .∵点E ,F 是BD 上的点,∴只要MN 过点O ,四边形MENF 就是平行四边形,∴存在无数个平行四边形MENF ,故①正确;只要MN=EF,MN过点O,则四边形MENF是矩形,∵点E,F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,MN过点O,则四边形MENF是菱形,∵点E,F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,MN过点O,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误.二、11.212.k≤5且k≠113.4814.815.10提示:设AC与MN的交点为O,根据作图可得MN⊥AC,且平分AC,∴AO=OC,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F AO=∠OCE,又∵∠AOF=∠COE,AO=CO,∴△AOF≌△COE,∴AF=EC,∵AF∥CE,∴四边形AECF是平行四边形,∵MN垂直平分AC,∴EA=EC,∴四边形AECF是菱形,∵AE=2.5,∴四边形AECF的周长为4AE=10.16.6提示:连结OA、OC、OD、OB,如图.由反比例函数的性质可知S△AOE=S△BOF=12|k1|=12k1,S△COE=S△DOF=12|k2|=-12k2,∵S △AOC =S △AOE +S △COE ,∴12AC ·OE =12×3OE =32OE =12(k 1-k 2)…①,∵S △BOD =S △DOF +S △BOF ,∴12BD ·OF =12×BD (EF -OE )=12×BD (5-OE )=5-OE =12(k 1-k 2)…②, 由①②两式解得OE =2,则k 1-k 2=6.三、17.解:(1)原式=2 3-2 3+4 3=4 3;(2)原式=6-2 6=- 6.18.解:(1)x 1=3,x 2=1.(2)x 1=5,x 2=-1.19.解:(1)∵反比例函数y =k x 的图象经过点(1,1),∴1=k 1,解得k =1,∴反比例函数的表达式为y =1x .(2)解方程组⎩⎪⎨⎪⎧y =2x -1,y =1x, 得⎩⎨⎧x =1,y =1或⎩⎪⎨⎪⎧x =-12,y =-2,∵点A 在第三象限,且同时在两个函数图象上,∴A (-12,-2).20.解:选手A 的最后得分是(85×5+95×4+95×1)÷(5+4+1)=90(分),选手B的最后得分是(95×5+85×4+95×1)÷(5+4+1)=91(分).由以上可知,选手B获得第一名,选手A获得第二名.21.(1)证明:∵E,F分别是AC,AB的中点,∴EF∥BC,∴∠FEO=∠DGO,∠EFO=∠GDO,∵O是DF的中点,∴FO=DO,∴△EFO≌△GDO(AAS),∴EF=GD,∴四边形DEFG是平行四边形.(2)解:∵AD⊥BC,E是AC中点,∴DE=12AC=EC,∵ADDC=52,AD=5,∴CD=2,∴DE=12AC=12AD2+CD2=12×52+22=292.∵四边形DEFG为平行四边形,∴FG=DE=29 2.22.解:(1)设这种商品的降价率是x,依题意得40(1-x)2=32.4,解得x1=0.1=10%,x2=1.9(舍去);故这个降价率为10%.(2)设在原售价40元的基础上降价y元,根据题意得(40-20-y)(500+50y)=10 000.解得y=0(舍去)或y=10,原售价40元降价10元时,应为40-10=30(元),∵现价为每件32.4元,∴32.4-30=2.4(元),答:在现价的基础上,再降低2.4元.23.解:(1)5(2)设线段AB 的表达式为y AB =kx +b ,把(10,50)和(0,30)代入得,⎩⎨⎧10k +b =50,b =30,解得⎩⎨⎧k =2,b =30,∴线段AB 的表达式为y AB =2x +30;设双曲线CD 的函数表达式为y CD =a x ,把(20,50)代入得,50=a 20, ∴a =1 000,∴双曲线CD 的函数表达式为y CD =1 000x ;当y =40时,代入y AB =2x +30,得2x +30=40, 解得x =5;当y =40时,代入y CD =1 000x ,得1 000x =40,解得x =25.∵25-5=20>18,∴教师能在学生注意力达到所需求状态下讲完这道题.24.解:(1)由题意得,BQ =t cm ,DP =t cm ,∵四边形ABCD 是矩形,BC =8 cm ,∴AD =BC =8 cm ,∴AP =(8-t )cm.当四边形ABQP 是矩形时,BQ =AP ,∴t =8-t ,解得t =4,∴当t =4时,四边形ABQP 是矩形.(2)∵∠B =90°,AB =4 cm ,BQ =t cm ,∴AQ 2=AB 2+BQ 2=42+t 2.当四边形AQCP 是菱形时,AP =AQ ,∴AP 2=AQ 2,∴42+t2=(8-t)2,解得t=3,∴当t=3时,四边形AQCP是菱形.(3)由(2)可知当t=3时,BQ=3 cm,∴CQ=BC-BQ=5 cm,∴C菱形AQCP =4CQ=4×5=20(cm),S菱形AQCP=CQ·AB=5×4=20(cm2).。