避雷器元件工作原理及设计原理
- 格式:doc
- 大小:30.50 KB
- 文档页数:2
避雷器的工作原理及设计原理一、引言避雷器是一种用于保护电力设备和电力系统免受雷击损害的重要装置。
本文将详细介绍避雷器的工作原理及设计原理。
二、避雷器的工作原理避雷器主要通过引导和分散雷电能量,将其导入地下,从而保护电力设备和电力系统。
其工作原理可以概括为以下三个方面:1. 电气击穿原理避雷器内部通常由金属氧化物压敏电阻器(MOV)组成。
当电力系统遭受雷电冲击时,避雷器的电阻值会迅速降低,形成一条低阻抗通路,将雷电能量引导到地下。
这种电气击穿原理是避雷器的核心工作原理。
2. 电磁场原理避雷器内部的金属氧化物压敏电阻器能够吸收雷电冲击产生的过电压,并将其转化为电磁场能量。
通过合理的设计和布置,避雷器能够将电磁场能量分散到周围环境中,从而避免电力设备和电力系统受到过电压的伤害。
3. 热释放原理当避雷器内部的金属氧化物压敏电阻器吸收雷电冲击产生的过电压时,会发生能量转化和吸收,导致电阻器温度升高。
为了保护避雷器不被过热损坏,避雷器通常配备了热释放装置。
当温度超过设定值时,热释放装置会自动断开避雷器与电力系统的连接,保护电力设备和电力系统的安全运行。
三、避雷器的设计原理避雷器的设计原理主要包括以下几个方面:1. 电气参数设计避雷器的电气参数设计是保证其正常工作的关键。
其中,额定电压是指避雷器能够承受的最高电压;放电电流是指避雷器在正常工作状态下能够承受的最大电流;耐受瞬变过电压能力是指避雷器在短时间内能够承受的过电压能力。
根据电力系统的需要,避雷器的电气参数需要进行合理的选择和设计。
2. 构造设计避雷器的构造设计包括外壳设计和内部结构设计。
外壳设计主要考虑避雷器的防护性能和耐候性能,通常采用高强度的绝缘材料制成。
内部结构设计主要包括金属氧化物压敏电阻器的布置和连接方式,以及热释放装置的设计。
通过合理的构造设计,可以提高避雷器的工作效率和可靠性。
3. 安装设计避雷器的安装设计是保证其正常工作的重要环节。
避雷器通常安装在电力设备的高压侧和低压侧,以便及时引导和分散雷电能量。
避雷器的工作原理及设计原理避雷器是一种用来保护电力设备、通信设备和其他电气设备免受雷电冲击的装置。
它能将过电流和电压传导到地下,以保护设备不受到损坏。
本文将详细介绍避雷器的工作原理和设计原理。
一、工作原理避雷器的工作原理是利用气体放电原理和电磁感应原理,通过快速引导高压雷电电流到地面,将雷电电能分散和吸收,以保护设备的安全。
1. 气体放电原理避雷器中的气体放电原理是基于气体在电场和电压作用下发生击穿放电的特性。
当雷电电流经过避雷器,会在避雷器内部形成一个极强的电场,使气体分子电离形成电子和离子。
电子和离子在电场力作用下加速运动,与气体分子碰撞产生新的自由电子和离子,从而形成电子和离子的链式放电。
这种放电现象能吸收和分散雷电的能量,保护设备。
2. 电磁感应原理避雷器内部还设置有一个感应线圈,利用电磁感应原理来保护设备。
当外界雷电电流进入避雷器时,由于雷电电流变化迅速,会在避雷器的感应线圈中产生变化的磁场。
这个磁场又会引起感应线圈内的感应电流,这个感应电流会产生一个反向电压,在引线的两个端口形成一个外部短路。
这样就可以将过电压和过电流引到地下,保护设备。
二、设计原理避雷器的设计原理包括外形设计和内部结构设计两个方面。
1. 外形设计避雷器的外形设计需要考虑防雷能力、便于安装和运维、美观等因素。
一般而言,避雷器的外形采用圆柱形或者锥形。
这种形状能够更好地分散雷电电能和电荷,减小雷电冲击对设备的破坏。
同时,避雷器还需要进行外防腐处理,以确保在恶劣的气候条件下也能正常工作。
2. 内部结构设计避雷器的内部结构设计主要包括热电耗散系统、气体分配系统和电极系统。
热电耗散系统负责将避雷器内部形成的放电产生的热量散发出去,避免过热损坏。
一般会使用散热片、风扇等元件来散热。
气体分配系统主要由气室和分配阻抗组成。
气室需要在设备正常工作时保持密封状态,同时在雷电冲击下能自动放电,以释放内部电荷。
分配阻抗用来平衡电压分布,使得避雷器能均匀分配电流。
避雷器的工作原理及设计原理一、避雷器的工作原理避雷器是一种用于保护电力设备和电力系统的重要设备,其主要作用是在雷电冲击或过电压情况下,将过电压引入地线,保护设备和系统不受损坏。
避雷器的工作原理可以简单分为两个方面:放电原理和吸收能量原理。
1. 放电原理:当电力系统或设备遭受雷电冲击或过电压时,避雷器通过其特殊的结构和材料,将电压引入地线,以防止过电压对系统和设备造成损害。
避雷器内部通常包含一个或多个放电电极,当电压超过设定值时,放电电极会迅速放电,形成低阻抗通路,将过电压引入地线,使系统电压恢复正常。
2. 吸收能量原理:避雷器的另一个重要原理是通过吸收过电压的能量来保护系统和设备。
避雷器内部通常包含一个或多个金属氧化物压敏电阻器(MOV),当电压超过设定值时,MOV会迅速变为低阻抗状态,吸收过电压的能量,阻止其继续传导到设备或系统中。
二、避雷器的设计原理1. 选择合适的避雷器类型:根据电力系统或设备的特点和需求,选择合适的避雷器类型非常重要。
常见的避雷器类型包括耐压型避雷器、气体放电避雷器和金属氧化物避雷器等。
不同类型的避雷器适用于不同的电压等级和工作环境,因此在设计中需要根据实际情况进行选择。
2. 确定避雷器的耐压等级:避雷器的耐压等级是指避雷器能够承受的最大电压。
在设计中,需要根据电力系统或设备的额定电压和过电压等级,选择合适的避雷器耐压等级。
通常情况下,避雷器的耐压等级应大于或等于系统或设备的额定电压,以确保其正常工作。
3. 确定避雷器的击穿电压和放电电流:避雷器的击穿电压是指避雷器开始放电的电压值,而放电电流是指避雷器放电时的电流大小。
在设计中,需要根据电力系统或设备的过电压等级和保护要求,确定避雷器的击穿电压和放电电流。
一般来说,避雷器的击穿电压应略高于系统或设备的过电压等级,而放电电流应足够大,以确保有效地将过电压引入地线。
4. 确定避雷器的接地方式:避雷器的接地方式对其工作效果有着重要影响。
避雷器的工作原理及设计原理一、避雷器的工作原理避雷器是一种用于保护电力系统设备免受雷击伤害的重要装置。
其工作原理基于雷电产生的高电压和高电流,通过引导和分散这些电压和电流,将其安全地释放到地球上,保护电力系统设备不受损害。
避雷器通常由几个主要部分组成:金属氧化物压敏电阻器(MOV)、引线、接地线和外壳。
其工作原理如下:1. 雷电产生高电压:当雷电接近地面或设备时,会产生高电压。
这是由于雷电云与地面之间形成了电势差。
2. 引线感应电压:避雷器的引线处于高电压区域中,当雷电电场作用于引线时,引线感应到高电压。
3. 电压超过MOV的击穿电压:引线感应到的电压将传递给金属氧化物压敏电阻器(MOV)。
MOV是一种特殊材料,具有非线性电阻特性。
当电压超过MOV的击穿电压时,其电阻急剧减小,形成一条低阻抗通路。
4. 电流通过MOV到接地线:一旦MOV击穿,大量电流会通过MOV流入接地线。
这样,高压和高电流就得到了有效地引导和分散,保护了设备。
5. 保护设备免受雷击:通过将电压和电流引导到地球上,避雷器保护了电力系统设备免受雷击伤害。
二、避雷器的设计原理避雷器的设计原理主要包括选择适当的金属氧化物压敏电阻器和合理布置引线。
1. 金属氧化物压敏电阻器(MOV)的选择:- 额定电压:根据设备所需的额定电压选择MOV。
额定电压应大于设备所能承受的最高电压。
- 额定击穿电压:MOV的额定击穿电压应根据设备所需的保护水平选择。
击穿电压越低,避雷器对雷击的响应速度越快。
- 额定电流:根据设备所需的额定电流选择MOV。
额定电流应大于设备所能承受的最高电流。
2. 引线的布置:- 引线的长度和直径:引线应具有足够的长度和直径,以确保能够承受雷击时产生的高电压和高电流。
引线的长度和直径应根据设备的特点和所需保护水平进行合理设计。
- 引线的位置:引线应尽可能靠近设备,以便及时感应到雷电产生的电压。
同时,引线应远离其他电气设备和导体,以避免干扰和电磁耦合。
避雷器的工作原理及设计原理一、避雷器的工作原理避雷器是一种用于保护电气设备免受雷击伤害的重要装置。
它的主要工作原理是通过将雷电的电荷引导到地面,从而降低或者消除雷电对设备的影响。
下面将详细介绍避雷器的工作原理。
1.1 避雷器的基本结构避雷器通常由金属氧化物压敏电阻器(MOV)和导电材料组成。
MOV是避雷器的核心部件,它由锌氧化物、铝氧化物等材料制成,并具有非线性电阻特性。
导电材料则用于将雷电电荷引导到地面。
1.2 避雷器的工作过程当雷电接近或者击中设备时,避雷器会迅速感应到雷电的高电压。
此时,MOV会自动变为低电阻状态,将雷电电荷引导到地面,从而保护设备不受雷击伤害。
具体来说,当雷电电压低于避雷器的额定电压时,避雷器处于高电阻状态,不会对电气设备产生影响。
但当雷电电压超过额定电压时,MOV会迅速变为低电阻状态,将雷电电荷引导到地面,使设备的电压得以保持在安全范围内。
1.3 避雷器的保护作用避雷器的主要作用是保护电气设备免受雷击伤害。
当雷电击中设备时,避雷器能够迅速引导雷电电荷到地,防止雷电通过设备产生过高的电压,从而保护设备的正常运行。
此外,避雷器还具有稳定电压的作用。
在正常情况下,避雷器处于高电阻状态,不会对设备产生影响。
惟独在雷电击中设备时,避雷器才会起到保护作用,保持设备的电压在安全范围内。
二、避雷器的设计原理避雷器的设计原理是为了能够有效地保护电气设备免受雷击伤害。
下面将介绍避雷器的设计原理。
2.1 额定电压的选择避雷器的额定电压是指避雷器能够正常工作的最高电压。
在设计避雷器时,需要根据设备的额定电压选择合适的避雷器额定电压。
额定电压过低会导致避雷器频繁触发,影响设备的正常运行;额定电压过高则无法有效保护设备。
2.2 防雷能力的考虑设计避雷器时,需要考虑设备所处的雷电环境以及设备的重要性。
在雷电频繁的地区或者对设备保护要求较高的情况下,需要选择具有较高防雷能力的避雷器。
2.3 阻抗匹配的设计避雷器的设计还需要考虑设备的阻抗特性。
避雷器的工作原理避雷器是一种用于保护建造物、设备和人员免受雷击伤害的电气设备。
它能够将雷击过电压引导到地面,防止电压过高对设备和人员造成伤害。
避雷器的工作原理基于电气放电原理和电阻分压原理。
一、电气放电原理当雷电云与地面或者建造物之间存在电势差时,会形成电场。
当雷电云的电场强度达到一定程度时,空气中的电阻会突破,形成电气放电通道。
这个通道会导致雷电云和地面之间的电荷平衡,从而释放掉雷电云中的电荷。
避雷器利用电气放电原理,将雷击过电压引导到地面,从而保护建造物和设备。
二、电阻分压原理避雷器中的主要组件是气体放电管和金属氧化物压敏电阻。
当雷击过电压作用于避雷器时,气体放电管会迅速导通,形成低阻抗通路,将雷击过电压引导到地面。
金属氧化物压敏电阻则起到了限流的作用,防止过大的电流通过避雷器。
具体来说,当雷击过电压作用于避雷器时,气体放电管的电压会迅速上升,当达到气体放电管的击穿电压时,气体放电管会自动导通。
导通后,气体放电管的电阻会急剧下降,形成一个低阻抗通路,将雷击过电压引导到地面。
同时,金属氧化物压敏电阻会起到限流的作用,防止过大的电流通过避雷器,保护避雷器本身以及与之连接的设备。
总结起来,避雷器的工作原理是基于电气放电原理和电阻分压原理。
它能够将雷击过电压引导到地面,保护建造物、设备和人员免受雷击伤害。
在避雷器中,气体放电管起到了导电的作用,而金属氧化物压敏电阻则起到了限流的作用。
这两个组件协同工作,确保了避雷器的有效运行。
通过合理设计和安装避雷器,我们能够有效地保护建造物和设备,降低雷击风险,维护人员的安全。
避雷器的工作原理及设计原理避雷器是一种用于保护建筑物和设备不受雷击的电气装置。
它的工作原理是利用其特殊的设计来引导雷电电流流过安全的路径,从而保护被保护的设备不受电击的损失。
本文将介绍避雷器的工作原理和设计原理。
一、避雷器的工作原理避雷器的工作原理基于电荷平衡和电场强度。
当一个导体受到一个外部电场的作用时,它的电子将受到力的作用,使电子流动,导致导体上面产生电流。
如果电场强度太高,电流将过载,并可能导致设备短路,引起火灾等事故。
此时,避雷器将起到保护作用。
在避雷器的设计中,通常使用一种称为氧化锌压敏电阻(MOV)的元件。
压敏电阻是一种表现出可逆电阻性质的半导体元件。
当它受到过大的电场时,将会呈现出一个更低的电阻值,从而拦截电流,从而保护电气设备。
具体的工作原理如下:当避雷器受到较低的电压时,它的内部电容会阻止电流的流动,当电压超过额定电压时,避雷器将开启细微的通路,通过具有氧化锌压敏电阻的元件,将过载电流分配到接地系统,将设备保护起来。
二、避雷器的设计原理为了确保避雷器的可靠性和效率,必须采取正确的设计原理。
以下是避雷器设计的关键原则。
1. 基于设备的额定电压。
正确的额定电压是避雷器设计的核心。
在设计过程中,必须根据设备的额定电压选取正确的避雷器。
如果避雷器的工作电压不同于设备的额定电压,它的电阻值和其他电学特性可能在工作过程中变化,从而无法保护设备。
2. 接地系统的建设。
在避雷器的设计中,接地系统是十分重要的。
接地系统需要保持良好的接触性,以确保避雷器的正常工作。
接地系统应该在安全性和电流保护方面得到充分考虑。
设计师还需要考虑地电平差,以处理可能的电压降和电流分布问题。
3. 避雷器的选择。
在选择避雷器时,设计师需要考虑多种因素,如电气参数、安全性、工作环境和外部影响因素。
例如,湿度、极端高温和低温环境都可能影响其性能。
正确的选择将确保设备获得最佳的保护。
4. 安装和维护。
在安装和维护过程中,必须根据生产商的建议进行操作。
避雷器的工作原理及设计原理一、避雷器的工作原理避雷器是一种用于保护电力系统和电气设备免受雷电侵害的重要装置。
它能够将雷电过电压引入地线,保护设备免受雷击损坏。
避雷器的工作原理主要包括击穿和放电两个过程。
1.1 击穿过程当雷电过电压作用于避雷器时,避雷器的击穿电压低于系统设备的耐受电压,使得雷电过电压优先通过避雷器而不是设备。
在避雷器内部,由于避雷器的特殊结构和材料,电场强度增加,导致气体份子离子化。
当电场强度达到一定程度时,气体份子会形成电离通道,电流开始流动,避雷器发生击穿。
1.2 放电过程一旦避雷器发生击穿,电流会通过避雷器引导到地线。
避雷器内部的电流将通过避雷器的金属氧化物电阻片(MOV)和金属氧化物压敏电阻(MOVR)进行分配。
MOV和MOVR具有非线性电阻特性,能够在电压超过一定值时迅速降低电阻,形成一个低阻抗通路,将雷电过电压引导到地线。
同时,避雷器内部的放电电流还会激发电磁场,产生电磁感应作用,将雷电过电压的能量转化为热能和电磁辐射,从而保护设备不受雷击伤害。
二、避雷器的设计原理避雷器的设计原理主要涉及材料选择、结构设计和参数确定等方面。
2.1 材料选择避雷器的主要材料包括金属氧化物电阻片(MOV)、金属氧化物压敏电阻(MOVR)、导电材料和绝缘材料等。
MOV和MOVR是避雷器的核心材料,具有非线性电阻特性,能够在电压超过一定值时迅速降低电阻。
导电材料用于引导电流,而绝缘材料用于隔离电路,防止电流泄漏。
2.2 结构设计避雷器的结构设计包括外壳、内部电阻片的罗列方式和地线的连接等。
外壳通常采用导电材料制成,能够有效地屏蔽外界电磁干扰。
内部电阻片的罗列方式根据避雷器的额定电压和放电能力确定,普通采用串联或者并联的方式。
地线的连接要确保良好的接地,以便将雷电过电压引导到地线。
2.3 参数确定避雷器的设计参数包括额定电压、额定放电电流和耐受电压等。
额定电压是指避雷器能够正常工作的最高电压,普通根据系统的额定电压确定。
避雷器的工作原理及设计原理一、避雷器的工作原理避雷器是一种用于保护电力系统、通信系统以及各类电气设备免受雷击侵害的重要装置。
它能够将雷电过电压引入地下,保护设备和系统免受雷击的破坏。
避雷器的工作原理主要基于电压分配和电荷分离的原理。
当雷电过电压作用于避雷器时,避雷器内部的气体或者介质会发生击穿,形成导电通路。
这样,雷电过电压就能够通过避雷器引入地下,从而保护设备和系统。
具体来说,避雷器的工作原理包括以下几个方面:1. 电压分配:避雷器内部通常由多个金属氧化物压敏电阻组成,这些电阻具有不同的电压等级。
当雷电过电压作用于避雷器时,电阻中的金属氧化物会发生击穿,将过电压引入地下。
不同电阻的击穿电压分布不同,能够实现电压的分配。
2. 电荷分离:当雷电过电压作用于避雷器时,避雷器内部的金属氧化物会吸收电荷,形成电荷分离。
这种电荷分离可以使得避雷器内部的电压分布更加均匀,提高避雷器的工作效果。
3. 导电通路:避雷器内部的气体或者介质在雷电过电压作用下会发生击穿,形成导电通路。
这个导电通路能够将雷电过电压引入地下,避免设备和系统受到雷击的破坏。
二、避雷器的设计原理避雷器的设计原理主要涉及到以下几个方面:1. 电压等级的选择:避雷器的电压等级应根据所要保护的设备和系统的额定电压来选择。
普通来说,避雷器的电压等级应高于设备和系统的额定电压,以确保在雷电过电压作用下能够正常工作。
2. 电阻的选择:避雷器内部的金属氧化物压敏电阻是避雷器工作的核心组件。
电阻的选择应根据设备和系统的特点以及雷电过电压的特点来确定。
电阻的击穿电压应低于雷电过电压的峰值,以确保能够及时引导过电压。
3. 导电通路的设计:避雷器内部的导电通路应具有良好的导电性能,以确保雷电过电压能够顺利引入地下。
导电通路的设计应考虑避雷器的结构和材料的选择,以及导电路径的布局等因素。
4. 绝缘保护:避雷器在正常工作时,除了能够引导雷电过电压外,还需要保证对系统的正常运行没有影响。
避雷器的工作原理及设计原理引言概述:避雷器是一种用于保护电力设备和建筑物免受雷击损害的重要装置。
它的工作原理是通过将雷电能量引导到地面,从而保护被保护设备和建筑物不受雷击伤害。
本文将详细介绍避雷器的工作原理及设计原理。
正文内容:1. 避雷器的基本原理1.1 避雷器的基本构成避雷器通常由瞬态电阻器和放电电极组成。
瞬态电阻器是避雷器的核心部件,它能够在雷电冲击下快速响应并吸收电能。
放电电极则用于将吸收的电能引导到地面。
1.2 瞬态电阻器的工作原理瞬态电阻器由金属氧化物层和电极组成。
当遭受雷击时,金属氧化物层会迅速变成导电状态,形成一个低阻抗通路,将雷电能量引导到地面。
一旦雷电能量被引导到地面,被保护设备和建筑物就不会受到损害。
1.3 放电电极的工作原理放电电极通常由导体材料制成,它与瞬态电阻器相连,将吸收的电能引导到地面。
放电电极的设计需要考虑导电性能和结构强度,以确保电能能够顺利地引导到地面。
2. 避雷器的分类及特点2.1 分类根据使用场景和工作原理,避雷器可以分为耐雷避雷器和耐压避雷器。
耐雷避雷器主要用于防止雷击损害,而耐压避雷器主要用于防止电力设备受到过电压的损害。
2.2 特点避雷器具有响应速度快、吸能能力强、寿命长等特点。
响应速度快可以在雷击发生时迅速吸收电能,保护设备和建筑物。
吸能能力强可以吸收大量的电能,避免过电压对设备的损害。
寿命长可以保证避雷器的持续工作能力。
3. 避雷器的设计原理3.1 避雷器的选型避雷器的选型需要考虑电力设备的额定电压、工作电流和环境条件等因素。
根据这些参数,选择合适的避雷器型号和规格。
3.2 避雷器的安装位置避雷器的安装位置应该根据电力设备的布置和雷电分布情况来确定。
通常情况下,避雷器应该安装在电力设备的进出线路上,以最大限度地保护设备免受雷击损害。
3.3 避雷器的接地设计避雷器的接地设计是确保电能能够顺利引导到地面的关键。
接地电阻应该尽量小,接地系统应该具有良好的导电性能,以确保避雷器的正常工作。
避雷器元件工作原理及设计原理
1、放电间隙与放电管
放电间隙:所谓放电间隙是把暴露在空气中的两块相互隔离一空气间隙的金属物作为避雷放电的装置。
通常把其中一块金属接在需要防雷的导线上如电源的相线,另一块金属与地线连接。
当雷电波来到的时候首先在间隙处击穿,使间隙的空气电离,形成短路,雷电流通过间隙流入大地,而此时间隙两端的电压很低,从而达到保护线路的目的。
常用于高压线路的避雷防护中。
气体放电管:把一对互相隔开的冷饮电极,封装在玻璃或陶瓷管内,管内再充以一定压力的惰性气体(如氩气),就构成了一只放电管。
优点:具有很强的浪涌吸收能力,即放电能力强、通流量大(可做到100KA以上),很高的绝缘电阻以及很小的寄生电容,漏电流小。
对正常工作的设备不会带来任何有害影响。
缺点:残压高(2~4KV),反应时间长(>100ns),动作电压精度较低,有工频续流,因此在保护电路中应串联一个熔断器,使得工频续流迅速被切断。
注:由于两只放电管分别装在一个回路的两根导线上,有时回不同时放电,使两导线之间出现电位差,为了使两根导线上的放电管能接近统一时间放电,减少两线之间的电位差,又研制了三级放电管。
可以看作是由两只二级放电管合并在一起构成的。
三级放电管中间的一级作为公共地线,另两级分别接在回路的两条导线上。
如图
2、压敏电阻:
当加在电阻两端的电压小于压敏电压时,压敏电阻呈高阻状态,如果并联在电路上,该阀片呈断路状态;当加在压敏电阻两端的电压大于压敏电压时,压敏电阻就会击穿,呈现低阻值,甚至接近短路状态。
压敏电阻这种被击穿状态是可以恢复的,当高于压敏电压的电压被撤销以后,它又恢复高阻状态。
当电离线被雷击时,雷电波的高电压使压敏电阻击穿,雷电流通过压敏电阻流入大地,使电力线上的类电压被钳制在安全范围内。
优点:同开关电压范围宽(6——1.5KV),反应速度快(25ns),通流量大(2KA/CM2),无续流。
缺点:容易老化,动作几次后,漏电流会增大,从而导致压敏电阻过热,最终导致老化失效。
电容较大,许多情况下不在高频率信息传输中使用。
该电容又与导线电容构成一个低通。
该低通会造成信号的严重衰减。
但在频率低于30KHZ时,这种衰减可以忽略。
3、抑制式二极管(TVS):
有两种形式:一是齐纳型(为单向雪崩击穿),二是双向的硅压敏电阻。
性能类似开关二极管等。
在规定的反向电压作用下,两端电压大于门限电压时,其工作阻抗能立即降至很低的水平以允许大电流通过,并将两端电压钳制在很低的水平,从而有效地保护末端电子产品中的精密元件避免损坏。
双向TVS可在正反两个方向吸收瞬时大脉动功率,并把电压钳制在预定水平。
适用于交流电路。
优点:动作时间极快,达到微微秒范围。
限制电压低,击穿电压低,应用于各种电子领域。
缺点:电流负荷量小,电容相当高。