地铁盾构施工中的地表沉降及其控制技术剖析
- 格式:doc
- 大小:118.00 KB
- 文档页数:6
地铁盾构施工中地面沉降原因分析及应对随着城市地铁的不断发展,盾构施工在地铁建设中得到了广泛应用。
然而,在盾构施工过程中,由于多种原因导致的地面沉降问题越来越突出。
这不仅影响了盾构施工的进度和安全,还对周边建筑和环境造成了不良影响。
因此,深入探究地铁盾构施工中地面沉降的原因及应对措施具有重要意义。
1.地下水位变化盾构施工需要通过顺铁土层推进,但顺铁土层是由含水量较高的软黏土和泥炭土组成。
当盾构机在顺铁土层推进的过程中,水流压力会导致土层松动,土质的变化会使地下水位随时发生变化,从而导致地面沉降。
2.地质条件不利地域条件对盾构施工也有很大的影响。
如果施工地点地下是岩屑、岩石同砂土层,那么盾构施工时推进的阻力会很大,需要施工人员有相应的技术水平才能完成。
如果地下孔隙不充分,且岩石裂缝密度很大,那么相对应的地面也很容易出现沉降问题。
3.盾构施工参数设计不合理盾构施工一个重要的参数是推进速度,推进速度过快或过慢都会导致地面承载量不足,进而引发地面沉降。
同时,如果盾构施工人员选择的管径较大,那么施工质量更加难以保证,地面沉降的概率也会增大。
1. 引入地质勘探施工前对施工地点和周边地形进行勘测可以帮助盾构施工人员了解施工地点地质情况,从而确认推进速度和管径等参数的选择。
这样可以降低地面沉降的概率,减少对周边建筑和环境的影响。
同时,引入地质勘探还能够帮助施工人员做好地下水的调控工作,从而减少水流压力对地面的影响,应对地面沉降的问题。
2. 采用先进技术盾构施工本身就是一项先进技术,除了前期的地质勘探之外,也需要采用最先进的盾构机和各种工程材料。
这样可以帮助施工人员优化盾构施工的流程和施工的参数设计,减少对地面的影响,从而避免地面沉降的发生。
3. 做好监测工作在盾构施工过程中,安装监测设备对这种高速、高压的施工过程进行监测是必须的。
通过频繁监测,及时发现地面沉降的迹象可以让施工人员采取相应的措施,及时防范风险,保证施工安全。
地铁盾构施工中的地表沉降及其控制技术剖析地铁盾构施工是一项技术要求较高的工程建设,其安全和稳定性关乎人民群众的生命财产安全。
而地表沉降是地铁盾构施工时常见的问题之一,它会对地面建筑物、道路、下水道等设施造成近期或长期的损害。
因此,本文将探讨地铁盾构施工中的地表沉降及其控制技术。
一、地表沉降成因地表沉降是因为地铁盾构施工过程中,隧道周围的地层被挖掘、破碎、变形、松散等原因造成的。
一般来讲,地层松弛程度越大,则地表沉降量越大。
同时,地表沉降还与施工时间、施工方法、土层性质、地下水变化等因素有关。
比如在土层坚硬情况下,挖掘时需采用大功率机械,使得地下土层塑性变形量增大,地表沉降量也会随之增大。
二、地表沉降控制技术为了减轻地表沉降对周边建筑物等的影响,地铁盾构施工中应采取相应的控制技术。
常见的地表沉降控制技术包括:土体减量法、注浆法、地锚法、封闭施工法等。
1.土体减量法土体减量法主要是通过减少已开挖的隧道断面面积,使得土体体积减少,从而达到控制地表沉降的目的。
其中一种方式为“8”字型断面的开挖方式,通过减小正方形与圆形隧道断面的横向面积,达到减少土体量的效果。
但这种方法容易导致施工时间延长,成本增加。
2.注浆法注浆法是通过在开挖前先进行注浆处理,改善土壤的物理性质,增加土壤的稠度、强度以及粘聚性等,减少土体位移的发生机率,从而达到减少地表沉降的效果。
该方法施工方便,对施工时间也没有太大的限制。
但需要注意的是,注浆材料应与未经处理的土壤具有相似的物理力学特性,否则会引起更严重的后果。
3.地锚法地锚法是指在隧道盾构施工过程中,在它的主体结构外侧,利用长锚杆将隧道外侧的土壤固定在一定的深度内,限制土体侧向位移,减少地表沉降的情况。
这种方法施工复杂,需要专业技能。
同时,如果锚点的数量设置不当,可能导致锚杆寿命短,施工效果不佳。
4.封闭施工法封闭施工法是指在土体充分固化前,设置封闭墙体将地铁隧道与周围土体隔离开,并通过加固土体边界来缓解和减小地表沉降。
盾构法施工引起地面沉降原因分析及控制方法进入21世纪,世界经济的迅猛发展使城市化建设得到了大幅度的提速。
目前,人口不断地向城市聚集,使城市人口和建筑的密集度快速上升,造成能被利用的地面空间越来越少,因此,当今城市现代化建设的重要课题之一便是开发地下空间,为人类创造价值。
但各种用途的管线被布置在地下,这便产生了在地下工程施工背景下的一种最佳方法——盾构法。
盾构法施工虽然优点颇多,但是也存在诸多问题。
本文就盾构法施工过程中引起的地面沉降问题展开讨论,分析产生的原因及寻找控制方法。
一,地面沉降产生原因1、地层隆沉的发展过程盾构推进引起的地面沉降包括五个阶段:最初的沉降、开挖面前方的沉降、盾构机经过时沉降、盾尾空隙的沉降以及最终固结沉降,如图l所示。
第一阶段:最初的沉降。
该压缩、固结沉降是因为地基有效上覆土层厚度增加而产生的沉降,也是盾构机向前掘进时因为地下水水位降低造成的。
指从盾构开挖面距地面沉降观测点还有一定距离(约3~12m)的时候开始,直至开挖面到达观测点这段时间内所产生的沉降。
第二阶段:开挖面前方的沉降(或隆起)。
这种地基塑性变形是由土体应力释放、开挖面的反向土压力、或机身周围的摩擦力等作用而产生的。
它是从开挖面距观测点约几米时开始至观测点处于开挖面正上方这段时间所产生的沉降(或隆起)。
第三阶段:盾构机经过时沉降。
该沉降是在土体的扰动下,从盾构机的开挖面到达测点的正下方开始到盾构机尾部通过沉降观测点该段时期产生的沉降(或隆起)。
第四阶段:盾尾空隙沉降。
该沉降产生于盾尾经过沉降观测点正下方之后。
土的密实度下降,应力释放是其土力学上的表现。
第五阶段:固结沉降,它是一种由地基扰动所产生的残余变形沉降。
经前人研究发现,第一阶段沉降占总沉降的0~4.5%,第二阶段沉降占总沉降的0~44%,第三阶段沉降占总沉降的15~20%,第四阶段沉降占总沉降的20~30%,第5阶段沉降占总沉降的5~30%。
2、地表沉降的因素影响分析该因素影响分析的平台是当前使用较为广泛的大型三维有限元分析软件ANSYS,盾构开挖面掘进引起的地表沉降的客观因素包括盾构直径、土体刚度、隧道埋深、施工状况等设计条件;而其主观因素包含施工管理、盾构机的选用形式、盾尾注浆、辅助施工方法等。
地铁盾构施工中地面沉降原因分析及应对近年来,随着城市化进程的不断推进,地铁成为了很多大城市中不可或缺的交通工具。
而盾构技术则成为了地铁建设中的一项重要施工方式。
然而,在盾构施工过程中,地面往往会出现一些沉降现象,给周边居民的生活和财产安全造成一定的影响。
本文将对地铁盾构施工中地面沉降的原因进行分析,并提出应对措施。
一、地面沉降的原因1. 地源性因素地面沉降一部分是因为地质条件的影响。
在不同的地质环境下,沉降的表现形式有所不同。
比如,在岩溶地貌区,地面沉降多以整体下降的形式出现;在地层含水量大的区域,地面沉降容易出现表层松散层塌陷等现象。
2. 工程因素盾构施工中,不合理的施工方案和施工方式也是导致地面沉降的重要原因。
比如施工过程中没有对土体松动区域进行有效的润湿处理,施工速度过快,导致松动土层未能充分稳定等均会导致地面沉降。
二、应对措施1. 严格的前期勘探在盾构施工之前,需要进行严格的地质勘探和承载力评估。
通过分析地质特征、地下水位、地下能源管线等相关数据,制定合理的施工方案,降低地面沉降的风险。
2. 合理的施工方案应对地面沉降,合理的施工方案也是非常关键的。
比如,针对不同地质环境,采用不同的润湿材料和润湿方式,采用低速推进的方式,缩短推进长度和施工时间等都是减少地面沉降的有效措施。
3. 现场监控在盾构施工中,需要严格的现场监控。
通过测量地表沉降量、地下水位变化、盾构隧道周边压力等指标,并且及时进行调整,以减少地面沉降的风险。
4. 推进过程中的处理盾构施工中,在推进过程中颗粒物的产生是不能避免的,但可以通过吸附、过滤、消磁等方式减少其对沉降的影响。
同时将土体松动区域进行充分稳定,也能有效减少地面沉降。
本文对地铁盾构施工中地面沉降的原因进行了分析,并提出应对措施。
无论是通过前期勘探降低风险,还是调整施工方案、现场监控实时调整等,都可以有效降低地面沉降的风险,为城市地铁建设提供保障。
地铁盾构施工中地面沉降原因分析及应对地铁盾构施工是近年来城市地铁建设中常见的一种施工方式。
其具有施工效率高、环境影响小等优点,因此被广泛应用于地铁工程的建设中。
在盾构施工过程中,地面沉降问题一直是工程建设中一个值得重视的问题。
地面沉降不仅会对周边建筑物和地下管线造成影响,还可能引发安全隐患。
在盾构施工过程中,必须对地面沉降进行深入分析,并采取有效措施进行应对,以保障施工安全和周边环境的稳定。
1. 地质条件地下地质条件是盾构施工中地面沉降的一个重要影响因素。
地下岩土的稳定性和承载能力直接决定了盾构施工中地面沉降的大小和范围。
如果地下岩土的稳定性较差,容易发生沉降问题。
如果地下存在较大的地下水位变化或者土壤有较大变形性质,也会对地面沉降造成影响。
2. 盾构施工参数盾构施工参数的选择对地面沉降影响较大。
施工过程中的盾构机开挖速度、土压平衡控制、注浆情况等参数的选择都会对地面沉降造成一定程度的影响。
如果这些参数设定不合理,就会导致地面沉降超出设计范围。
4. 周边建筑物和地下管线盾构施工过程中,周边建筑物和地下管线的存在也会对地面沉降造成影响。
如果周边建筑物和地下管线是老旧或者弱平衡结构,就会对地面沉降产生不利影响。
5. 环境因素环境因素也是地面沉降的重要影响因素。
如气候条件、降雨情况、地下水位变化等,都会对地面沉降产生一定的影响。
二、应对地铁盾构施工中地面沉降的措施1. 严密的监测和预警系统在盾构施工过程中,必须建立严密的地面沉降监测和预警系统。
通过实时监测地面沉降情况,一旦发现地面沉降超出预期,就能及时采取应急措施,以减少对周边环境和建筑物的影响。
2. 合理的施工方案在盾构施工过程中,必须采用合理的施工方案,包括盾构机的开挖速度、土压平衡控制、注浆情况等参数的合理设定,以减少地面沉降的可能性。
3. 加强支护和加固措施在盾构施工过程中,必须加强支护和加固措施,以减少地面沉降的风险。
包括合理设置盾构机的开挖方式、支护结构的设置等,以保障周边建筑物和地下管线的稳定。
城市地铁盾构施工法与路基沉降的防治技术分析城市地铁是现代城市交通的重要组成部分,地铁的盾构施工是地铁建设的主要方法之一。
地铁盾构施工过程中,会产生沉降问题,对城市的地面建筑和地下管线造成影响。
为了保障城市建设的质量和安全,需要进行有效的防治措施。
城市地铁盾构施工法主要包括以下几个步骤:预制拼装掘进好的盾构机,进行地面开挖,进入地下隧道,同时进行液压推进,完成隧道的开挖作业。
整个施工过程中,盾构机前方会产生剥离层,即土壤与管片之间的间隙。
当盾构机推进时,会造成土层的下沉,导致地表的沉降。
为了降低地表沉降的影响,可以采取以下防治技术:1. 拱顶加固技术:在地铁盾构施工过程中,可以采用拱顶加固技术,即在地下开挖段的顶部加固,以减少地表沉降。
常见的拱顶加固方法包括地下注浆、地下注浆灌浆法等,通过注浆材料填充土壤中的间隙,增加土层的强度,减少沉降。
3. 降低盾构推进速度:盾构推进速度是影响地表沉降的主要因素之一,较高的推进速度会增加地下土层的变形量,导致地表沉降。
可以通过降低盾构推进速度的方式来减少地表沉降。
4. 监测与预警系统:在地铁盾构施工过程中,需要建立完善的监测与预警系统,及时监测地下沉降、地表沉降等情况,以便及时采取防治措施。
监测与预警系统可以通过地下测点、地表测点等方式来实施,通过监测数据的分析,及时预警并采取相应的防治措施。
城市地铁盾构施工法与路基沉降的防治技术是保障地铁建设质量和安全的重要措施。
通过采取拱顶加固、地表加固、降低推进速度和建立监测与预警系统等技术措施,可以有效减少地表沉降,保障城市地铁的正常运营和周边环境的安全。
地铁盾构施工中地面沉降原因分析及应对1. 引言1.1 引言地铁盾构施工是一种常见的地下工程施工方式,通过盾构机在地下开挖隧道,是城市地铁建设的重要工艺之一。
在地铁盾构施工过程中,地面沉降是一个不可避免的问题,会给周围环境和建筑物带来一定的影响。
对地面沉降原因进行分析并有效应对是非常重要的。
在本文中,我们将针对地铁盾构施工中地面沉降的原因进行深入探讨,并介绍地下水位变化、地下土层变动、盾构施工技术以及沉降监测与控制这几个方面的内容。
通过深入分析这些因素,可以帮助我们更好地理解地铁盾构施工中地面沉降的机理,从而采取有效措施来减少地面沉降对周围环境和建筑物的影响,保障施工过程的安全和顺利进行。
部分是整篇文章的开端,只有充分了解地铁盾构施工中地面沉降的原因,才能更好地理解后续部分的内容。
接下来我们将对地面沉降的原因进行详细分析。
2. 正文2.1 地面沉降原因分析地面沉降在地铁盾构施工过程中是一个常见的问题,主要原因可以归纳为地下水位变化、地下土层变动和盾构施工技术等因素。
地下水位变化是导致地面沉降的重要原因之一。
在盾构施工过程中,地下水位的变化会影响周围土层的稳定性,导致土层松动和沉降。
特别是在地下水位波动较大的地区,地面沉降问题更为突出。
地下土层变动也会引起地面沉降。
盾构施工过程中,土层受到挖掘和开挖等操作的影响,可能会导致土层紧密度的改变,进而引起地面沉降。
地下土层的物理性质和结构也会对地面沉降产生影响。
盾构施工技术的不当使用也可能导致地面沉降。
如果施工工艺不合理或操作不当,可能会对周围土层造成不可逆的破坏,进而引发地面沉降问题。
地面沉降是一个综合性问题,需要综合考虑地下水位变化、地下土层变动和盾构施工技术等多个因素。
只有对这些因素进行全面分析和有效控制,才能有效应对地面沉降问题。
在下文中,我们将进一步讨论如何有效监测和控制地面沉降。
2.2 地下水位变化地下水位变化是导致地铁盾构施工中地面沉降的重要原因之一。
地铁盾构施工中地面沉降原因分析及应对地铁盾构施工中地面沉降是一个常见的问题,主要原因是盾构机挖掘地下隧道时,会对地下土层进行扰动和移动,导致地面沉降。
下面是对地铁盾构施工中地面沉降的原因进行分析及应对方法的说明。
1. 地质条件不稳定:地质条件不稳定是导致地面沉降的主要原因之一。
在盾构施工中,如果遇到地下水位较高、土层松散、岩层不坚固等地质条件不稳定的情况,就容易导致地面沉降。
此时,可以通过加强地质勘察与分析,选择合适的盾构机和施工方法,以及采取加固措施等方法来应对。
2. 施工参数不合理:施工参数不合理也是导致地面沉降的原因之一。
在盾构施工中,如果施工参数设置不合理,如推进速度过快或者施工压力过大,就容易引起地下土层的不稳定,导致地面沉降。
需要在施工前进行合理的施工参数设计,并加强监测和调整,以避免地面沉降的发生。
3. 施工技术不当:施工技术不当也是导致地面沉降的原因之一。
在盾构施工中,如果操作不当或者施工方法不正确,就会对地下土层造成不必要的扰动和移动,导致地面沉降。
在施工前需要进行充分的技术培训和实践,以确保操作人员熟练掌握施工技术,并采取适当的施工措施。
1. 加强地质勘察与分析:在施工前需要对地质条件进行充分的勘察与分析,了解地下土层的情况,以选择合适的盾构机和施工方法,并采取合理的加固措施,以应对地面沉降的可能性。
2. 合理设置施工参数:在施工中需要根据地质条件和盾构机的性能特点,合理设置推进速度、施工压力等参数,以确保施工的安全与稳定,避免地面沉降的发生。
3. 加强监测与调整:在施工过程中需要密切监测地面沉降的情况,一旦出现地面沉降的情况,需要及时采取合适的调整措施,如降低推进速度、减小施工压力等,以减少地面沉降的程度。
4. 采取加固措施:在施工中可以采取一些加固措施,如喷浆加固、加设盾构机尾部加固框架等,以增加地下土层的稳定性,减少地面沉降的可能性。
地铁盾构施工中地面沉降是一个需要重视的问题。
地铁盾构施工中地面沉降原因分析及应对地铁盾构施工中地面沉降是一个常见的问题,它主要是由于盾构施工过程中的土体位移和压实引起的。
下面,将对地铁盾构施工中地面沉降的原因进行分析,并提出相应的应对措施。
1. 地下水位变化:地下水位的变化是导致地面沉降的主要原因之一。
盾构施工过程中,隧道中的地下水会因为施工活动而发生变化,导致地下土体的水分含量发生变化,进而引起地面沉降。
在施工前进行地下水位监测,控制好盾构施工中的水文条件,可以有效减少地面沉降。
2. 土体位移:盾构施工中,隧道推进时会对周围土体施加巨大的水平压力,使得土体发生位移。
当土体的承载力不足以承受盾构的压力时,会发生沉降。
需要对地下土体的力学性质进行详细研究,选择合适的施工参数和技术方案,以避免土体发生过大的位移。
3. 土体压实:盾构施工过程中,施工机械会对土体进行挖掘和回填,这会对土体进行压实。
土体压实过程中,土壤颗粒间的间隙会发生变小,导致初始地面沉降。
在施工过程中需要控制好土体的压实过程,避免过度压实,以减少地面沉降。
针对以上的原因,可以采取一些应对措施,以减少地铁盾构施工中的地面沉降。
1. 合理控制地下水位:在施工前进行地下水位监测,并根据监测结果进行合理的调整,保持地下水位的稳定。
如果发现地下水位异常变化,及时采取补救措施,如进行加固和排水。
2. 采用适当的土体加固措施:根据土体力学性质的研究结果,选用合适的土体加固措施。
可以采用加固桩、土钉墙等方式对土体进行加固,增加土体的承载能力,减少地面沉降。
3. 控制土体压实过程中的施工参数:在施工过程中,合理选择施工参数,避免过度压实土体。
加强施工过程的监测和控制,及时调整施工参数,确保土体得到适度的压实,减少初始地面沉降。
4. 引入新技术和新材料:随着科技的进步,可以采用一些新技术和新材料来减少地面沉降。
采用可控压实技术对土体进行处理,可以减小土体的初始沉降;引入高效盾构机械和地铁车站的整体下沉技术等,也可以减少地面沉降的影响。
关于地铁盾构施工引起的地表沉降问题研究随着城市交通的快速发展,地铁已成为许多大城市的重要交通方式。
而地铁建设中使用的盾构施工技术,虽然在解决城市交通问题上起到了积极作用,但也引发了一系列的地表沉降问题。
地表沉降对城市建设和居民生活带来了许多负面影响,因此对于地铁盾构施工引起的地表沉降问题进行研究是十分必要的。
一、地铁盾构施工原理地铁盾构是在地下进行的一种隧道开挖方法。
其施工过程简单来说是:先在地下钻孔,然后把盾构机放入钻孔中,盾构机负责挖掘土壤并同时安装隧道构件。
盾构施工的方式可以降低对地表的影响,同时也可以减少对周围房屋和地下管线的影响,因此在城市地下建设中得到了广泛应用。
地铁盾构施工虽然降低了对周围环境的影响,但在实际施工中常常会导致地表沉降问题。
地表沉降是指由于地下开挖或挖掘过程中的土壤变形而导致地表下陷的现象。
地表沉降可能会引发地质灾害,如地裂、地陷、地震等,同时也会对周围建筑物和地下管线造成损害,给市政设施和民众生活带来不便。
地铁盾构施工引起的地表沉降问题主要有以下几个方面的原因:1. 土壤力学特性:地铁盾构施工过程中,由于挖掘土壤和地下水的作用,导致土壤力学特性发生变化,增加了土壤的可压缩性和变形性,从而导致地表沉降。
3. 施工方式和技术:盾构施工中的挖掘深度、稳定性和控制水平等因素,都会对地表沉降产生影响。
4. 地质条件:不同地区的地质条件不同,地铁盾构施工在各种地质条件下可能会引发不同程度的地表沉降问题。
地表沉降问题的研究对于地铁盾构施工技术的改进和城市地下建设规划具有重要意义。
三、地表沉降对城市建设和居民生活的影响地表沉降对城市建设和居民生活带来了许多负面影响,主要表现在以下几个方面:1. 建筑物和地下管线损坏:地表沉降可能导致周围建筑物和地下管线出现裂缝、倾斜、变形等问题,给建筑物结构稳定性和使用安全性带来威胁。
2. 市政设施受损:地表沉降可能会造成道路、桥梁、地下管道、电力设施等市政设施的波动和损坏,给城市基础设施的维护和管理带来额外负担。
地铁盾构施工中的地表沉降及其控制技术摘要地下盾构穿过复杂的富水地层时地层极易失水而造成地面沉陷。
结合工程实例,阐述了采用注浆技术解决此类问题的技术思路、方法及具体实施工艺。
关键词盾构施工地表沉降注浆控制1引言随着城市化的快速发展,城市所面临的交通、土地矛盾日益突出,因而,地下隧道交通及各类地下工程成为解决矛盾的一个重要方面,大量的地下工程建设引发的地面沉降,地面塌陷和地面裂缝层出不穷,如何避免和防止城市地铁工程建设中的地面变形地质灾害问题已成为地铁工程建设中的重要课题。
2地铁工程产生地质灾害的工程地质特性在城市地铁工程建设中,地质灾害多发的地层一般为松散人工堆积层,河相、湖相或滨海相沉积覆盖层,岩层多为软弱、裂隙发育或风化强烈或岩溶发育的地层,具体有人工杂填土层、砂层、粉细砂层、砂砾( 卵) 石层或孔隙率高的黏土层、淤泥层、透水性强的构造破碎带、强风化、中风层、以及岩溶地层。
这类地层的普遍特性是高孔隙率、高含水、高透水性。
3地质灾害成因分析在城市地铁工程建设中,无一列外不是必须对地层实施开挖、掘进,实际上,在对原始地层进行开挖、掘进的过程,即是对地下水文工程地质环境的破坏过程,它不但改变了地层的应力结构,即使在构建起人工结构后,也强制地层应力进行重新分布、平衡,在这个过程中,必然引起地层变形的发生,严重的引起地面变形沉降、开裂,建筑物变形、开裂。
尤其是高地下水位条件下,地层开挖掘进时,大量地下水沿开挖面流失并排出,造成地下水位大面积下降,从而引发一系列地面地质灾害问题。
4典型沉降变形控制及防治技术4.1盾构施工引起地面及建筑物下沉并变形开裂4.1.1灾害现象及成因在某地铁施工中,当向盾构机土仓加压至2.3 bar时,发现盾构机部位地面出现隆起的现象,且地面补注浆孔施工时所挖的探槽多点窜气; 监测数据显示地面下沉幅度较快。
2009 年6 月10 日晚11 时,盾构机盾尾上部的地面建筑物—汽车修理厂部分地面突然下沉,面积约40 m2,下陷深度约2.5 m,同时出现房屋基础的独立柱下沉,墙面开裂。
根据区域详勘和补勘阶段地质资料,盾构机所处部位( 地表以下约22 ~28 m) 区间地层为: 上覆第四系覆盖层,覆盖层主要为冲积~洪积土层及残积土层。
下伏基岩为风化花岗岩、花岗片麻岩和花岗岩。
基岩包含全风化、强风化、中风化三个风化岩带。
隧道区间大部分位于全、强风化层,地层空隙率较高,中、强风化层为富水地层。
水压大且具有连通性。
根据水文工程地质条件及盾构施工情况综合分析,引起地面下沉及建筑物变形的主要原因为:盾构机在穿过覆盖层及风化软弱地层时,因外围未形成有效防护,在地层土压力及水压力作用下,随着盾构机的掘进,大量泥水混合物涌进土仓造成严重超挖及水土流失,致使隧道顶部地层在上覆压力作用下发生变形坍塌,变形坍塌不断延伸从而导致地面塌陷变形、建筑物变形开裂。
4.1.2治理技术方法( 1) 方法与步骤①首先采用混凝土对塌陷区进行回填;②对修理厂房屋地板以下的脱空区进行回填灌浆处理;③采用黏土水泥复合浆液将盾构机土仓回填密实;④采用黏土水泥复合浆液在盾尾形成止水环,控制已掘进完成的隧道管片与围岩间的水流和部分裂隙水;⑤采用黏土水泥复合浆材从汽修厂车间地面对盾构机土仓周边地层进行帷幕灌浆施工;⑥在上述工作完成后,利用盾构机上预留的超前注浆孔进行适当补强。
( 2) 施工工艺①灌浆材料。
由于盾构机刀盘前方地层空隙率高,且地层富水,要求止水灌浆不能固住盾构机。
采用黏土复合浆液或复合膏浆先进行充填灌浆,然后再采用部分mj 双组分低强度化学浆材进行止水。
②采用黏土水泥复合浆材将盾构机土仓回填密实。
利用盾构机土仓胸板上的注浆孔,采用排水与注浆结合的方式,对土仓内空间分3 ~4 次将土仓空间注满。
注浆材料初凝时间6 ~12 min,3 d 抗压强度0. 3 ~1.0 MPa。
③通过注浆在盾尾形成止水环。
为减少土仓水的来源,对已形成隧道的管片与围岩间的水流和部分裂隙水通过注浆进行控制,并在盾尾后形成较宽的止水环。
止水环灌浆孔布置于盾尾后的第 3 ~9 环间的管片拼装孔( 或缝) 上,先施工管片上的拼装孔,按3 排一个循环进行施工。
止水环施工前先将需处理环间管片上的拼装孔钻穿两个,量测排水量和水压,并做连通试验。
处理过程中用球阀封闭排水,灌浆压力1 MPa。
灌浆结束标准: 单位吸浆量不大于1 L/min,持续10 min。
注浆材料为黏土水泥复合浆材,初凝时间16 min,3 d 抗压强度1 MPa。
特殊情况下灌入化学浆材或速凝双液浆止水。
④用低强度化学浆材回填盾壳与围岩间间隙,防止盾壳被固住。
为保证盾构机盾壳不会被较高强度的灌浆材料固住,在对掌子面注浆前先用低强度的溶液型浆材充填盾壳与围岩空间。
回填过程应与盾壳周边的排水结合,让浆材尽可能充填满。
回填压力应小于0.6 MPa。
⑤地面注浆帷幕。
要求在盾构机土仓周边形成止水帷幕体,并对掌子面进行适当加固,施工完成后要求能将盾构机前行部位达到基本止水和空隙地层的有效充填,设计在盾构机土仓部位周边布置钻孔,加固底板深度30 ~32 m,刀盘前方4 ~6 m,钻孔轴线距刀盘左右各2 m,隧道顶部4 m。
钻孔垂直盾构机轴线布孔5~6 排,排距和孔距1 ~1.2 m,盾尾与刀盘部分以上孔深距隧道顶1 m。
灌浆浆材采用黏土水泥复合浆,初凝时间16 min,3 d 抗压强度1 MPa。
为提高浆材的固结强度,施工中可将水灰比调为1∶ 1,其他参数不变。
灌浆采用压力为0.3 ~0.6 MPa。
以盾构机土仓内最大压力不超过3.5 bar 为上限控制标准。
当吸浆量小于1 L/min 时,再持续灌浆30 min后结束灌浆。
⑥超前注浆。
超前注浆作为地面注浆的补充,施工过程要求钻孔与灌浆紧密结合,钻完一孔即灌浆一孔,不得同时施工多孔,防止对地层的扰动。
不一定需要将所有的预留孔全部施工,应根据地层的加固效果确定孔数和施工的深度。
实际上,盾构机在土仓壁上已布置有超前注浆孔施工位置( 见图1) ,先沿盾构机轮廓预留的超前注浆孔布置9°外倾孔,孔深约5 ~7 m,实际入土或入岩深度为2 ~4 m,要求钻孔尽量深; 再施工水平孔,各类孔均分三序施工; 施工过程中应采用孔口导流和适当封堵,尽量防止水和泥沙大量涌出,使地层失水加速下沉。
灌浆: Ⅰ序和Ⅱ序孔灌入黏土水泥复合浆液,要求浆液7 d 强度大于3 MPa,初凝时间约6 ~12 min; Ⅲ序孔灌筑低强度速凝高分子止水材料。
施工中,在盾构机土仓传感器监测到的压力不超过3.5 bar 情况下,尽快达到灌浆压力,或者保证注入率大于30 L/min,直到该孔基本不吸浆30 min 后停灌。
所有黏土水泥复合灌浆孔全部施工完毕后,待凝24 h 后再进行Ⅲ孔的钻孔灌浆。
灌浆过程以盾构机土仓传感器压力小于3.5 bar为控制标准,在土仓压力不上升情况下灌浆压力尽可能大,但应确保地面不冒浆。
4.1.3治理完成可恢复掘进施工的条件在土仓超前注浆孔上适当部位布置检查孔,如果钻孔不塌孔,且渗水量不大于5 L/min,则可以启动螺旋出土器出土,然后再开闸检查,确认土仓无明显渗水及流土,则可恢复掘进施工。
4.2盾构换刀预防地面沉降加固技术4.2.1工程概况隧道由两条单线单洞区间的盾构法隧道组成。
设计里程为Y ( Z) DK-0-631.525 ~Y ( Z)DK-2-411.300,右线隧道长1 779.775 m,左线隧道长1 784.897 m( 长链5.122 m) ,全长3 564.672 单线延长米。
区间沿线地面条件复杂,经过地面设施主要有城市交通主干道、河涌、高架桥、建筑物等,车流量大,人员密集,建筑物稠密。
截止2009 年9 月5 日,右线海瑞克盾构机掘进到647 环,隧道埋深25 m,盾构机所在位置地面为一工商学院院内,海瑞克盾构机盾尾距学生宿舍9号楼净距2.6 m,刀盘距学生宿舍10 号楼净距离为5.11 m,两栋房屋均为框架结构,锤击灌注桩基础,A072 栋房屋桩长13 m,A070 栋房屋桩长15 m。
左线小松盾构机掘进到550 环。
左右线盾构机位置见图2。
4.2.2工程地质及水文状况( 1) 工程地质情况在ZDK-1-435 处,隧道断面主要地层为<7H >和<9H >; 在YDK-1-433 处,隧道断面主要地层为<7H >、<9H >,隧道上部为<6H >地层。
花岗岩残积土<5H-2 >: 呈褐黄、灰褐色,硬塑状,黏性差,含有石英砂粒,遇水软化、崩解。
强风化花岗岩<7H >: 呈褐黄、灰褐、浅黄、浅灰色等,风化强烈,原岩组织结构大部分风化破坏,但原岩结构清晰可辨,岩石风化裂隙发育,风化不均,岩芯呈半岩半土状、碎块状,局部夹中风化岩块,岩质极软,岩块用手易折断,具遇水易软化、崩解特点。
中等风化花岗岩<8H >: 呈深灰、灰白、浅黄等色,中细粒结构,块状构造,组织结构部分破坏,裂隙较发育,岩石硬,较破碎,裂面伴有铁染,岩芯多呈碎块状,少量长、短柱状,风化不均匀。
微风化花岗岩<9H >: 呈深灰、灰白色,块状结构,裂隙较发育,岩石坚硬,较完整,岩芯多呈长、短柱状,少量块状,锤击声脆。
( 2) 水文地质情况本区段地下水有第四系孔隙水及基岩裂隙水两种类型。
一种是其富水性较好,透水性强,属中等~强透水地层; 根据其赋存条件,一般为潜水特性,对局部埋深比较大,上覆土层较厚地段具弱承压性特点。
另一种是基岩裂隙水主要赋存于基岩强风化、中等风化的裂隙中,地下水埋深一般为10 ~20 m,由于岩性及裂隙发育程度的差异,其富水程度与渗透性也不尽相同,一般比较差。
由于强风化带上部全风化岩和残积土以土性为主,透水性差,一定程度上起到相对隔水作用,因此本基岩裂隙水具承压水特性。
4.2.3换刀加固技术方案小松盾构机拟在646 环( 刀盘在ZDK-1-436) 处检查及更换刀具,考虑到小松盾构机压气作业较困难,需采取地层预加固后常压进仓检查及更换刀具,故此需对检查换刀位置处的地层进行加固。
考虑到右线海瑞克盾构机带压作业时掌子面易失稳坍塌,且在目前停机位置( 647 环) 需更换刀具后方可继续推进,因此需对右线海瑞克盾构机前方地层进行加固,常压开仓更换刀具。
刀盘前方地层为<5H -2 >、<6H >、<7H >、<9H >等地层,地面为工商学院内空地,结合以往施工经验,盾构换刀加固采用地面前进式注浆加固。
( 1) 地面注浆加固方案对刀盘前方掌子面从地面采用前进式注浆加固土体; 盾尾后两环径向注浆形成止水环阻止后方的水流进入土仓; 盾壳上的预留径向孔径向注入快速止水高分子材料,对盾壳周围的间隙封闭止水,并起保护作用。
①对盾尾后两环管片的注浆加固。