spss测调查问卷数据分析图-信度-效度
- 格式:doc
- 大小:167.50 KB
- 文档页数:8
第二节信度和效度分析一、信度分析与预测试数据分析方法一样,为了确保问卷的可靠性,先进行信度分析,信度检验指标在前面已详细述,在此不再述。
问卷信度分析如表4-2所示:表4-2:量表信度检验结果经过SPSS24.0数据统计软件分析得知个变量Cronbach's α均大于0.6,且组合信度在0.792以上,说明所有问卷都具备可靠性,能够较好的反应变量的真实情况。
二、效度检验(一)容效度为了确保调研问卷容的有效性,问卷量表通过文献研究先初步圈定问卷容,所用量表大多采用国外已经开发出的成熟量表,对于这部分量表,本文给予直接采用的方式,其余量表则是在前人研究的基础上,根据本文的研究目的和方向进行谨慎的拟定。
因此,本问卷具有容效度。
(二)结构效度在测量结构效度时,通常采用探索性因子分析。
在进行因子分析时,通常采用主成分分析法,主成分分析的目的在于利用变量间的线性组合来解释每个层面的方差,变量的第一个线性组合可以解释最大的变异量,以此类推,所以主成分分析法的步骤是,选取特征值大于1的因子,然后利用方差最大旋转法进行旋转,使得旋转后题目在各个因子的负荷量大小出现明显差异,大部分题目在每个公共因子中有一个差异较大的因子负荷量出现。
但在因子分析之前需要进行KMO值和Bartlett球形检验,只有当KMO>0.5且Bartlett球形检验的Sig.值小于0.05时,问卷才具有结构效度,才能够进行因子分析。
本研究中对三个量表进行的结构效度分析具体情况如下。
(1)虚拟品牌社群价值的效度检测1.1虚拟品牌社群价值的KMO值和Bartlett球形检验在对虚拟品牌社群价值做因子分析之前,先做KMO值和Bartlett球形检验,检测结果如表4-3所示:表4-3:虚拟品牌社群价值的KMO值和Bartlett检验取样足够度的Kaiser-Meyer-Olkin度量.901Bartlett的球形度检验近似卡方4892.820df 186Sig. .000通过对虚拟品牌社群价值量表的14个题项进行KMO检验和Bartlett球形检验,发现虚拟品牌社群价值量表的KMO值为0.901,表明各个变量之间的相关系数非常高,适合做因子分析,同时Sig.值为0.000<0.05,达到显著性水平,综上可以得出虚拟品牌社群价值量表适合做因子分析。
信度分析和效度分析数据计分方法说明类别小分类对应题项每题计分方法维度计分方法题项职业倦怠情感枯竭1-3题正向计分全部题项直接加总 3 去个性化4-6题正向计分全部题项直接加总 3 个人成就感7-10题逆向计分全部题项取倒数后加总 4心理资本11-18题正向计分全部题项直接加总8组织气氛19-26题21题为逆向计分,其余题项正向计分21题取倒数后与其余题项加总8总体幸福感27-31题27题和31题为逆向计分,其余题项为正向计分27和31题取到术后与其余题项加总5整体问卷以上各个维度的总分直接加总31讲问卷调查的数据进行如上表的数据预处理后,接下来再进行如下分析。
1 信度分析这里有63份问卷,首先我们需要的判定的是问卷中的调查题目能否反映调查的目的和调查的意图,问卷中的各个问题是否测量了相同的内容和信息;同时,对于调查问卷所得到的数据是否具有可靠性,就必须在对问卷分析之前做信度分析。
信度本身与测量结果的正确与否无关,它的用途在于检测问卷本身的稳定性。
信度分析中常用Cronbach α系数的大小来衡量调查问卷的信度。
一般而言,如果问卷的信度系数达到0.9以上,该问卷调查的信度就较好;信度系数在0.8以上,是不错的;一般认为试卷信度在0.5至0.9以内是合理的,如果信度系数低于0.5,则此问卷的调查结果就不可信了。
将以上63份问卷的数据用SPSS21.0先进行标准化处理,再进行信度分析,其结果如表一所示:表一信度分析表类别Cronbach's Alpha项数整体问卷.61731职业倦怠.82210心理资本.8018组织气氛.8378总体幸福感.6795表一显示,整体问卷和问卷中的各个维度的Cronbach's Alpha系数值均大于0.6,所以可以推断此问卷的可信度一般,该评价问卷只具有很较高的内在一致性。
2 效度分析具备信度的问题不一定具备效度,因此做完信度分析,再用SPSS21.0对其进行效度分析。
如何使用spss进行问卷效度和信度分析哎呀,这可是个大问题啊!让我们一起来看看如何使用SPSS进行问卷效度和信度分析吧!我们需要了解一下什么是效度和信度。
效度是指问卷能否准确地测量我们想要研究的概念,而信度则是指问卷的稳定性和一致性,即同一人在不同时间或环境下回答相同的问题时,答案是否一致。
那么,我们该如何使用SPSS来进行这些分析呢?我们需要导入数据。
这里啊,数据就像是我们的钱财,需要妥善保管。
在SPSS中,我们可以通过“文件”->“打开”来导入我们的数据。
记得把数据放在一个合适的文件夹里,这样我们才能轻松找到它哦!接下来,我们需要对数据进行预处理。
这个过程就像是给我们的数据洗个澡,让它变得更加整洁。
在SPSS中,我们可以通过“数据”->“清洗”来进行预处理。
这里有一些常见的数据清洗任务,比如缺失值处理、异常值处理等。
通过这些任务,我们可以让数据变得更加规范,便于后续的分析。
好了,现在我们的数据已经准备好了。
接下来,我们就可以开始进行效度和信度分析了。
在SPSS中,我们可以通过“分析”->“可靠性”来进行这些分析。
在这里,我们可以选择不同的分析方法,比如Cronbach's alpha系数、KMO和Bartlett's球形检验等。
这些方法可以帮助我们了解问卷的效度和信度情况。
在进行效度和信度分析时,我们需要注意以下几点:1. 我们需要确保我们的问卷设计是合理的。
一个好的问卷设计应该能够准确地反映我们想要研究的概念,同时避免引导受访者给出特定答案的问题。
2. 我们需要选择合适的分析方法。
不同的问卷可能适用于不同的分析方法,所以我们需要根据具体情况来选择。
3. 我们需要关注分析结果。
如果分析结果显示我们的问卷效度和信度较低,那么我们就需要重新审视我们的问卷设计,看看是否有需要改进的地方。
使用SPSS进行问卷效度和信度分析是一个相当有趣的过程。
通过这个过程,我们可以更好地了解我们的问卷质量,从而提高研究的质量。
球形检验:KMO 和 Bartlett 的检验a取样足够度的 Kaiser-Meyer-Olkin 度量。
.438Bartlett 的球形度检验近似卡方1413。
701df 630Sig. .000a. 基于相关公因子方差原始重新标度初始提取初始提取1.221 .973 1。
000 。
797 A31,5-非常同意;4—同意;3—不确定;4-不同意;5—非常不同意A21,5-非常同意;4—同意;3—1。
003 .727 1.000 .725 不确定;4-不同意;5—非常不同意A32,5—非常同意;4-同意;3—.872 。
408 1.000 。
468 不确定;4—不同意;5—非常不同意1。
331 。
915 1。
000 .688 A335—非常同意;4—同意;3—不确定;4—不同意;5—非常不同意1。
051 .364 1。
000 。
346 A115—非常同意;4—同意;3-不确定;4-不同意;5—非常不同意1。
167 。
994 1.000 .852 A345-非常同意;4—同意;3—不确定;4—不同意;5—非常不同意1.023 。
646 1.000 .631 A225-非常同意;4—同意;3-不确定;4—不同意;5-非常不同意1.128 .746 1。
000 。
662 A235—非常同意;4—同意;3—不确定;4—不同意;5—非常不同意信度:A维度:可靠性统计量Cronbach's Alpha 基于标准化项的Cronbachs Alpha 项数。
760 .759 10 B维度:可靠性统计量Cronbach's Alpha 基于标准化项的Cronbachs Alpha 项数。
594 。
594 9C维度:可靠性统计量Cronbach’s Alpha基于标准化项的Cronbachs Alpha 项数.820 .824 10 D维度:可靠性统计量总信度:可靠性统计量 Cronbach's Alpha 基于标准化项的Cronbachs Alpha项数。
如何使用spss软件进行效度和信度分析如果一个问卷设计出来无法有效地考察问卷中所涉及的各个因素,那么我们为调查问卷所作的抽样、调查、分析、结论等一系列的工作也就白做了。
那么,我们如何来检验设计好的调查问卷是否有效呢?信度分析是评价调查问卷是否具有稳定性和可靠性的有效的分析方法。
二、信度分析的提出及分析方法信度,又叫可靠性,是指问卷的可信程度。
它主要表现检验结果的一贯性、一致性、再现性和稳定性。
一个好的测量工具,对同一事物反复多次测量,其结果应该始终保持不变才可信[1]。
例如,我们用一把尺子测量一张桌子的高度,今天测量得高度与明天测量的高度不同,那么我们就会对这把尺子产生怀疑。
因此,一张设计合理的调查问卷应该具有它的可靠性和稳定性。
调查问卷的评价体系是以量表形式来体现的,编制的合理性决定着评价结果的可用性和可信性。
问卷的信度分析包括内在信度分析和外在信度分析。
内在信度重在考察一组评价项目是否测量同一个概念,这些项目之间是否具有较高的内在一致性。
一致性程度越高,评价项目就越有意义,其评价结果的可信度就越强。
外在信度是指在不同时间对同批被调查者实施重复调查时,评价结果是否具有一致性。
如果两次评价结果相关性较强,说明项目的概念和内容是清晰的,因而评价的结果是可信的。
信度分析的方法有多种,有Alpha信度和分半信度等,都是通过不同的方法来计算信度系数,再对信度系数进行分析[2]。
目前最常用的是Alpha信度系数法,一般情况下我们主要考虑量表的内在信度——项目之间是否具有较高的内在一致性。
通常认为,信度系数应该在0~1之间,如果量表的信度系数在0.9以上,表示量表的信度很好;如果量表的信度系数在0.8~0.9之间,表示量表的信度可以接受;如果量表的信度系数在0.7~0.8之间,表示量表有些项目需要修订;如果量表的信度系数在0.7以下,表示量表有些项目需要抛弃。
我们可以通过目前比较流行的SPSS软件对调查问卷进行信度分析,这样我们就可以判断一个调查问卷是否具有稳定性和可靠性。
如何使用spss进行问卷效度和信度分析如何使用 SPSS 进行问卷效度和信度分析在进行社会科学研究或者市场调研等工作时,问卷是一种常用的数据收集工具。
然而,仅仅收集到数据是不够的,还需要对问卷的质量进行评估,这就涉及到问卷的效度和信度分析。
SPSS 作为一款功能强大的统计分析软件,可以帮助我们有效地完成这些分析。
接下来,我将详细介绍如何使用 SPSS 进行问卷效度和信度分析。
一、问卷效度分析效度是指测量工具或手段能够准确测出所需测量的事物的程度。
简单来说,就是问卷是否真正测量了我们想要测量的东西。
1、内容效度内容效度主要是通过专家判断和文献参考来评估问卷的题目是否涵盖了研究主题的各个方面。
在 SPSS 中,一般不直接进行内容效度的分析,但可以在设计问卷阶段,征求专家意见来保证内容效度。
2、结构效度结构效度通常使用因子分析来检验。
首先,需要检查数据是否适合进行因子分析。
可以通过 KMO 检验和 Bartlett 球形检验来判断。
在 SPSS 中,操作步骤如下:(1)选择“分析” “降维” “因子分析”。
(2)将需要分析的变量选入“变量”框。
(3)点击“描述”,勾选“KMO 和 Bartlett 的球形度检验”。
如果 KMO 值大于 06,且 Bartlett 球形检验的 p 值小于 005,则说明数据适合进行因子分析。
接下来,进行因子提取和旋转。
常见的方法有主成分分析和主轴因子法等。
旋转方法可以选择方差最大正交旋转或斜交旋转。
根据旋转后的因子载荷矩阵,判断问卷的结构效度。
如果题项在预期的因子上有较高的载荷(一般大于 04),且在其他因子上的载荷较低,则说明问卷具有较好的结构效度。
3、效标关联效度效标关联效度是通过考察问卷得分与某个外在效标(如已有的成熟量表或实际行为表现)之间的相关性来评估效度。
在 SPSS 中,可以通过计算问卷得分与效标变量之间的皮尔逊相关系数来判断效标关联效度。
如果相关系数显著且符合预期的方向,则说明问卷具有较好的效标关联效度。