差动保护原理及校验
- 格式:doc
- 大小:307.00 KB
- 文档页数:12
完整的变压器差动保护调试和验证方法变压器差动保护是一种常用的保护装置,用于保护变压器免受内部故障以及外部短路故障的影响。
为了确保差动保护能够可靠地工作,需要对其进行调试和验证。
下面将详细介绍完整的变压器差动保护调试和验证方法。
一、调试方法:1.检查保护装置的接线是否正确。
检查差动保护装置与变压器的CT (电流互感器)接线是否正确,确保保护装置能够准确测量输入和输出电流。
2.对CT进行检定。
使用专业的CT测试仪对CT进行检定,测量CT的变比、二次回路电阻等参数,确保CT工作正常。
3.调整差动保护装置的参数。
根据变压器的参数和保护装置的要求,设置合适的差动电流定值和时间延迟等参数。
4.模拟故障事件进行测试。
通过人工模拟变压器的内部短路故障或外部短路故障,观察差动保护装置的动作情况。
同时,还可以利用保护回路测试仪模拟故障事件,测试保护装置的灵敏度和可靠性。
二、验证方法:1.进行整套装置的一次性测试。
通过对整个差动保护装置进行一次性测试,包括保护装置的所有功能和功能组合的验证,确保差动保护装置能够正常工作。
2.进行稳态和动态特性测试。
测试差动保护装置的稳态特性,包括固定和变化的负荷电流等情况下的响应速度和误动作情况。
同时,还需要测试差动保护装置的动态特性,包括起动和闭锁时的动作时间和误动作情况。
3.进行电流差动特性测试。
通过让一定量的故障电流流过变压器的输入和输出侧CT,并观察差动保护装置的动作情况,验证其能够可靠地检测和保护变压器。
4.进行接地故障测试。
在变压器的输入或输出线路中引入接地故障,并观察差动保护装置的动作情况,以验证其对接地故障的保护能力。
5.进行保护可靠性测试。
通过长时间的持续运行和重复测试,验证差动保护装置的稳定性和可靠性。
同时,进行周期性的差动保护装置的校验和定期的维护,确保其长期可靠工作。
总结:变压器差动保护调试和验证方法包括接线检查、CT检定、参数调整、故障模拟测试等步骤,通过这些步骤可以确保差动保护装置能够可靠地保护变压器。
变压器比率差动保护原理及校验方法1引言继电保护(Protective Relay,Power System Protection是研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。
因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等,使之免遭损害,所以也称继电保护。
基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。
继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。
许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。
因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。
实现继电保护功能的设备称为继电保护装置。
本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。
其中短路电流的计算和电气设备的选择是本设计的重点。
通过分析,找到符合电网要求的继电保护方案。
电力系统和继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。
但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。
因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。
要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。
继电保护是随着电力系统的发展而发展起来的。
20世纪初随着电力系统的发展,继电器开始广泛应用于电力系统的保护,这时期是继电保护技术发展的开端。
差动保护单相校验法差动保护单相校验法,听起来是不是有点高深莫测?其实也没那么复杂,别被这些专业术语吓到。
我们就从生活中的一个小例子说起,可能大家都听过“家里电器突然不工作了”这种事。
没错,就是电路出了问题。
比如我们家的电灯突然不亮了、空调不凉了,最常见的就是电路中的保护机制出毛病了。
这时候,差动保护系统就派上了大用场。
差动保护单相校验法就是一种帮助检查电路是否出现故障的技巧。
这个名字听起来是不是有点像是黑客攻破系统的方式?其实一点也不!它的工作原理简单得很,就像是你平常检查家电坏了没的方式。
我们知道电流要通过电线从一端流到另一端,假如途中有啥异常,电流就会不正常地回流,或者停留在某个地方,造成设备受损。
这个时候,差动保护就会帮我们“察觉”到这些不对劲的地方,从而触发保护机制,断开电源,避免发生严重的设备损坏。
差动保护工作原理其实挺简单的。
就好比你去吃自助餐时,捡了一堆菜拿到桌子上,发现有几个菜是别人“顺手”拿走的,这时你可以判断,餐盘不完整,就像是电流的流向出现了问题。
而差动保护法,就是通过不断对比电流进出电路的情况,看看有没有不对劲的地方。
如果有电流“失踪”的现象,保护装置就会立刻反应,把电源断掉。
简单吧?可能有人会问,为什么要用单相校验法而不是其他的方式呢?因为在很多地方,电流并不是完全均衡的。
有些电器使用单相电,比较常见的比如家里的空调、电热水器这些,使用的是220V的单相交流电。
单相电的电流变化会有点不规律,跟三相电不太一样,这时候我们就需要特别针对单相电流的差动保护来检测这些异常情况。
想象一下,家里有电器一直处于工作状态,如果差动保护系统不及时察觉到电流的异常,长时间下去,电器就可能烧坏,甚至引发火灾。
这就像是你家门口有个看门的小保安,虽然他看着不咋地,但关键时刻却能帮你抓住小偷。
所以,差动保护的单相校验法特别重要,能提前发现问题,防患于未然。
我们在使用这种保护方式时,不仅要依赖仪器设备的判断,还需要结合一些专业的操作技巧。
主变差动保护的基本原理主变差动保护是一种用于保护电力系统主变压器的重要保护装置。
它通过检测主变两侧电流的差值,判断主变压器是否发生故障,并根据判断结果进行相应的保护动作。
主变差动保护具有灵敏、可靠、快速等特点,是保护主变压器安全运行的主要手段之一。
主变差动保护的基本原理如下:1.差动电流原理:主变差动保护是基于差动电流原理工作的。
在正常情况下,主变两侧的电流应当是相等的,即差动电流为零。
而当主变发生故障时,例如短路、接地等,主变两侧的电流就会发生不平衡,即出现差动电流。
2.电流传感器:主变差动保护装置通过电流传感器获取主变两侧的电流信息,这些电流传感器通常是电流互感器。
主变差动保护通常使用两个电流传感器,分别连接到主变两侧的线路上。
3.电流比较:主变差动保护对两侧电流进行比较,以判断是否发生故障。
通常,差动保护器会对两侧电流进行相位和幅值的比较。
如果主变两侧电流相等,没有差动电流,差动保护器则认为主变正常;而如果主变两侧电流不相等,存在差动电流,差动保护器则判断主变发生故障。
4.差动保护动作:当差动保护器判断主变发生故障时,它会触发保护动作,以隔离故障点并保护主变。
差动保护器的保护动作通常通过输出一个或多个触发信号来实现,触发信号可以用来操作断路器、闸刀等设备。
5.可靠性增强技术:为了提高主变差动保护的可靠性,常常采用一些增强技术。
例如,差动保护器可以通过设置延时、滞后等功能来抑制瞬时故障误动作。
此外,还可以使用同步电流补偿、零序电流补偿等技术来提高保护的精度和可靠性。
总结起来,主变差动保护通过检测主变两侧电流的差异,来判断主变是否发生故障,并触发相应的保护动作。
它具有灵敏、可靠的特点,是保护主变压器运行安全的重要手段之一。
同时,通过采用增强技术,可以进一步提高保护的可靠性和精度。
变压器保护整定中的差动保护的整定与校验方法在变压器保护装置中,差动保护是一种常见且重要的保护方式。
为了确保差动保护能够发挥其应有的保护作用,需要对差动保护进行整定和校验。
本文将从整定和校验两个方面介绍变压器差动保护的相关方法。
一、差动保护的整定方法差动保护的整定是为了确保在变压器正常运行时不发生误动作,同时能够在发生故障时能够准确可靠地动作。
以下是差动保护整定的一般步骤:1. 确定保护区域:根据变压器的接线图和实际情况,确定差动保护所要覆盖的保护区域。
通常情况下,保护区域应包括变压器的高压侧和低压侧。
2. 确定整定电流:根据变压器的额定电流和负载情况,确定差动保护的整定电流。
整定电流一般设置为变压器额定电流的百分之几,具体数值根据实际情况而定。
3. 确定动作特性:根据差动保护的动作特性曲线,确定差动保护的整定参数。
常见的动作特性曲线有梯形曲线、平板曲线等,具体选择应考虑变压器的性能和运行要求。
4. 确定整定参数:根据变压器的特性、接线方式和运行要求,确定差动保护的整定参数。
整定参数包括时间定值、灵敏系数等,可以根据经验值或者故障模拟等方法确定。
二、差动保护的校验方法差动保护的校验是为了验证整定参数的准确性和保护装置的可靠性。
以下是差动保护校验的一般步骤:1. 检查接线:首先,检查差动保护装置的接线情况,确保连接正确可靠。
同时,还应检查变压器主绕组和各侧绕组之间的连接,确保变压器内部电路的连通性。
2. 模拟故障:通过模拟故障的方式进行校验,例如在变压器的高压侧或低压侧接入故障电阻、故障电容等。
模拟故障时,需要记录差动保护的动作时间和动作电流,与整定参数进行对比。
3. 调整整定参数:如果校验结果与整定参数存在较大偏差,需要进行整定参数的调整。
可以通过调整灵敏系数、时间定值等参数来准确匹配差动保护的整定与校验结果。
4. 验证保护可靠性:校验完成后,需要进行保护可靠性的验证。
可以通过变压器的正常运行和模拟故障实验等方式来验证差动保护的可靠性和准确性。
1引言随着生产生活进一步发展,社会各界对电能需求量进一步增加,电力企业为满足当前用电需求,不断优化电网,各种各样高压输电线路、变压设备等逐渐投入到电网建设之中。
变压器属于电网重要仪器之一,保证变压器质量可以有效提升电网整体可靠性。
而研究变压器比率差动保护原理及校验,对于提升变压器自身可靠性有很大意义。
2变压器比率差动保护原理差动保护属于变压器保护形式的一种,是指比较变压器不同侧相位与电流不同,进而构成一种保护。
尽管变压器各侧电路互不相通,电流不等,但可以根据变压器短路(外部)时流出与流入变压器的功率与正常情况下变压器工作时流出与流入变压器的功率进行比对,利用各侧电流安匝之和近似为零等,进而建立相应的差动保护平衡方程[1]。
一旦变压器内部发生故障后,可以通过建立相应差动保护平衡方程对相应差动电流流过的差动回路进行控制,促使差动继电器发挥作用,进而对变压器进行保护。
2.1不平衡电流产生的原因一旦变压器外部电路出现短路等故障后,差流回路(差动保护)会产生较大非平衡电流。
一般导致不平衡电流出现的原因包括以下几个:各侧电流(变压器)的互感器变比和型号不一致;高低压侧(变压器)绕组接线的形式不相同;暂态非平衡电流产生原因与变压故障、空载电流有很大关系,变压器外部故障消除后,或者有空载电流进入电源后,电压恢复励磁涌流导致暂态非平衡电流出现;变压器带负荷调分接头引起变比变化。
2.2不平衡电流处理措施常规变压器非平衡电流处理方式包括如下几种:确保各侧电流互感器必须一致。
相关技术人员选择相同电流互感器,安装在变压器各侧要尽可能选择变比、型号相同的仪器,确保各侧对变压器影响相同,避免非平衡电流产生。
技术人员也可以适当增加保护动作电流,以有效避免外部短路造成非平衡电流产生,动作电流具体数额要在对差动保护的整定计算中,进一步考虑[2];相关技术人员可以利用相位补偿法有效解决因高低压侧绕组方式不同导致的非平衡电路;相关技术人员可以采用波形对称原理、二次谐波制动原理、励磁涌流波形和内部短路电流差别等方式来躲避励磁涌流,避免非平衡电流产生;可以利用对变压器差动保护的整定计算的进一步优化,消除由于带负荷调分接头导致的非平衡电流问题。
变斜率比率差动保护原理及校验方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!变斜率比率差动保护原理及校验方法1. 引言变斜率比率差动保护是电力系统中常用的一种保护方式,其原理是通过比较电流差动量与设定的变比比率来判断是否存在电流差异,从而实现对电力设备的快速保护。
差动保护基本原理差动保护是电力系统中常用的一种保护方式,用于检测电气设备的内、外部短路故障,并迅速切断故障部分,以保护电器设备的安全运行。
它的基本原理是基于电流差值的测量。
差动保护的原理可以分为两个方面:差动原理和差流原理。
一、差动原理当设备正常运行时,设备两端的电流大小是相等的,因为电器设备是采用闭合的回路。
而当设备发生内、外部短路故障时,由于故障电流的存在,电流的值和方向会发生变化,导致设备两端电流不再相等。
差动保护通过测量设备两端电流的差值,当差值超过设定的阈值时,判断故障发生,并发送保护信号,进行故障切除或报警。
二、差流原理差流原理是差动保护中常用的一种实现方法。
它通过将电流采样器放置在设备两端,测量设备两端的电流,并将测量结果进行差分运算,得到差流信号。
差流信号经过放大、整定之后与设定的阈值进行比较,当差流信号超过设定的阈值时,判断设备发生故障,进行切除或报警。
差流原理的实现可以使用各种电流互感器和差流计算器来完成。
差动保护的基本原理可以用以下示意图来表示:```───────────────────────监控│╔═══╦═══╗│设备1→→││多绕组变压器│←←设备2││││←←信号源│─────→→╚═══╩═══╝││││差动保护装置```以上示意图中,设备1和设备2之间连接一个多绕组变压器,通过变压器的中继作用,将设备两端的电流进行采样并传输到差动保护装置。
差动保护装置通过差分运算,计算设备两端电流的差值,并将计算结果与设定的阈值进行比较,如果差值超过设定的阈值,说明设备发生故障,差动保护装置会发送信号进行保护动作。
差动保护具有快速、可靠的动作特性,可以有效地检测电气设备的内、外部短路故障,并迅速切除故障部分,保护电器设备的安全运行。
差动保护在电力系统中得到广泛的应用,常见的应用包括变压器差动保护、母线差动保护、发电机差动保护等。
并且随着电力系统的智能化发展,差动保护装置也在不断地发展,逐渐向数字化、网络化的方向发展。
差动保护原理及校验差动保护是电力系统中常用的一种保护方式,用于检测电力系统中的故障,并及时切除故障点,以保护设备和人员安全。
差动保护通过比较电流的差值来判断是否存在故障,其原理是根据电流的连续性原理,即在故障发生时,系统中的电流总和应为零,如果存在故障,那么电流差值将不为零,从而触发差动保护。
差动保护的基本原理是利用变压器的原理。
在电力系统中,变压器是一种常用的电力设备,其本质是通过电磁感应的原理转换电能。
在变压器中,存在着输入侧和输出侧的电流关系,即输入侧的电流与输出侧的电流成正比关系。
差动保护通过检测变压器输入侧和输出侧的电流差值,从而判断是否存在故障点。
差动保护的校验主要包括以下几个方面:1.设置的差动电流阈值的校验:差动保护中需要设置一个电流阈值,当输入侧和输出侧的电流差值大于该阈值时,才会触发差动保护。
校验差动电流阈值的合理性是差动保护校验的重要内容之一2.差动保护的整定方法的校验:差动保护的整定方法是确定差动保护参数的过程,其目的是保证差动保护灵敏、准确地判别故障。
校验整定方法的正确性是差动保护校验的关键之一3.差动保护的稳定性校验:差动保护在运行过程中需要保持稳定状态,即在没有故障情况下,差动保护应该不会误动。
稳定性校验是保证差动保护正常工作的重要环节之一4.差动保护的动作速度校验:差动保护需要在故障发生时及时切除故障点,以保护设备和人员安全。
动作速度的校验是保证差动保护具有及时性的关键之一通过对以上几个方面的校验,可以保证差动保护的准确性和可靠性,提高电力系统的安全性和稳定性。
总结起来,差动保护是一种根据电流的差值来判断是否存在故障的电力保护方式。
其原理是利用变压器输入侧和输出侧电流的差值来判断是否存在故障点。
差动保护的校验主要包括差动电流阈值的校验、整定方法的校验、稳定性的校验和动作速度的校验。
通过对差动保护的校验可以保证其准确性和可靠性,提高电力系统的安全性和稳定性。
差动保护动作的原理
差动保护是一种电气保护装置,用于保护电力系统中的发电机、变压器和电动机等设备。
它的原理是利用设备两端的电流差值进行判断,当电流差超过设定的阈值时,差动保护装置会动作从而切断故障电路。
差动保护的原理可以分为以下几个步骤:
1.测量相间电流:差动保护装置会通过电流互感器等装置测量设备两端的相间电流。
这些电流值会传送到差动保护装置的继电器中进行处理。
2.计算电流差值:差动保护装置会通过对测量到的相间电流进行计算,得到相间电流的差值。
通常采用的计算方法是将设备两端的电流进行求和,然后与设备额定电流进行比较。
3.判断电流差值是否超过阈值:差动保护装置会将计算得到的电流差值与设定的阈值进行比较。
如果电流差值超过了阈值,说明设备发生了故障。
4.动作保护装置:当电流差值超过阈值时,差动保护装置会动作,切断故障电路,从而保护设备免受进一步损坏。
总结起来,差动保护的原理就是通过测量设备两端的电流差值,判断设备是否发生故障,并在故障发生时动作,以保护设备的安全运行。
差动保护原理保护的动作方程假设保护的差动电流为Id,制动电流为Ir,差动门槛定值为Icd,差动速断定值为Isd,拐点1为Ig1,比例制动系数为K1,拐点2为Ig2,比例制动系数为K2,则国内绝大部分保护的动作方程均为:Id > Icd 当 Ir < Ig 时;Id > Icd + K * ( Ir – Ig1 ) 当 Ig2 > Ir > Ig1 时;Id > Icd + K1 * ( Ig2 – Ig1 ) + K2 * ( Ir – Ig2)当 Ir > Ig2 时;Id > Isd比例制动曲线如上图所示:以上四个动作方程只要满足其中一个,保护就会动作出口。
大部分差动保护目前只采用了一个拐点。
即便是存在两个拐点的差动保护,为了测试更方便简单,往往也可以在试验前将保护定值中修改定值为:Ig1 = Ig2;K1 = K2。
从而按只有一个拐点的方式进行测试。
只有一个拐点的比例制动动作方程如下:Id > Icd + K * ( Ir – Ig ) 当 Ir > Ig 时;对于微机差动保护,实际上比例制动和差动速断是两套保护,所以很多保护都设置了控制字,用于投、退这两种保护。
测试差动速断保护时,一般应将“比例制动”保护由控制字退出。
如果不退出,或有些保护没有这种退出功能,则只有在比例制动保护动作后,继续增加输出电流,从保护的指示灯或有关报文判断差动速断保护是否动作。
高、低压侧电流与差动电流、制动电流的关系一般,国内保护的差动电流均采用:Id = | Ih + Il |,可表述为:差动电流等于高、低压侧电流矢量和的绝对值,因此必须注意加在保护高低压侧电流的方向。
制动电流的方程则各个品牌和型号的保护往往不同,国内保护最常见的公式有以下三种:◆Ir = max{ | Ih |,| Il | },正确的表述为:制动电流等于高、低压侧电流幅值的最大值;◆Ir = ( | Ih | + | Il | ) / K ,正确的表述为:制动电流等于1/K倍的高、低压侧电流幅值之和;◆Ir = | Il | ,正确的表述为:制动电流等于低压侧电流的幅值。
变压器差动保护校验方法变压器差动保护是电力系统中常用的一种保护方式,它在变压器的正常运行和保护方面起着重要的作用。
为了确保差动保护的准确性和可靠性,需要进行校验。
本文将介绍变压器差动保护校验的方法。
一、差动保护的基本原理变压器差动保护是利用变压器两侧电流的差值来判断变压器是否发生故障。
当变压器正常运行时,两侧电流的差值非常小,接近于零;而当变压器发生故障时,差流会显著增大。
通过监测差流的大小,可以及时判断变压器是否存在故障,并采取相应的保护措施。
二、差动保护校验的目的差动保护校验的目的是验证差动保护的准确性和可靠性,确保其在变压器故障时能够及时、准确地判断并进行保护动作。
校验的过程主要包括以下几个方面:差动保护装置的参数设置、差动电流互感器的校验、差动保护装置的动作试验等。
三、差动保护装置的参数设置差动保护装置的参数设置是差动保护校验中的重要环节。
首先需要根据变压器的额定容量、变比等信息,计算出合适的参数值。
具体的参数包括:差动电流互感器的一次/二次变比、滞后/超前动作角、差动电流保护装置的动作电流等。
在设置这些参数时,需要参考相关标准和规范,确保参数的合理性和正确性。
四、差动电流互感器的校验差动电流互感器是差动保护中的重要组成部分,其准确性直接影响到差动保护的可靠性。
为了保证差动电流互感器的准确性,需要进行定期的校验。
校验的方法主要有:比率校验、相位校验和零序校验。
比率校验是通过比对互感器的一次/二次电流比值,判断其准确性;相位校验是通过比对互感器的一次/二次电流相位差,判断其准确性;零序校验是通过比对互感器的零序漏电流,判断其准确性。
五、差动保护装置的动作试验差动保护装置的动作试验是校验差动保护的有效手段之一。
在试验时,需要模拟变压器的故障情况,观察差动保护装置的动作情况。
常用的试验方法包括:一次侧短路试验、二次侧短路试验和变压器内部故障试验。
试验时需要注意安全,确保试验过程的可靠性和准确性。
差动保护知识点总结差动保护是电力系统中一种常见的电气保护装置,主要用于检测和保护电力系统中的发电机、变压器、母线等设备。
差动保护的作用是在设备内部发生故障时,能够迅速检测到故障并及时切断故障电路,保护设备和系统的安全运行。
在电力系统中,差动保护是非常重要的一部分,掌握差动保护的知识对于电力系统的稳定运行和设备的安全保护至关重要。
一、差动保护原理差动保护的基本原理是通过比较设备两端的电流,对两端电流的差值进行检测,当这个差值超出一定范围时,即视为设备内部发生故障,需要切断电路。
在差动保护中,通常使用比率系数和阈值等参数来确定差值的范围,并设置报警和动作信号。
差动保护主要有线性差动保护和非线性差动保护两种形式。
线性差动保护是指在一定电流范围内,设备两端电流之差与设备载流量成正比。
而非线性差动保护则指设备两端电流之差与设备在额定载流以下时成正比,在超过额定载流时成指数关系。
这两种差动保护的选择取决于具体的设备类型和应用场合。
二、差动保护的应用差动保护主要应用于发电机、变压器、母线等设备的保护。
发电机的差动保护是断路器和继电保护装置之间的一个重要环节,用于检测发电机线圈内部的短路、接地故障等情况。
变压器的差动保护则是用于检测变压器绕组内部的故障,如短路、接地等。
母线的差动保护主要是用于保护母线两端设备的并联运行,确保母线两侧设备的平衡运行。
此外,差动保护还可以应用于电力系统中的其他设备保护,如电网端口、电容器等。
差动保护在发电厂、变电站、工矿企业等电力系统中都有广泛的应用。
三、差动保护的特点1. 灵敏性高:差动保护能够灵敏地检测设备内部的故障,迅速切断电路,保护设备和系统的安全运行。
2. 可靠性好:差动保护的设计和运行经验丰富,经过长期的实践检验,具有较高的可靠性。
3. 抗干扰能力强:差动保护能够在电力系统复杂的工况下,依然能够正常工作,具有很强的抗干扰能力。
4. 适应性强:差动保护在不同类型的设备上都能够灵活应用,适应性较强。
主变差动保护校验方法在电力系统里,主变差动保护就像一个忠诚的看门狗,时刻关注着变压器的健康状况,防止它出问题。
就好比我们在家里养了一只小狗,虽然看起来它天天就爱吃喝拉撒,但关键时刻它会警觉地吠叫,提醒我们小心不法之徒。
变压器也是一样,万一有故障,立马就得有人来解决,不能让小问题发展成大麻烦。
1. 主变差动保护的基本原理1.1 什么是主变差动保护?简单来说,主变差动保护是一种用来检测变压器内部故障的保护方式。
它通过比较变压器输入和输出的电流来判断是否有异常。
如果发现输入电流和输出电流之间有明显的差异,那就说明变压器内部可能出了问题,就像小狗发现了家里有陌生人的气味一样,立刻报警。
1.2 为什么需要差动保护?在电力系统中,变压器可是重头戏。
一旦它出现故障,可能会导致大规模停电,甚至引发连锁反应。
就像在一个大家庭里,谁要是生病了,大家都得担心,整个家庭的气氛都不一样了。
因此,差动保护就成了保护变压器的重要手段,它可以在故障发生时迅速切断电源,防止事故扩大。
2. 校验方法的重要性2.1 校验方法的意义好比我们买了一台新手机,大家都会仔细检查一下,确保没有问题再开始使用。
主变差动保护的校验方法就是为了确保保护装置的准确性,防止误动作或者漏动作。
就像过年时,家家户户都会大扫除,确保每个角落都干干净净,才能过个放心年。
2.2 常见的校验方法校验的方法有很多,比如说使用电流互感器来进行校验,看看它们的灵敏度是否正常。
这就像医生给病人做体检,确保各项指标都在正常范围内。
还有就是对比电流信号的相位,看看它们是否一致,是否有任何异常现象。
这就好比我们一起吃饭,看看每个人的盘子是不是差不多,保证大家都吃得饱饱的。
3. 实际操作中的注意事项3.1 注意安全在校验的过程中,安全是第一位的。
就像我们做任何事情都要注意安全,特别是涉及到电力的工作,更要小心翼翼。
确保所有的设备都处于正常状态,穿戴好个人防护装备,才能放心地进行操作。
叙述发电机差动保护的原理发电机差动保护是为了避免发电机故障时对电网造成严重影响而采取的一种保护措施,其基本原理如下:1. 工作原理当发电机出现内部故障时,会产生电流差动,即发电机入口和出口之间的电流存在差异。
差动保护就是根据电流差动情况,判断发电机是否存在故障,并迅速将故障发电机与电网隔离。
2. 电流差动比较差动保护通过比较发电机两端的电流,如果电流值存在差异超过一定百分比,表示发电机内部存在故障,这时保护装置就会动作隔离故障发电机。
3. 设置差动保护值差动保护动作值的设置应大于发电机正常运行时可能产生的最大误差,同时应小于发电机最轻度内部故障情况下可能出现的最小差动电流,以达到灵敏和可靠的保护。
4. 电流变压器配置需要在发电机入口和出口配置具有充分精度的互感器或电流互感器,来检测电流差异。
还需选择合适变比,满足保护要求。
5. 差动保护装置包括电流互感器、电流回路、差动继电器、时间延迟电路、鳃式负荷开关等部分组成。
继电器检测电流差异,执行保护动作的切断。
6. 多速发电机的差动保护多速发电机在不同转速下,其内部回路参数有较大变化,因此差动保护装置要能够对应多种工况,设置灵活的保护值。
7. 整定保护值需要对差动保护进行整定,通过发电机运行测试确定最佳的保护定值,以确保在故障时迅速动作,并避免误动作。
8. 系统协调差动保护要与发电机的其他保护系统协调配合,优先发挥差动保护的作用,其他保护起备用作用,形成完善的保护系统。
9.定期测试要定期对差动保护进行模拟测试和整定,确保其性能的参数设置都符合要求,能够可靠地在故障时起到隔离保护作用。
10. 差动保护的应用范围差动保护不仅用于发电机保护,也广泛应用于变压器、电动机、电力传输线路等电力设备的保护。
综上所述,这些就是发电机差动保护的主要原理。
它对保证电网安全运行具有重要作用。
差动保护原理保护的动作方程假设保护的差动电流为Id,制动电流为Ir,差动门槛定值为Icd,差动速断定值为Isd,拐点1为Ig1,比例制动系数为K1,拐点2为Ig2,比例制动系数为K2,则国内绝大部分保护的动作方程均为:Id > Icd 当 Ir < Ig 时;Id > Icd + K * ( Ir – Ig1 ) 当 Ig2 > Ir > Ig1 时;Id > Icd + K1 * ( Ig2 – Ig1 ) + K2 * ( Ir – Ig2)当 Ir > Ig2 时;Id > Isd比例制动曲线如上图所示:以上四个动作方程只要满足其中一个,保护就会动作出口。
大部分差动保护目前只采用了一个拐点。
即便是存在两个拐点的差动保护,为了测试更方便简单,往往也可以在试验前将保护定值中修改定值为:Ig1 = Ig2;K1 = K2。
从而按只有一个拐点的方式进行测试。
只有一个拐点的比例制动动作方程如下:Id > Icd + K * ( Ir – Ig ) 当 Ir > Ig 时;对于微机差动保护,实际上比例制动和差动速断是两套保护,所以很多保护都设置了控制字,用于投、退这两种保护。
测试差动速断保护时,一般应将“比例制动”保护由控制字退出。
如果不退出,或有些保护没有这种退出功能,则只有在比例制动保护动作后,继续增加输出电流,从保护的指示灯或有关报文判断差动速断保护是否动作。
高、低压侧电流与差动电流、制动电流的关系一般,国内保护的差动电流均采用:Id = | Ih + Il |,可表述为:差动电流等于高、低压侧电流矢量和的绝对值,因此必须注意加在保护高低压侧电流的方向。
制动电流的方程则各个品牌和型号的保护往往不同,国内保护最常见的公式有以下三种:◆Ir = max{ | Ih |,| Il | },正确的表述为:制动电流等于高、低压侧电流幅值的最大值;◆Ir = ( | Ih | + | Il | ) / K ,正确的表述为:制动电流等于1/K倍的高、低压侧电流幅值之和;◆Ir = | Il | ,正确的表述为:制动电流等于低压侧电流的幅值。
第二个公式中的K值大部分保护为2,个别保护为1。
另外两个公式有的保护也会采用:Ir = | Ih - Il |/ K ,Ir =(| Id | - | Ih |- | Il |)/ K 。
实际上,试验时记录下的保护临界动作时测试仪输出的IA、IB的电流值都不能等同与上述的高、低压侧电流,因为还得考虑高低压侧的平衡系数。
假设测试仪IA输出给高压侧,IB 输出给低压侧,高低压侧的平衡系数分别为K1、K2,则高低压侧的电流为:Ih = K1 * IA,Il = K2 * IB。
再代入差动电流和制动电流的公式去求出相应的差动电流和制动电流。
变压器接线保护定值中的变压器接线类型都是指变压器一次侧的实际接线,一般有:Y / ∆-11型、Y / Y(Y0)、Y / ∆-1等几种。
对于三卷变,测试时,一般也是取其中的两卷测试,和两卷变的测试方法一样。
六相电流输出继保仪差动试验的接线方法如果用6相电流继保仪做差动试验,无任变压器是哪一种接线方式,试验时接线方法都是:将测试仪的第一组三相电流IA、IB、IC接入保护的高压侧电流输入端IA、IB、IC,将测试仪的第二组三相电流Ia、Ib、Ic接入保护的低(中)压侧电流输入端Ia、Ib、Ic即可,接线方式非常简化。
三相电流输出继保仪差动试验的接线方法用三相电流继保仪做差动试验,则相对较复杂。
当变压器接线为Y/Y时,两侧本是同相位,TA接线一般为Y/Y,相位不需调整。
当变压器接线为Y/△时,两侧不同相位,对微机保护TA接线一般也为Y/Y。
如果保护设计为高压侧内部相位补偿,则高压侧相位需调整;如果保护设计为低压侧内部相位补偿(如南瑞的RCS-978型保护),则低压侧相位需调整。
如果保护设计为无内部相位补偿,侧靠TA外部接线补偿。
做“三路电流差动”时,接线时,测试仪的IA固定接差动保护装置的高侧电流输入端,IB固定接保护低(中)侧电流输入端,而IC作为补偿电流用,在选高压侧相位调整时作为高压侧补偿电流,选低(中)压侧相位调整时作为低(中)压侧补偿电流。
详细试验接线方法当变压器为Y / Y(Y0)接线时,试验的接线很简单:测试A相时,测试仪IA接保护高压侧的A相,测试仪的IB接保护低压侧的a相,保护高、低压侧的中性线短接后,接测试仪的IN,不存在补偿电流问题。
如图。
测试变压器B、C相时,接线与上述类似。
1、Y(Y0)/ Y(Y0)接线方式:两侧均无相位调整,但有零序修正两侧均无相位调整,但无零序修正两侧均将测试相与零序修正相接成相间短路方式两侧均接成单相短路方式当变压器接线类型为Y / ∆-11时,如果是高压侧相位调整,常见的接线为:测试变压器A相时,测试仪IA接保护高压侧的A相,测试仪的IB接保护低压侧的a相,测试仪的IC 接低压侧的c相,保护高、低压侧的中性线短接后,接测试仪的IN,其中IC作为补偿电流。
如图:2、Y(Y0)/ △-11接线方式:Y侧相位调整,无零序修正,按单相短路接线△侧相位调整,按单相短路接线IA’ =IA-IB IB’ =IB-IC IC’ =IC-IA Ia’ =Ia-Ic Ib’ =Ib-Ia Ic’ =Ic-Ib△侧的测试相与被影响相按相间短路接线Y0侧零序修正,Y侧的测试相与被影响相按相间短路接线由上图所示向量图可以看出,高压侧转换后的电流应为:I'A = ( IA - IB ) / 1.732,I'B = ( IB - IC ) / 1.732,I'C = ( IC - IA ) / 1.732,如果只给高压侧A相通入一个电流,B、C相不加电流,则转换后的高压侧三相电流为:I'A = ( IA - IB ) / 1.732 = ( IA - 0) / 1.732 = IA / 1.732;I'B = ( IB - IC ) / 1.732 = ( 0 - 0 ) / 1.732 = 0;I'C = ( IC - IA ) / 1.732 = ( 0 - IA ) / 1.732 = - IA / 1.732。
所以高压侧C相上有了电流,并且与A相上的电流大小相等,方向相反。
试验时,为了平衡高压侧C相上的电流,就在低压侧的c相上加一补偿电流,并且,所加的补偿电流应与加在低压侧a相上的电流大小相等,方向相反。
但如果要求测试变压器的B相或C相时,又该如何接线呢?同理,如果测试变压器的B相,即只给高压侧的B相加电流,A、C两相不加电流,依据上述公式得:I'A = ( IA - IB ) / 1.732 = ( 0 - IB) / 1.732 = -IB / 1.732;I'B = ( IB - IC ) / 1.732 = ( IB - 0 ) / 1.732 = IB / 1.732;I'C = ( IC - IA ) / 1.732 = ( 0 - 0 ) / 1.732 = 0。
由此看出,高压侧的A相上有了一个大小相等、方向相反的电流,试验时应补偿低压侧的a相。
因此,正确的接线为:测试仪IA接保护高压侧的B相,测试仪的IB接保护低压侧的B相,测试仪的IC接低压侧的a相,保护高、低压侧的中性线短接后,接测试仪的IN,其中IC作为补偿电流。
考虑到加在低压侧的两个电流具有“大小相等、方向相反”的特性,试验时可只给保护输入两路电流。
正确的接线为:测试变压器A相时,测试仪IA接保护高压侧的A相,测试仪的IB接保护低压侧的a相,保护低压侧a、c相负极性端短接,低压侧的c相与保护高压侧的中性线短接后,接测试仪的IN。
由上述分析不难发现,加在保护低压侧对应相的电流应与加在高压侧的电流反相,加在低压侧的补偿电流由于要与加在低压侧对应相的电流反向。
所以在测试变压器A相时,当测试仪IA的电流设为0º,则测试仪IB的电流应为180º,测试仪IC的电流应为0º。
当变压器接线类型为Y / ∆-1时,如果是高压侧相位调整,常见的接线为:测试变压器A相时,测试仪IA接保护高压侧的A相,测试仪的IB接保护低压侧的a相,测试仪的IC 接低压侧的b相,保护高、低压侧的中性线短接后,接测试仪的IN,其中IC作为补偿电流。
如图:3、Y(Y0)/ △-1接线方式:△侧相位调整,按单相短路接线Y侧相位调整, 无零序修正,按单相短路接线Ia’ =Ia-Ib Ib’ =Ib-Ic Ic’ =Ic-Ia IA’ =IA-IC IB’ =IB-IA IC’ =IC-IBY0侧零序修正,Y侧的测试相与△侧的测试相与被影响相按相间短路接线被影响相按相间短路接线注意:微机差动保护是相对比较复杂的一个保护,所以调试起来也难免会遇到些问题,一般对试验结果影响较大的有以下几点:1、平衡系数的设置,平衡系数设置不对可能会使测试出来的曲线与整定的曲线偏差较大。
2、高压则平衡系数的取值不对,将对试验造成影响。
无论变压器CT采用哪种接线方式,均可按以下方法确定高压侧的平衡系数:在进行差动门槛时,如果实测的动作电流等于1.732倍的整定值时,则计算时高压侧平衡系数取1.732,如果实测的动作电流等于整定值时,则计算时高压侧平衡系数取1。
备注:低(中)压侧的平衡系数按定值单如实填写即可。
3、制动公式的选择,制动公式选择不对会使测试出来的曲线以及计算出来的制动系数都会和保护的整定值有很大的偏差,甚至完全不对。
4、用三相电流做试验时,若补偿电流未加进去,试验时往往是第一个动作点动作正确,而其后的动作点都是加上电流就动作。
这是因为未加补偿电流,虽然我们要做的试验相没满足差动动作条件,但是补偿相的差流会超过差动整定值,所以保护很快出口。
几种常用的微机差动保护的参数设置说明变压器不同接线方式所对应的电流之间的相位差如下表格:变压器接线方式高压侧电流相位低压侧电流相位Y/Y-12 0º180ºY/△-11 0º210ºY/△-1 0º150º大部分保护的参数定值直接给出电流值,比如,差动门槛值:2A,单位为:A。
但也有部分保护给出的各项定值不是电流值,而只是一个系数。
比如,差动门槛值:0.3,没有单位。
实际上,这是以“标么值”的形式给出保护定值。
将标么值转换为实际的电流,一般可按以下方法:实际的电流值=标么值×高压侧额定电流。
●额定电流的计算方法Ie1=Sn/(1.732﹡U1n﹡CT1)Ie2=Sn/(1.732﹡U2n﹡CT2)注释:Ie1、Ie2——变压器I、II侧二次额定电流Sn——变压器最大额定容量U1n、U2n——变压器I、II侧一次额定电压CT1、CT2——变压器I、II侧CT变比值备注:有的保护自身有计算功能,可能会发现:其计算出的Ie1、Ie2未考虑上述公式里的1.732。