第一章 反应器基本理论-1
- 格式:ppt
- 大小:1.68 MB
- 文档页数:75
化学反应工程习题第一部分:均相反应器基本理论1、试分别写出N 2+3H 2=2NH 3中用N2、H 2、NH 3的浓度对时间的变化率来表示的该反应的速率;并写出这三种反应速率表达式之间的关系。
2、已知某化学计量式为S R B A 2121+=+的反应,其反应速率表达式为B AA C C r 5.02=,试求反应速率B r =?;若反应的化学计量式写成S R B A +=+22,则此时反应速率A r =?为什么?3、某气相反应在400 oK 时的反应速率方程式为221061.3AA P d dP -⨯=-τh kPa /,问反应速率常数的单位是什么?若将反应速率方程改写为21AA A kC d dn V r =⨯-=τh l mol ./,该反应速率常数k 的数值、单位如何?4、在973 oK 和294.3×103Pa 恒压下发生下列反应:C 4H 10→2C 2H 4+H 2 。
反应开始时,系统中含丁烷为116kg ,当反应完成50%时,丁烷分压以235.4×103Pa /s 的速率发生变化,试求下列项次的变化速率:(1)乙烯分压;(2)H 2的摩尔数;(3)丁烷的摩尔分率。
5、某溶液反应:A+B →C ,开始时A 与B 摩尔数相等,没有C ,1小时后A 的转化率为75%,当在下列三种情况下,2小时后反应物A 尚有百分之几未反应掉? (1)对A 为一级、B 为零级反应; (2)对A 、B 皆为一级反应; (3)对A 、B 皆为零级反应。
6、在一间歇反应器中进行下列液相反应: A + B = R A + R = S已知原料组成为C A0 = 2 kmol/m 3,C B0 = 4 kmol/m 3,C R0 = C S0 = 0。
反应混合物体积的变化忽略不计。
反应一段时间后测得C A = 0 .3 kmol/m 3,C R = 1.5 kmol/m 3。
计算这时B 和S 的浓度,并确定A 的转化率、生成R 的选择性和收率。
第一章反应设备石油化工过程可分为传递过程(能量传递,热量传递,质量传递的物理过程)和化学反应过程。
完成化学反应的设备统称为反应设备。
在许多石油化工工业过程中,都是在对原料进行若干物理过程处理后,再按一定的要求进行化学反应以得到最终的产品。
.石油化工中三大合成材料的生产中诸如聚合、加氢、裂解、重整等化学反应过程则更为普遍。
因此,反应设备在石油化工设备中是非常重要的。
常用的反应设备按结构划分有管式反应器、固定床反应器、流化床反应器和搅拌反应器;也有按反应器的功能划分有加氢反应器、重整反应器、催化裂化反应―再生系统等。
1.1 加氢反应器加氢反应器是各种加氢工艺过程的关键设备,种类非常繁多,为便于比较、评价和统计,1995年API经调研后重新将加氢过程划分为加氢处理、加氢精制和加氢裂化三大类。
加氢处理一一系指进料分子基本在反应中无变化,目的在于使烯烃饱和及去除硫的过程。
加氢精制一一系指过程在反应中,有少于10%原料油分子降低分子量的过程。
加氢裂化――系指过程反应中,有≥10%原料油分子转化为小分子的过程。
1.1.1 加氢反应器的分类1、按工艺过程的特点分类依据催化加氢过程进料原料油性质的不同,相应地所采用的工艺流程和催化剂是不相同的,其反应器形式也不同,一般有表1-1-1所列的三种类型。
表1-1-1加氢反应器类型序号反应器类型示意图例反应器特点适用场合1 固定床反应器见图1-1-1 此反应器床层内的固体催化剂是处于静止状态。
它的最大优点是催化剂不易磨损,而且当在催化剂不失去活性情况下,可以长周期使用主要用于加工固体杂质、油溶性金属有机化合物含量较少的馏分油2 移动床反应器见图1-1-2 此反应器在生产过程中催化剂可以连续或间断地移动加人或卸出主要用于加工含有较高金属有机化合物和沥青质的渣油原料场合,以避免容易在催化加工中迅速引起床层堵塞和使催化剂失活的问题当今,在各种加氢装置中,仍以固定床反应器使用最多。
反应器原理
反应器是一个用于进行化学反应的设备。
它通常由一个密封的容器和一系列的反应物、催化剂、溶剂或助剂组成。
在反应过程中,反应物会发生化学变化,生成新的物质。
反应器的工作原理基于反应物分子之间的相互作用。
当反应物加入反应器中后,它们会与其他反应物分子发生碰撞。
这些碰撞会导致反应物分子之间的化学键断裂和形成,并且在一定能量的作用下,新的化学物质会被生成。
反应器中的反应速率是一个重要的参数。
它通常取决于反应物浓度、温度、反应物质性质和反应的压力等因素。
当反应速率较高时,反应器需要能够有效地调节温度和压力,以避免过高的反应速率导致压力过大或产生副反应。
不同类型的反应器根据其结构和功能可分为多种不同的类型。
例如,批处理反应器适用于小型实验室或工业生产中的小规模反应。
连续流动反应器则适用于大规模生产,其反应物会连续地输入和输出。
其他类型的反应器包括循环床反应器、固定床反应器和流化床反应器等。
在设计反应器时,需要考虑多种因素,如反应物的理化性质、反应速率、传热和传质效果等。
合理的反应器设计可以提高反应效率、减少能源消耗,并确保反应安全进行。
此外,反应器的操作也需要控制温度、压力、搅拌速度和物料进出等参数,以维持反应的稳定性和一致性。
总之,反应器是化学反应的核心设备,通过调控反应物分子之间的相互作用,实现所需的化学转化。
通过合理的反应器设计和操作,可以提高反应效率和产品质量,并确保反应过程的安全性。