大学生数学建模:作业-线性规划的实验
- 格式:doc
- 大小:85.00 KB
- 文档页数:5
数学建模作业(实验3线性规划实验)基本实验1.生产计划安排某公司使用三种操作装配三种玩具——玩具火车、玩具卡车和玩具汽车。
对于三种操作可用时间限制分别是每天430分钟、460分钟和420分钟, 玩具火车、玩具卡车和玩具汽车的单位收入分别是3美元、2美元和5美元。
每辆玩具火车在三种操作的装配时间分别是1分钟, 3分钟和1分钟。
每辆玩具卡车和每辆玩具汽车相应的时间是( 2, 0, 4) 和( 1, 2, 0) 分钟( 零时间表示不使用该项操作) 。
( 1) 将问题建立成一个线性规划模型, 确定最优的生产方案。
( 2) 对于操作1, 假定超过它当前每天430分钟能力的任何附加时间必须依靠每小时50美元的加班获得。
每小时成本包括劳动力和机器运行费两个方面。
对于操作1, 使用加班在经济上有利吗? 如果有利, 最多加多少时间?( 3) 假定操作2的操作员已同意每天加班工作两小时, 加班费是45美元一小时。
还有, 操作自身的成本是一小时10美元。
这项活动对于每天收入的实际结果是什么?( 4) 操作3需要加班时间吗?解答解:设生产玩具火车、玩具卡车和玩具汽车的数量分别为X1, X2, X3, 则目标函数为:3X1+2X2+5X3约束条件:X1+2X2+X3<=4303X1+2X3<=460X1+4X2<=420X1>=0; X2>=0; X3>=0最优值为目标函数取得最大。
LINGO程序max=3*x1+2*x2+5*x3;x1+2*x2+x3<=430;3*x1+2*x3<=460;x1+4*x2<=420;运行结果Globaloptimalsolutionfound.Objectivevalue:1350.000Infeasibilities:0.000000Totalsolveriterations:2ModelClass:LPTotalvariables:3Nonlinearvariables:0Integervariables:0Totalconstraints:4Nonlinearconstraints:0Totalnonzeros:10Nonlinearnonzeros:0VariableValueReducedCostX10.0000004.000000X2100.00000.000000X3230.00000.000000RowSlackorSurplusDualPrice11350.0001.00000020.0000001.00000030.0000002.000000420.000000.000000( 1) 由运行结果可得, 最优的生产方案为:玩具火车、玩具卡车和玩具汽车的生产数量分别为: 0、100、230; 收入为1350.( 2) 由DualPrice第二行可知, 当操作1每增加1分钟收入增加1美元, 因此50/60<1, 使用加班在经济上是有利的; Rangesinwhichthebasisisunchanged: ObjectiveCoefficientRanges:CurrentAllowableAllowable VariableCoefficientIncreaseDecreaseX13.0000004.000000INFINITYX22.0000008.0000002.000000X35.000000INFINITY2.666667RighthandSideRanges:CurrentAllowableAllowableRowRHSIncreaseDecrease2430.000010.00000200.00003460.0000400.000020.000004420.0000INFINITY20.00000分析可知, 最多增加10分钟。
数学建模实验报告线性规划数学建模实验报告姓名:霍妮娜班级:计算机95学号:09055093指导老师:戴永红提交日期:5月15日一.线性规划问题描述:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人级大学生正在从若干个招聘单位中挑选合适的工作岗位,他考虑的主要因素包括发展前景、经济收入、单位信誉、地理位置等,试建立模型给他提出决策建议。
问题分析首先经过对问题的具体情况了解后,建立层次结构模型,进而进行决策分析。
下面我建立这样一个层次结构模型:某岗位综合分数发展前景x1经济收入x2家庭因素x3地理位置x4这是一个比较简单的层次结构模型,经过如下步骤就可以将问题解决。
1.成对比较从x1,x2,x3,x4中任取xi和xj,对他们对于y贡献的大小,按照以下标度给xi/xj赋值:xi/xj=1,认为前者与后者贡献程度相同;xi/xj=3,前者比后者的贡献程度略大;xi/xj=5,前者比后者的贡献程度大;xi/xj=7,前者比后者的贡献大很多;xi/xj=9,前者的贡献非常大,以至于后者根本不能和它相提并论;xi/xj=2n,n=1,2,3,4,认为xi/xj介于2n-1和2n+1直接。
xj/xi=1/n,n=1,2,…,9,当且仅当xi/xj=n。
2.建立逆对称矩阵记已得所有xi/xj,i,j=1,2,3,4,建立n阶方阵1135A=11351/31/3131/51/51/313.迭代e0=(1/n,1/n,1/n,1/n)Tek=Aek-1一直迭代直达到极限e=(a1,a2,…,a4)T则权系数可取Wi=ai 解:首先通过迭代法计算得x1,x2,x3,x4的权数分别为:0.278,0.278,0.235,0.209.假设对所有的xi都采用十分制,现假设有三家招聘公司,它们的个指标如下所示:x1x2x3x4甲8579乙7966丙5798按公式分别求出甲、乙、丙三家公司的综合指数为7.144,7.112和7.123.由此可以看出,应该选择甲公司。
1、线性规划和整数规划实验1、加工奶制品的生产计划(1)一奶制品加工厂用牛奶生产A1, A2两种奶制品,1桶牛奶可以在甲车间用12小时加工成3千克A1产品,或者在乙车间用8小时加工成4千克A2 产品.根据市场需求,生产的A1、A2产品全部能售出,且每千克A1产品获利24元,每千克A2产品获利16元.现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且甲车间的设备每天至多能加工100 千克A1产品,乙车间的设备的加工能力可以认为没有上限限制.试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题: (i)若用35元可以买到1桶牛奶,是否应作这项投资?若投资,每天最多购买多少桶牛奶?(ii)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(iii)由于市场需求变化,每千克A1产品的获利增加到30元,是否应改变生产计划?(2)进一步,为增加工厂获利,开发奶制品深加工技术.用2小时和3元加工费,可将1千克A1加工成0.8千克高级奶制品B1,也可将1千克A2加工成0.75千克高级奶制品B2,每千克B1可获44元,每千克B2可获32元.试为该厂制订一个生产销售计划,使每天获利最大,并进一步讨论以下问题:(i)若投资30元可增加供应1桶牛奶,投资3元可增加1小时劳动时间,是否应作这项投资?若每天投资150元,或赚回多少?(ii)每千克高级奶制品B1, B2的获利经常有10%的波动,对制订的生产销售计划有无影响?若每千克B1的获利下降10%,计划是否应作调整?解:由已知可得1桶牛奶,在甲车间经过十二小时加工完成可生产3千克的A1,利润为72元;在乙车间经八小时加工完成可生产四千克的A2,利润为64元。
利用lingo软件,编写如下程序:model:max=24*3*x1+16*4*x2;s.t.12*x1+8*x2≤480;x1+x2≤50;3*x1≤100;X1≥0,x2≥0end求解结果及灵敏度分析为:Objective value: 3360.000Total solver iterations: 2Variable Value Reduced CostX1 20.00000 0.000000X2 30.00000 0.000000Row Slack or Surplus Dual Price1 3360.000 1.0000002 0.000000 2.0000003 0.000000 48.000004 40.00000 0.000000Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase DecreaseX1 72.00000 24.00000 8.000000X2 64.00000 8.000000 16.00000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 480.0000 53.33333 80.000003 50.00000 10.00000 6.6666674 100.0000 INFINITY 40.00000 分析结果:1)从结果可以看出在供应甲车间20桶、乙车间30桶的条件下,获利可以达到最大3360元。
一、实验目的通过本次实验,了解线性规划的基本原理和方法,掌握线性规划模型的建立和求解过程,提高解决实际问题的能力。
二、实验内容1. 线性规划模型的建立2. 利用Lingo软件进行线性规划模型的求解3. 分析求解结果,进行灵敏度分析三、实验步骤1. 建立线性规划模型以某公司生产问题为例,建立线性规划模型。
设该公司有三种产品A、B、C,每种产品分别需要原材料X1、X2、X3,且原材料的价格分别为p1、p2、p3。
公司拥有一定的生产设备,每种产品的生产需要消耗一定的设备时间,设备时间的价格为p4。
设A、B、C产品的生产量分别为x1、x2、x3,原材料消耗量分别为y1、y2、y3,设备使用量分别为z1、z2、z3。
目标函数:最大化利润Z = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3)约束条件:(1)原材料消耗限制:y1 ≤ 10x1,y2 ≤ 8x2,y3 ≤ 5x3(2)设备使用限制:z1 ≤ 6x1,z2 ≤ 4x2,z3 ≤ 3x3(3)非负限制:x1 ≥ 0,x2 ≥ 0,x3 ≥ 0,y1 ≥ 0,y2 ≥ 0,y3 ≥ 0,z1 ≥ 0,z2 ≥ 0,z3 ≥ 02. 利用Lingo软件进行线性规划模型的求解打开Lingo软件,按照以下步骤输入模型:① 在“Model”菜单中选择“Enter Model”;② 输入目标函数:@max = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3);③ 输入约束条件:@and(y1 <= 10x1, y2 <= 8x2, y3 <= 5x3);@and(z1 <= 6x1, z2 <= 4x2, z3 <= 3x3);@and(x1 >= 0, x2 >= 0, x3 >= 0, y1 >= 0, y2 >= 0, y3 >= 0, z1 >= 0, z2 >= 0, z3 >= 0);④ 在“Model”菜单中选择“Solve”进行求解。
084实验报告1、实验目的:(1)学会用matlab软件解决线性规划问题的最优值求解问题。
(2)学会将实际问题归结为线性规划问题用MATLAB软件建立恰当的数学模型来求解。
(3)学会用最小二乘法进行数据拟合。
(4)学会用MATLAB提供的拟合方法解决实际问题。
2、实验要求:(1)按照正确格式用MATLAB软件解决课本第9页1.1、1.3,第100页5.1、5.3这几个问题,完成实验内容。
(2)写出相应的MATLAB程序。
(3)给出实验结果。
(4)对实验结果进行分析讨论。
(5)写出相应的实验报告。
3、实验步骤:(1)、对于习题1.1:a.将该线性规划问题首先化成MATLAB标准型b.用MATLAB软件编写正确求解程序:程序如下:c=[3,-1,-1];a=[4,-1,-2;1,-2,1]; b=[-3;11]aeq=[-2,0,1]; beq=1;[x,y]=linprog(-c,a,b,aeq,beq,zeros(3,1))x,y=-y(2)、对于习题1.3:a.建立适当的线性规划模型:对产品I 来说,设以A1,A2完成A 工序的产品分别为x 1,x 2件,转入B 工序时,以B1,B2,B3完成B 工序的产品分别为x 3,x 4,x 5件;对产品II 来说,设以A1,A2完成A 工序的产品分别为x 6,x 7件,转入B 工序时,以B1完成B 工序的产品为x 8件;对产品III 来说,设以A2完成A 工序的产品为x 9件,则以B2完成B 工序的产品也为x 9件。
由上述条件可得x 1+x 2=x 3+x 4+x 5, x 6+x 7=x 8.由题目所给的数据可建立如下的线性规划模型:Min z =(1.25-0.25)( x 1+x 2)+(2-0.35) x 8+(2.8-0.5) x 9-3006000(5x 1+10x 6)-32110000(7x 2+9x 7+12x 9)- 2504000(6x 3+8x 8)-7837000 (4x 4+11x 9)-2004000⨯7x 5s.t.{ 5x 1+10x 6≤60007x 2+9x 7+12x 9≤100006x 3+8x 8≤40004x 4+11x 9≤70007x 5≤4000x 1+x 2=x 3+x 4+x 5 x 6+x 7=x 8x i ≥0,i =1,2,3,…9 b.运用MATLAB 软件编写程序求解:程序如下:c=[0.75,1-(321*7*0.0001),-16*6,(-783*4)/7000,-7/20,-0.5,-321*9*0.0001,1.15,2.3-(321*12*0.0001-(783*11)/7000)]; a=[-5,0,0,0,0,-10,0,0,0;0,-7,0,0,0,0,-9,0,-12;0,0,-6,0,0,0,0,-8,0;0,0,0,-4,0,0,0,0,-11;0,0,0,0,-7,0,0,0,0]; b=[-6000;-10000;-4000;-7000;-4000];aeq=[1,1,-1,-1,-1,0,0,0,0;0,0,0,0,0,1,1,-1,0];beq=[0;0];[x,y]=linprog(c,a,b,aeq,beq,zeros(3,1))(3)、对于习题5.1:用MATLAB中的三次函数,二次函数,四次函数进行数据拟合,然后与原来结果进行比较。
实验名称: 第三章线性规划一、实验内容与要求用linprog语句求解各种线性规划问题,对生产实际中的问题,进行预测.二、实验软件MATLAB7.0三、实验内容:1、某鸡场有1000只鸡,用动物饲料和谷物混合喂养.每天每只鸡平均食混合饲料0.5KG,其中动物饲料所占比例不能少于20%。
动物饲料每千克0。
30元,谷物饲料每千克0.18元,饲料公司每周仅保证供应谷物饲料6000KG,问饲料怎样混合,才能使成本最低?程序:C=[150 90];A=[1 1];B=[12/7];Aeq=[0 1];beq=[0,8];vlb=[0。
2 0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)实验结果:2、某工厂用A1、A2两台机床加工B1、B2、B3三种不同零件。
已知在一个生产周期内A1只能工作80机时;A2只能工作100机时。
一个生产周期内计划加工B1为70件、B2为50件、把为20件。
两台机床加工每个零件的时间和加工每个零件的成本,分别如下列各表所示:加工每个零件时间表(单位:机时/个)加工每个零件成本表(单位:元/个)问怎样安排两台机床一个周期的加工任务,才能使加工成本最低?程序:C=[2;3;5;3;3;6];A=[1 2 3 0 0 00 0 0 1 1 3—1 0 0 —1 0 00 -2 0 0 —1 00 0 -2 0 0 —3];B=[80;100;—70;—50;-20];Aeq=[];beq=[];vlb=[0;0;0;0;0;7];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)实验结果:四、实验体会。
数学建模试验报告(一)姓名 学号 班级 问题:(线性规划)某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:1)若投资0.8万元可增加原料1千克,问应否作这项投资.2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.问题的分析和假设:此问题为用线性规划求解最佳分配方案,合理安排原料与工人使工厂利润达到最大化。
由题意:假设: 1x 为生产甲产品的百箱数2x 为生产乙产品的百箱数z (万元)为生产甲产品1x 百箱,乙产品2x 百箱所获的利润值原料(Kg ) 工人 利润(万元) 甲(/百箱) 6 10 10 乙(/百箱) 5 20 9 总计 60 150建模:目标函数:max 12109z x x =+原料分配:126560x x +=工人分配:121020150x x +=甲产量约束:108x ≤≤乙产量约束:20x ≥模型为:max 12109z x x =+S.t. 126560x x +=121020150x x +=108x ≤≤20x ≥求解的Matlab程序代码:新建.M文件,代码:c=[-10,-9];A=[6,5;10,20;1,0];b=[60;150;8];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)计算结果与问题分析讨论:计算结果:Optimization terminated.x =6.42864.2857fval =-102.8571结果分析:由计算结果可知:当甲饮料生产642箱,乙饮料生产428箱时利润达到最大值,最大利润为102.8万元。
问题讨论:(1)若增加1Kg原料,用上述模型运算得到的最大利润为104.4万元,即投资0.8万元增加1Kg原料可提高1.6万元的利润,可做这项投资。
数学建模实验报告范文3线性规划与整数规划实验名称三、线性规划与整数规划实验地点日期2022-10-28姓名班级学号成绩【实验目的及意义】[1]学习最优化技术和基本原理,了解最优化问题的分类;[2]掌握规划的建模技巧和求解方法;[3]学习灵敏度分析问题的思维方法;[4]熟悉MATLAB软件求解规划模型的基本命令;[5]通过范例学习,熟悉建立规划模型的基本要素和求解方法。
通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和建立优化模型,并且使学生学会使用MATLAB、Lingo软件进行规划模型求解的基本命令,并进行灵敏度分析。
解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因此,本实验对学生的学习尤为重要。
【实验要求与任务】根据实验内容和步骤,完成以下实验,要求写出实验报告(符号说明—模型的建立—模型的求解(程序)—结论)A组高校资金投资问题高校现有一笔资金100万元,现有4个投资项目可供投资。
项目A:从第一年到底四年年初需要投资,并于次年年末回收本利115%。
额不超过40万元。
项目C:从第二年年初需要投资,并于第5年末才回收本利M%,但是规定最大投资总额不超过30万元。
(其中M为你学号的后三位+10)项目D:五年内每年年初可以买公债,并于当年年末归还,并可获得6%的利息。
试为该校确定投资方案,使得第5年末他拥有的资金本利总额最大。
该校在第3年有个校庆,学校准备拿出8万元来筹办,又应该如何安排投资方案,使得第5年末他拥有的资金本利总额最大。
B组题1)最短路问题,图1中弧上的数字为相邻2点之间的路程,求从1到7的最短路。
图1图2其中r1为你的学号后2位+102)最大车流量,图1中弧上的数字为相邻2点之间每小时的最大车流量。
求每小时1到7最大第-1-页共2页车流量。
3)最小费用流,30辆卡车从1到7运送物品。
图1中弧上的数字为相邻2点之间的容纳的车的数量。
另外每条路段都有不同的路费要缴纳,下图2中弧上的数字为相邻2点之间的路费。
实验课题:
(一)线性规划问题
1.用lingo求解下列线性规划问题:
2. 某班男同学30人、女同学20人,植树。
工作效率(个/人、天)如下表。
如何安排,植树最多?
3.某牧场饲养一批动物,平均每头动物至少需要 700g 蛋白质、30g 矿物质和100g 维生素。
现有A、B、C、D、E五种饲料可供选用,每千克饲料的营养成分(单位:g)与价格(单位:元/kg)如下表所示:
试求能满足动物生长营养需求又最经济的选用饲料方案。
4.在以色列,为分享农业技术服务和协调农业生产,常常由几个农庄
组成一个公共农业社区。
在本课题中的这个公共农业社区由三个农庄组成,我们称之为南方农庄联盟。
南方农庄联盟的全部种植计划都由技术协调办公室制订。
当前,该办公室正在制订来年的农业生产计划。
南方农庄联盟的农业收成受到两种资源的制约。
一是可灌溉土地的面积,二是灌溉用水量。
这些数据由下表给出。
注:英亩-英尺是水容积单位,1英亩-英尺就是面积为1英亩,深度为1英尺的体积;1英亩-英尺≈1233.48立方米。
南方农庄联盟种植的作物是甜菜、棉花和高粱,这三种作物的纯利润及耗水量不同。
农业管理部门根据本地区资源的具体情况,对本联盟农田种植规划制定的最高限额数据由下表给出。
三家农庄达成协议:各家农庄的播种面积与其可灌溉耕地面积之比相等;各家农庄种植何种作物并无限制。
所以,技术协调办公室面对的任务是:
根据现有的条件,制定适当的种植计划帮助南方农庄联盟获得最大的
总利润,现请你替技术协调办公室完成这一决策。
对于技术协调办公室的上述安排,你觉得有何缺陷,请提出建议并制定新的种植计划。
5.有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如下表所示:
前舱中舱后舱
最大允许载重量(t)2000 3000 1000
容积(m3)4000 5400 1000
现有三种货物待运,已知有关数据如下表所示:
商品数量(件)每件体积(m3/件)每件重量(t/件)运价(元/件)
A 600 10 8 1000
B 1000 5 6 700
C 800 7 5 600
又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。
具体要求前、后舱分别与中舱之间载重理比例上偏差不超过15%,前、后舱之间不超过10%。
问该货轮应装载A, B, C各多少件,其运费收入为最大?
6.某战略轰炸机群奉命摧毁敌人军事目标。
已知该目标有四个要害部位,只要摧毁其中之一即可达到目的。
为完成此项任务的汽油消耗量限制为48000 升、重型炸弹48 枚、轻型炸弹32 枚。
飞机携带重型炸弹时每升汽油可飞行2 千米,带轻型炸弹时每升汽油可飞行3 千米。
又知每架飞机每次只能装载一枚炸弹,每出发轰炸一次除来回路程汽油消耗(空载时每升汽油可飞行4 千米)外,起飞和降落每次
各消耗100 升。
有关数据如表所示。
为了使摧毁敌方军事目标的可能性最大,应如何确定飞机轰炸的方案,要求建立这个问题的线性规划模型,并用lingo求解。
7.有四个工人,要指派他们分别完成 4 项工作,每人做各项工作所消耗的时间如表。
问指派哪个人去完成哪项工作,可使总的消耗时间为最小(用lingo 求解)?
(二)非线性规划
1.用matlab或lingo求解下列规划问题:
2. 已知非线性整数规划模型为
i x 为整数,1,2,...,5i 请用lingo 求解其最优整数解。