八年级上册数学-中考数学压轴题解题方法大全和技巧
- 格式:doc
- 大小:883.50 KB
- 文档页数:22
中考数学压轴题的常见类型与解题思路中考数学压轴题是中考数学试卷中的难点题目,通常是在考察学生对数学知识的深层理解和运用能力。
在中考数学压轴题中,常见的类型包括填空题、选择题、解答题等,涉及的知识点也广泛,如代数、几何、概率统计等。
下面将分别介绍中考数学压轴题的常见类型与解题思路。
一、填空题中考数学压轴题中的填空题往往考察学生对知识点的深层理解和运用能力。
填空题通常涉及代数、几何、概率统计等多个知识点,要求学生根据题目所给信息进行逻辑推理和计算,最终得出正确答案。
解题思路:1.审题:仔细阅读题目,明确要求填入的数据或公式,搞清题意。
2.列出已知条件:把题目中所给的信息一一列出,明确已知条件。
3.推理和计算:根据已知条件进行推理和计算,利用相关的数学公式或方法解题。
4.结果验证:算出结果后,需对答案进行验证,确保填入的数值或公式正确无误。
二、选择题中考数学压轴题中的选择题通常考察学生对知识点的掌握程度和运用能力。
选择题类型多样,既有单项选择题,也有不定项选择题,要求学生在有限的时间内作出正确选择。
解题思路:1.通读选项:先通读全部选项,了解每个选项的意思和含义。
2.分析题目:根据题目的要求,分析所给信息并确定相关知识点。
3.排除干扰:排除明显错误或无关的选项,缩小答案范围。
4.明确答案:通过对选项的排除及相关知识点的应用,确定最终答案。
三、解答题解题思路:1.理清思路:首先要理清解题思路,明确题目要求和解题方法。
2.列出所需步骤:根据题目要求,列出解题所需的步骤和计算方法。
3.细致计算:根据题目所给信息,进行细致计算和逻辑推理,得出正确答案。
4.解题亮点:在解答过程中,可适当突出解题亮点,以突显解题思路和方法。
总结而言,中考数学压轴题的常见类型包括填空题、选择题和解答题。
在解题过程中,学生需要通过仔细审题、列出已知条件、推理和计算、结果验证等步骤来解决填空题;而在选择题中,要通过通读选项、分析题目、排除干扰、明确答案等步骤来进行解答,而解答题则需要通过理清思路、列出所需步骤、细致计算、解题亮点等步骤来解决问题。
初中解数学压轴题技巧初中解数学压轴题技巧一、解数学压轴题的策略解数学压轴题可分为五个步骤:1.认真默读题目,全面审视题目的所有条件和答题要求,注意挖掘隐蔽的条件和内在联系,理解好题意;2.利用重要数学思想探究解题思路;3.选择好解题的方法正确解答;4.做好检验工作,完善解题过程;5.当思维受阻、思路难觅时,要及时调整思路和方法,并重新审视题意,既要防止钻牛角尖,又要防止轻易放弃.二、解动态几何压轴题的策略近几年的数学中考试卷中都是以函数和几何图形的综合作为压轴题,用到圆、三角形和四边形等有关知识,方程与图形的综合也是常见的压轴题.动态几何问题是一种新题型,在图形的变换过程中,探究图形中某些不变的因素,把操作、观察、探求、计算和证明融合在一起.动态几何题解决的策略是:把握运动规律,寻求运动中的特殊位置;在“动”中求“静”,在“静”中探求“动”的一般规律.通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质.简析:本题是一个双动点问题,是中考动态问题中出现频率最高的题型,这类题的解题策略是化动为静,注意运用分类思想.三、巧用数学思想方法解分类讨论型压轴题数学思想和方法是数学的灵魂,是知识转化为能力的桥梁 .近几年的各省市中考数学试题,越来越注重数学思想和数学方法的考查,这已成为大家的共识,为帮助读者更好地理解和掌握常用的基本数学思想和数学方法解初中数学压轴题的方法和技巧代数与几何有机结合,掌握解题策略中考压轴题主要体现在综合运用方程(组)、不等式、三角形、四边形、圆、函数知识上,对于这些内容,学生要做到一题多解、多题一解,将代数、几何知识融会贯通,会用代数的观点分析几何问题,用代数方法(方程、不等式、函数等)解决几何问题。
会从几何的角度理解代数问题,寻找几何基本图形,通过数形结合,将归纳、类比、化归、分类等方法运用到解题过程中。
平常学习中要善于归纳、总结,避免盲目的机械重复,这样我们就能找到解决问题的切入点!做好整体分析和思考,善于总结压轴题中蕴含的知识点做压轴题必须要进行全局性分析,对压轴题中蕴含的数学知识点进行剖析。
中考数学压轴题的两大解题思路图与例题详解,为孩子打印收藏!思路图一:【说明】此思路图主要是利用“点的坐标”建立起“函数”与“图形”之间的关系,通过运用“点的坐标”的代数意义和几何意义,可以将“函数”条件下的问题转化解决有关“图形”的问题;同样,也可以将“图形”条件下的问题转化解决有关“函数”的问题。
压轴题常用的数学知识与方法有:直角三角形勾股定理、三角函数定义、全等与相似三角形的判定与性质、相关特殊平面图形的判定与性质;一元一次方程的解法、一元二次方程的解法、二元一次方程组的解法、待定系数法等。
1、解题方法:若已知函数表达式,先确定有关特殊点的坐标,再转化为相应线段的长度并计算有关线段的长度,最后联系动点坐标、面积公式或特殊图形有关知识解答相关问题。
2、常用技能:1、解题中需要用动点的坐标时应直接设出[如:设动点P (m,n)],先不要考虑动点所在图象的函数表达式。
这样便于分析问题和书写过程,到最后确定关系后再考虑函数表达式进行字母间的转化。
2、解题中需要某点坐标或需要利用某点坐标时,通常过该点向x 轴(或y轴)作垂线,进而把点的坐标问题转化为线段即图形问题(如:涉及图形面积时,通常先过不在坐标轴上的点分别向x轴作垂线,把图形面积分割为直角三角形和直角梯形的面积和差关系)。
3、有关图形计算的常用知识与方法:①把相关条件化入某个直角三角形中,利用直角三角形相关定理和三角函数,计算相关边与角进而解决问题。
这是关于图形计算的核心方法;②判断两个三角形的相似关系(一般情况下确定不变直角三角形与变化直角三角形的相似),利用三角形相似的性质计算相关线段长度或周长进而解决问题。
这是图形计算的疑难之处(若是直角三角形相似两种方法都可以用时,建议选择三角函数比较方便便于理解掌握)。
4、在综合题中,寻找两个三角形相似常用的方法是:通过观察图形若发现有下列三个图形时或存在共锐角的直角三角形,可思考三角形相似解决问题。
初中中考各类压轴题答题技巧一、数学压轴题类型1. 函数综合题初中中考的函数综合题常常把一次函数、二次函数甚至反比例函数揉在一起考。
对于这种题,你得先把函数的基本性质搞清楚。
像二次函数的对称轴公式、顶点坐标公式,这些都是最基础的,要像背九九乘法表一样熟练。
别一看到题目就慌,先把题目里给出的函数表达式看明白,看看是要你求最值呢,还是求与坐标轴的交点。
要是求最值,那就赶紧把顶点坐标求出来,往往答案就在那里等着你呢。
2. 几何综合题几何压轴题有时候是三角形、四边形、圆各种图形组合在一起。
比如说三角形全等和相似,这可是经常用到的知识点。
看到三角形相关的条件,先在脑海里过一遍全等和相似的判定条件。
对于圆的问题,什么切线的性质、圆周角定理之类的,可不能忘。
在做几何题的时候,辅助线就像一把神奇的钥匙,有时候一条合适的辅助线就能让整个题目变得超级简单。
你可以多尝试从特殊点、特殊线去作辅助线,比如中点、角平分线之类的。
3. 动点问题动点问题最让人头疼了,因为点在动,情况就一直在变。
这时候你要抓住不变的量。
比如说有些线段的长度虽然点在动,但它们之间的比例关系可能是不变的。
还有就是要学会用含未知数的式子表示线段的长度,这样就能建立方程来求解了。
有时候还可以通过找特殊时刻的情况,来推测整个运动过程中的规律。
二、答题技巧通用部分1. 读题要仔细很多时候,答案就藏在题目里。
那些看似不起眼的条件,可能就是解题的关键。
别走马观花地读题,要一个字一个字地看,把所有的条件都找出来,还可以在题目上做一些小标记,提醒自己哪些是重点。
2. 大胆假设如果一时没有思路,那就大胆假设一些情况。
比如说假设某个点的坐标,或者假设某个图形的形状。
然后根据假设去推导,如果推导过程中出现矛盾,那就说明假设不成立,再换一个假设。
有时候通过这种不断试错的方式,就能找到正确的解题方向。
3. 检查很重要做完题可别着急交卷,一定要检查。
检查的时候可以换一种思路重新做一遍,或者把答案代入题目中看看是否符合所有的条件。
【初中数学】中考数学压轴题解题技巧+题型汇总2022中考数学压轴题题型思路数学压轴题9种题型1.线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2.图形位置关系中考数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3.动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4.一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5.多种函数交叉综合问题中考数学所涉及的函数就一次函数,反比例函数以及二次函数。
作为福建中考,近年,反比例函数连续四年作为填空压轴出现,一次函数与二次函数作为解答题压轴题出现,特别是第三问区分度大,难度大,在中考中面对这类问题,有步骤有分,对优生而言尽量多得分。
初中数学:压轴题答题技巧,拿到关键的分数很多同学说在解答压轴题的时候,会感到压力很大,找不到解题思路。
不同类型的压轴题所对应的解题思想也存在很大的差异。
今天就来给同学们详细讲讲如何破译中考数学压轴题,帮助大家在考场中从容应对各种类型的压轴题,争取拿到关键的分数!1.分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。
在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。
这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。
最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
2.四个秘诀切入点一:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
数学中考压轴题题型及解题技巧(一)
数学中考压轴题题型及解题技巧
1. 单选题
•理解题意:仔细阅读题目,确保理解题目的要求和限制条件。
•画图辅助分析:针对几何题目,可以通过画图来帮助理解和解答问题。
•排除法:通过逐个排除选项,找出符合题目要求的答案。
2. 多选题
•筛选关键信息:将题目中的关键信息提取出来,对比选项中的信息,选择合适的答案。
•逻辑推理:通过逻辑分析,推断出哪些选项是肯定正确的,哪些是肯定错误的。
•试验法:将选项应用到一些具体的例子中进行试验,排除不符合题目要求的选项。
3. 填空题
•空中填数法:根据已知条件和问题要求,将空缺处需要填写的数进行逐步推导,不断试错,找出符合题目要求的答案。
•利用关系式:通过已知的关系式或者公式,将题目中的其他已知条件和空缺的部分进行联立,解方程求解空缺处的答案。
4. 解答题
•分析问题:对于解答题,首先要充分理解问题的要求和限制条件,有针对性地进行分析。
•简洁明了的表达:在解答问题时,要尽量用简洁明了的语言和符号,避免冗长和歧义。
•举例和论证:通过举例和论证来证明所给答案的正确性,增加解答的可信度。
5. 解题策略
•看清关键信息:题目中常常会有一些关键信息,通过仔细阅读题目,抓住这些关键信息来辅助解题。
•分析题目结构:将问题分解为更小的问题,并且对每个小问题进行分析和解答。
•多角度思考:尝试从不同的角度和方法来考虑问题,增加解题的灵活性和创造力。
通过以上的解题技巧和策略,在数学中考中解答压轴题将会更加
得心应手。
希望同学们能够充分理解和掌握这些技巧,取得好的成绩!。
初二数学压轴题解题技巧1. 嘿,初二的同学们,知道不,遇到数学压轴题不要怕呀!就好像打游戏遇到大 boss,咱得有策略!比如说一道几何证明题,那图形复杂得像迷宫一样。
但咱别慌呀!先仔细观察图形,找那些关键的线条和角度,这就好比在迷宫里找到主线!只要能抓住关键,难题不就迎刃而解啦?2. 初二数学压轴题有时候真的好难呀,可那又怎样!记得有次遇到一道函数与几何结合的题,简直让人头大。
不过,咱们可以试着把它拆解呀,就像拆一个复杂的玩具一样。
把函数和几何部分分别研究,不就简单多了嘛!咱可不能被它吓倒呀!3. 哎呀呀,解初二数学压轴题就像是一场刺激的冒险!比如一道动点问题,那动点就像个调皮的小精灵到处跑。
这时候就要冷静下来,想象自己在跟着小精灵跑,找到它的规律。
像这样有趣的挑战,咱们怎么能不喜欢呢?4. 你们有没有觉得,解数学压轴题有时候真像攻克一座坚固的城堡!有一次碰到一道超级难的应用题,简直无从下手。
可咱不能退缩啊,要像勇士一样冲上去。
从题目中一点点找线索,这不就是攻打城堡找弱点嘛!最后肯定能把难题拿下呀!5. 初二数学压轴题呀,真的是让人又爱又恨!举个例子,一道代数计算的难题,数字复杂得让人眼花。
但咱可以把它当成一个宝藏呀,努力去挖掘正确答案。
只要有耐心,宝藏终究会被找到的,对吧?6. 哇塞,面对初二数学压轴题可得有绝招!就像有一道证明相似三角形的题,感觉特别绕。
这时候就要像侦探一样,从蛛丝马迹中找到相似的条件,这多有意思呀!还怕解不出来吗?7. 伙计们,初二数学压轴题可没那么可怕!比如一道关于方程的压轴题,看着很难,但只要把它当成一个神秘的密码锁,一点点去试密码,总会打开的呀!咱们要相信自己,肯定能征服这些难题哒!我的观点结论就是:初二数学压轴题并不可怕,只要我们掌握了合适的技巧,多去尝试和思考,就一定能轻松应对,取得好成绩!。
人教版初二数学上册知识总结与压轴题答题技巧第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短. 第十四章整式的乘除与分解因式一、知识框架:第十五章分式一、知识框架:初中数学压轴题答题技巧01分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:1.熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。
八年级数学上册压轴题九大攻略1. 函数类压轴题函数是初中数学的重要内容,而一次函数、反比例函数和二次函数是其中的重点。
压轴题常常会以这些函数为基础,结合其他知识点进行设计。
例如,求函数的解析式、函数的零点、函数的最值等。
2. 三角形类压轴题三角形是初中数学的基础图形之一,而三角形中的勾股定理、相似三角形、全等三角形等知识点也是重要的考点。
压轴题中,可能会结合这些知识点,设计出复杂的三角形问题,如求三角形的面积、三角形的周长等。
3. 四边形类压轴题四边形是初中数学中的另一个重要图形,其中平行四边形、矩形、菱形等是重点。
压轴题中,可能会以这些四边形为基础,结合其他知识点进行设计。
例如,求四边形的面积、四边形的周长等。
4. 圆类压轴题圆是初中数学中比较特殊的图形,其中圆的性质、圆与直线的位置关系等是重点。
压轴题中,可能会以这些知识点为基础,结合其他内容进行设计。
例如,求圆的面积、圆的周长等。
5. 动态类压轴题动态问题是初中数学中的难点之一,其中动点、动线、动图等是重点。
压轴题中,可能会以这些内容为基础,结合其他知识点进行设计。
例如,求在某个条件下,图形变化后的面积、周长等。
6. 代数类压轴题代数是初中数学的基础之一,其中一元一次方程、二元一次方程组、一元二次方程等是重点。
压轴题中,可能会以这些内容为基础,结合其他知识点进行设计。
例如,求方程的解、证明某种代数恒等式等。
7. 几何类压轴题几何是初中数学中的重要内容之一,其中平面几何、立体几何等是重点。
压轴题中,可能会以这些内容为基础,结合其他知识点进行设计。
例如,求图形的体积、图形的表面积等。
8. 方程与不等式类压轴题方程与不等式是初中数学中的重要内容之一,其中一元一次方程、二元一次方程组、一元二次方程、一元一次不等式等是重点。
压轴题中,可能会以这些内容为基础,结合其他知识点进行设计。
例如,求方程的解、证明某种不等式关系等。
9. 综合类压轴题综合类题目是初中数学中的最高级别题目,通常会涉及多个知识点和多个解题方法。
中考数学压轴题解题技能方法压轴题这类题目一样分数多,难度大,考核综合能力强,在考试中是能够拉开成绩的题目,也是很多同学重点研究项目。
下面是作者为大家整理的关于中考数学压轴题解题技能,期望对您有所帮助!中考数学压轴题经典解法中考数学压轴题经典解法一:学会把复杂图形拆解成一些基本图形与几何相干的压轴题一直是中考数学热门考核对象,此类问题所给出的图形都较为复杂,乃至需要添加一些辅助线才能顺利解决问题。
中考数学压轴题经典解法二:不要忘了类似这个活宝压轴题具体会考什么?没有进入考场看到试卷那一刻,谁都不知道,加上压轴题牵涉到的知识点较多。
如果我们刻意去靠猜题、押题等方式去应对压轴题的学习,极可能会让考生输的很惨。
难道面对压轴题就毫无办法了吗?不要去猜题押题,但我们可以去研究题型,发觉知识点和解题方法之间的联系,如类似就是一个非常热门的考点。
中考数学压轴题经典解法三:解决动态问题,要学会动中找静动态问题一直是中考数学热门,也是压轴题最爱好考核题型之一。
解决此类问题,一定要认真视察图形在运动变化进程中,图形的位置、大小、方向怎么变?往哪变?更要发觉什么量是不变,学会动中找静。
中考数学压轴题解题技能1、基本知识不丢一分在中考数学的备考中强化知识网络的梳理,并熟练掌控中考考纲领求的知识点。
“第一要梳理知识网络,思路清楚知己知彼。
其次要掌控数学考纲,对考试心中有谱。
掌控今年中考数学的考纲,用考纲来统领知识大纲,掌控好必要的基础知识和过好基本的解题技能,根据考纲和自己的实际情形来侧重复习。
2、运用数形结合思想中考数学压轴题解题技能之一就是数形结合思想,是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法,或利用数量关系来研究几何图形的性质,解决几何问题的一种数学思想。
纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
初中数学解题技巧+中考压轴题30道选择题法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种 B.6种 C.8种 D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
中考数学压轴题的常见类型与解题思路中考数学的压轴题是考试中比较难的部分,涉及的知识点较复杂,解题思路也比较灵活多变。
下面将介绍一些中考数学压轴题的常见类型与解题思路。
一、函数与方程1. 函数的性质与图像:需要理解函数的性质,如函数的单调性、奇偶性、周期性等,以及函数的图像特征,如顶点、焦点、对称轴等。
解题思路是通过对函数的性质和图像进行分析,来确定问题的解。
2. 方程与不等式的解:需要运用方程的基本性质和不等式的特点,进行工整的计算和推理。
解题思路是将方程或不等式化简为标准形式,进行适当的转化和变形,然后通过移项、消元或配方等方法求得解。
二、几何与三角1. 几何图形的相似性:需要理解相似三角形和比例的概念,运用相似三角形的性质进行计算。
解题思路是利用相似三角形的对应边比例相等的特点,建立相应的方程求解。
2. 几何图形的面积与体积:需要掌握各种几何图形的计算公式,以及体积与表面积的计算方法。
解题思路是根据题目所给的条件,建立相应的方程或等式,代入计算公式,求出问题的解。
三、统计与概率1. 统计图表的分析与计算:需要对柱状图、折线图、饼图等进行分析和计算,了解统计图表的含义和数据的规律。
解题思路是根据统计图表上的数据,进行适当的计算和推理,得出问题的解。
2. 概率与事件的计算:需要理解概率的概念和计算方法,以及事件之间的关系和概率的性质。
解题思路是根据事件的定义和已知的概率,利用概率的加法和乘法原理进行计算,求得问题的解。
四、函数与推理2. 推理与判断题:需要根据已知条件进行推理和判断,运用逻辑和数学思维进行推理和计算。
解题思路是根据问题的条件,进行合理的分析和推理,得出问题的解。
中考数学压轴题的解题思路主要是通过对问题的分析和计算,根据已知条件进行适当的推理和计算,得出问题的解。
需要学生灵活运用各种数学方法和知识点,培养逻辑思维和推理能力,从而解决复杂的数学问题。
专题06 乘法公式压轴题的四种考法类型一、平方差公式与几何图形综合例1.【探究】如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图① 图② ;(2)比较两图的阴影部分面积,可以得到乘法公式: (用字母a 、b 表示);【应用】请应用这个公式完成下列各题:①已知2m ﹣n =3,2m +n =4,则4m 2﹣n 2的值为 ;②计算:(x ﹣3)(x +3)(x 2+9).【拓展】计算()()()()()248322121212121+++++L 的结果为 .【答案】探究:(1)22a b -,()()a b a b +-;(2)22()()a b a b a b +-=-;应用:①12;②481x -;拓展:6421-.【详解】探究:(1)图①阴影部分的面积为两个正方形的面积差,即22a b -,图②的阴影部分为长为()a b +,宽为()-a b 的矩形,则其面积为()()a b a b +-,故答案为:22a b -,()()a b a b +-;(2)由图①与图②的面积相等可得到乘法公式:22()()a b a b a b +-=-,故答案为:22()()a b a b a b +-=-;应用:①22()(422342)1m n m n m n -+=´=-=,故答案为:12;②原式22(9)(9)x x =-+,222()9x =-,481x =-;拓展:原式()()()()()()24832212121212211+++=-++L ,()()()()()2248322121212121++=-++L ,()()()()4348221212121=++-+L ,()()()8328212121=-++L ,()()32322121=-+,6421=-.故答案是:6421-.【变式训练1】如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a b >),将余下的部分拼成一个梯形,根据两个图形中阴影部分面积关系,解决下列问题:(1)如图①所示,阴影部分的面积为 (写成平方差形式).(2)如图②所示,梯形的上底是,下底是 ,高是 ,根据梯形面积公式可以算出面积是 (写成多项式乘法的形式).(3)根据前面两问,可以得到公式 .(4)运用你所得到的公式计算:22252248- .【答案】(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b -=+-;(4)2000.【详解】解:(1)大正方形的面积为:2a ,小正方形的面积为:2b ,∴阴影部分的面积为:22a b -;故答案为:22a b -;(2)由梯形的定义可知:上底是:2b ,下底是:2a ,高是:-a b ,∴梯形的面积为:1(22)()()()2a b a b a b a b ´+-=+-;故答案为:()()a b a b +-;(3)由(1)(2)可知,22()()a b a b a b -=+-;故答案为:22()()a b a b a b -=+-;(4)22252248-=(252248)(252248)+-=5004´=2000;【变式训练2】从边长为a 的正方形剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______(请选择正确的一个).A .()2222a ab b a b -+=-B .()()22a b a b a b -=+-C .()2a ab a a b +=+(2)若22912x y -=,34x y +=,求3x y -的值;(3)计算:22222111111111123420202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅-- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【答案】(1)B ;(2)33x y -=;(3)10112021【详解】解:(1)根据阴影部分面积相等可得:()()22a b a b a b -=+-,上述操作能验证的等式是B ,故答案为:B ;(2)∵()()2293312x y x y x y -=+-=,∵34x y +=∴33x y -=(3)22222111111111123420202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅-- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111111111223320212021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-⋅⋅⋅+- ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3142532022202022334420212021=´´´´´´⋅⋅⋅´´1202222021=´10112021=【变式训练3】工厂接到订单,需要边长为(a +3)和3的两种正方形卡纸.(1)仓库只有边长为(a+3)的正方形卡纸,现决定将部分边长为(a+3)的正方形纸片,按图甲所示裁剪得边长为3的正方形.①如图乙,求裁剪正方形后剩余部分的面积(用含a代数式来表示);②剩余部分沿虚线又剪拼成一个如图丙所示长方形(不重叠无缝隙),则拼成的长方形的边长多少?(用含a代数式来表示);(2)若将裁得正方形与原有正方形卡纸放入长方体盒子底部,按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),盒子底部中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2测得盒子底部长方形长比宽多3,则S2﹣S1的值为 .【答案】(1)①裁剪正方形后剩余部分的面积=a2+6a;②拼成的长方形的边长分别为a和a+6;(2)9.【详解】(1)①裁剪正方形后剩余部分的面积=(a+3)2﹣32=(a+3﹣3)(a+3+3)=a(a+6)=a2+6a;②拼成的长方形的宽是:a+3﹣3=a,∴长为a+6,则拼成的长方形的边长分别为a和a+6;(2)设AB=x,则BC=x+3,∴图1中阴影部分的面积为S1=x(x+3)﹣(a+3)2﹣32+3(a+6﹣x﹣3),图2中阴影部分的面积为S2=x(x+3)﹣(a+3)2﹣32+3(a+6﹣x),∴S2﹣S1的值=3(a+6﹣x)﹣3(a+6﹣x﹣3)=3×3=9.故答案为9.【变式训练4】(1)如图1所示,若大正方形的边长为a ,小正方形的边长为b ,则阴影部分的面积是______;若将图1中的阴影部分裁剪下来,重新拼成如图2所示的一个长方形,则它的面积是_________;(2)由(1)可以得到一个乘法公式是________;(3)利用你得到的公式计算:2202120222020-´.【答案】(1)a 2-b 2,(a +b )(a -b );(2)(a +b )(a -b )=a 2-b 2;(3)1【详解】解:(1)图①阴影部分的面积为:a 2-b 2,图②长方形的长为a +b ,宽为a -b ,所以面积为:(a +b )(a -b ),故答案为:a 2-b 2,(a +b )(a -b );(2)由(1)可得:(a +b )(a -b )=a 2-b 2,故答案为:(a +b )(a -b )=a 2-b 2;(3)20212-2022×2020=20212-(2021+1)(2021-1)=20212-20212+1=1.类型二、完全平方公式变形例1.已知22()25,()9x y x y +=-=,求xy 与22x y +的值.【答案】224,17xy x y =+=【详解】Q 22()25,()9x y x y +=-=,()()22425916x y x y xy \+--==-=,4xy \=,()()22222()25934x y x y x y ++-=+=+=Q ,2217x y \+=.例2已知222462140x y z x y z ++-+++=,则xyz =________.【答案】6【详解】解:∵x 2+y 2+z 2-4x +6y+2z +14=0,∴x 2-4x +4+y 2+6y +9+z 2+2z +1=0,∴(x -2)2+(y +3)2+(z +1)2=0,∴x -2=0,y +3=0,z+1=0,∴x =2,y =-3,z =-1,∴xyz =2×(-3)×(-1)=6.故答案为:6【变式训练1】已知2|5|(7)0xy x y -++-=,求22x x y y +-的值.【答案】34【详解】解:根据非负性,得:50xy -=,70x y +-=,5xy \=,7x y +=,222()3491534x y xy x y xy \+-=+-=-=,22y x y x +-\的值是34.【变式训练2】已知(x +2021)2+(x +2022)2=49,则(x +2021)(x +2022)的值为()A .20B .24C .994D .532【答案】B【详解】解:[]222(2021)(2022)(2021)(2022)2(2021)(2022)x x x x x x +-+=+++-++Q 且[]22(2021)(2022)(1)1x x +-+=-=221(2021)(2022)2(2021)(2022)x x x x \=+++-++22(2021)(2022)49x x +++=Q (2021)(2022)24x x \++=故选:B【变式训练3】已知:2()34x y +=,2()14x y -=,分别求22x y +和xy 的值.【答案】24,5【详解】解:222()234x y x xy y +=++=Q ①,222()214x y x xy y -=-+=②,\①+②得222248x y +=,即2224x y +=;①-②得420xy =,即5xy =.【变式训练4】已知13x x +=,求下列各式的值:(1)221x x +;(2)21(x x-.【答案】(1)7;(2)5【解析】(1)解:∵13x x +=,∴21()9x x +=,即22129x x ++=,∴2217x x +=.(2)解:∵2217x x +=,∴22125x x +-=,∴21(5x x-=.【变式训练5】当x =______时,代数式8x 2-12x +5有最小值,最小值为______.【答案】 34 12【详解】解:28125x x -+2328()5x x -=+2998()5131626x x +--=+238(9452x --+=238()412x =-+23()04x -Q …,\当34x =时,28125x x -+有最小值,最小值为12.故答案为:34;12.类型三、完全平方公式字母的值例1.当k 取何值时,2210049x kxy y -+是一个完全平方式?【答案】140k =±【详解】解:∵100x 2﹣kxy +49y 2是一个完全平方式,∴﹣k =±2×10×7,∴k =±140,即当k =±140时,100x 2﹣kxy +49y 2是一个完全平方式.【变式训练1】如果226x x k ++是一个完全平方公式,求k 的值.【答案】3k =±.【详解】由题意得:222(63)x x k x =+++,即222669x x k x x =++++,则29k =解得3k =±.【变式训练2】若把代数式222x x --化成()2x m k ++的形式,其中m ,k 为常数,则m k +=______.【答案】4-【详解】解:∵222x x --=x 2−2x +1−3=(x −1)2−3,∴m =−1,k =−3,∴m +k =−4.故答案为:−4.【变式训练3】(1)设22351,257M x x N x x =--=--,则__________.A . M N >B . M N <C . M N ³D . M N£(2)当=a ________时,多项式2418a a -+有最小值___________.【答案】(1)A ;(2)2,14【详解】解:(1)∵22222(351)(257)3512576M N x x x x x x x x x -=-----=---++=+,20x ³ ,∴260M N x -=+>,∴M >N ,故选A .(2)∵2224184414(2)14a a a a a -+=-++=-+,2(2)0a -³,∴当a =2时,2(2)14a -+有最小值为14,故答案为:2,14.【变式训练4】若一个数能表示成某个整数的平方的形式,则称这个数为完全平方数,完全平方数是非负数.例如:0=02,1=12,4=22,9=32,16=42,25=52,36=62,121=112….(1)若28+210+2n 是完全平方数,求n 的值.(2)若一个正整数,它加上61是一个完全平方数,当减去11是另一个完全平方数,写所有符合的正整数.【答案】(1)n =4或n =10;(2)所有符合的正整数是20、60或300.【详解】(1)解:∵a 2+b 2+2ab =(a +b )2,∴若28=a 2,210=b 2,则a =24,b =25,2n =2ab =210,解得:n =10若28=a 2,210=2ab ,所以b =25,则2n =b 2=210,解得:n =10,若210=a 2,28=2ab ,所以b =22,则2n =b 2=24,解得:n =4,所以n =4或n =10;(2)解:设正整数为x ,则x +61=a 2,x ﹣11=b 2(a >b ,且a ,b 是正整数),则a 2﹣b 2=x +61﹣x +11=72,故(a +b )(a ﹣b )=72,由于a +b 与a ﹣b 同奇偶,故184a b a b +=ìí-=î或362a b a b +=ìí-=î或者126a b a b +=ìí-=î,当184a b a b +=ìí-=î时,解得:117a b =ìí=î,∴x =b 2+11=60;当362a b a b +=ìí-=î时,解得:1917a b =ìí=î,∴x =b 2+11=300;当126a b a b +=ìí-=î时,解得:93a b =ìí=î,∴x =b 2+11=20.所以所有符合的正整数是20、60或300.类型四、完全平方公式与几何图形例.乘法公式的探究及应用:数学活动课上,老师准备了若干个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b 、宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法表示图2大正方形的面积.方法1:________;方法2:________;(2)观察图2,请你写出下列三个代数式:()2a b +,22+a b ,ab 之间的数量关系:_______;(3)根据(2)题中的等量关系,解决如下问题:①已知:+5a b =,22+21=a b ,求ab 的值;②已知()()222022202010-+-=a a ,求()()20222020--a a 的值.【答案】(1)(a +b )2;a 2+2ab +b 2 (2)(a +b )2=a 2+b 2+2ab (3)①ab =2;②-3【解析】(1)方法1:大正方形的边长为(a +b ),∴S =(a +b )(a +b )=a 2+2ab +b 2.方法2:大正方形的面积=各个部分面积之和,∴S =a 2+2ab +b 2.故答案为:a 2+2ab +b 2.(2)由图2可得总面积减掉两个小矩形面积等于两个正方形面积之和,即(a +b )2﹣2ab =a 2+b 2.故答案为:(a +b )2﹣2ab =a 2+b 2.(3)①∵a +b =5,∴(a +b )2=25,a 2+b 2=21,∴2ab =(a +b )2﹣(a 2+b 2)=25﹣21=4,∴ab =2;②令2022,2020x a y a =-=-,∴2x y +=,由()()222022202010-+-=a a 可得2210x y +=,2xy =(x +y )2﹣(x 2+y 2)=4﹣10=-6,∴()()20222020--a a =xy =-3.【变式训练1】如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a +b )2、(a -b )2、ab 之间的等量关系是 ;(2)根据(1)中的结论,若x +y =5,xy =94,则x -y = ;(3)拓展应用:若(2021-m )2+(m -2020)2=7,求(2021-m )(m -2020)的值【答案】(1)()22()4+=-+a b a b ab ;(2)4或4-;(3)3-【详解】解:(1)由图知:()22()4+=-+a b a b ab(2)∵()22()4x y x y xy +=-+,∴()22()4x y x y xy-=+-∵9=5,4x y xy +=,∴()225916x y -=-=,∴=4x y -或=4x y --,故答案为:4或4-(3)∵()222(2021)+(2020)202120202(2021)(2020)m m m m m m --=-+---+且()222021(2020)7m m -+-=,∴(2021)(2020)=3m m -+-【变式训练2】如图1是一个长为4a 、宽为b 的长方形,沿图1中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为:____________(用a 、b 的代数式表示);(2)观察图2,请你写出()2a b +、()2a b -、ab 之间的等量关系是____________;(3)利用(2)中的结论,若5x y +=,94x y ⋅=,求()2x y -的值____________;(4)实际上通过计算图形的面积可以探求相应的等式.如图3,请你写出这个等式____________.(5)如图4,点C 是线段AB 上的一点,分别以AC 、BC 为边在AB 的同侧作正方形ACDE 和正方形CBFG ,连接EG 、BG 、BE ,当1BC =时,BEG D 的面积记为1S ,当2BC =时,BEG D 的面积记为2S ,…,以此类推,当BC n =时,BEG D 的面积记为n S ,计算202020192018201721S S S S S S -+-+⋅⋅⋅+-的值.【答案】(1)()2b a -;(2)()()224a b a b ab +--=;(3)16(4)()()22334a b a b a ab b ++=++;(5)1020605【解析】(1)()2b a -(2)()()224a b a b ab +--=(3)5x y +=,94x y ⋅=时,22()()425916x y x y xy -=+-=-=,故答案为:16(4)()()22334a b a b a ab b++=++(5)如图,连接EC ,在正方形ACDE 和正方形BCGF 中45ECD CGB Ð=Ð=°∴EC BG∥∴BGE BGCS S =△△当1BC =时,2112S =;当2BC =时,2222S =;……当BC n =时,22n n S =;∴202020192018201721S S S S S S -+-+⋅⋅⋅+-222222202020192018201721222222⎛⎫=-+-+⋅⋅⋅+- ⎪⎝⎭()2020201920182017212+++⋅⋅⋅++=1020605=.【变式训练3】如图,将边长为()a b +的正方形剪出两个边长分别为a ,b 的正方形(阴影部分).观察图形,解答下列问题:(1)根据题意,用两种不同的方法表示阴影部分的面积,即用两个不同的代数式表示阴影部分的面积.方法1:______,方法2:________;(2)从中你发现什么结论呢?_________;(3)运用你发现的结论,解决下列问题:①已知6x y +=,122xy =,求22x y +的值;②已知()()22202120209-+-=x x ,求()()20212020--x x 的值.【答案】(1)22a b +,2()2a b ab +-;(2)222()2a b a b ab +=+-;(3)①28;②4-.【详解】解:(1)方法1,阴影部分的面积是两个正方形的面积和,即22a b +,方法2,从边长为()a b +的大正方形面积减去两个长为a ,宽为b 的长方形面积,即2()2a b ab +-,故答案为:22a b +,2()2a b ab +-;(2)在(1)两种方法表示面积相等可得,222()2a b a b ab +=+-,故答案为:222()2a b a b ab +=+-;(3)①Q 122xy =,4xy \=,又6x y +=Q ,222()2x y x y xy\+=+-2624=-´368=-28=;②设2021a x =-,2020b x =-,则229a b +=,1a b +=,222()()(2021)(2020)2a b a b x x ab +-+\--==192-=4=-,答:(2021)(2020)x x --的值为4-.【变式训练4】阅读理解,解答下列问题:利用平面图形中面积的等量关系可以得到某些数学公式.(1)例如,根据下图①,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2根据图②能得到的数学公式是__________.(2)如图③,请写出(a +b )、(a ﹣b )、ab 之间的等量关系是__________(3)利用(2)的结论,解决问题:已知x +y =8,xy =2,求(x ﹣y )2的值.(4)根据图④,写出一个等式:__________.(5)小明同学用图⑤中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片,用这些纸片恰好拼出一个面积为(3a +b )(a +3b )长方形,请画出图形,并指出x +y +z 的值.类似地,利用立体图形中体积的等量关系也可以得到某些数学公式.(6)根据图⑥,写出一个等式:___________.【答案】(1)(a ﹣b )2=a 2﹣2ab +b 2;(2)(a +b )2=(a ﹣b )2+4ab ;(3)56;(4)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(5)画图见解析,16;(6)(a +b )3=a 2+b 2+3a 2b +3ab 2【详解】(1)根据图②各个部分面积之间的关系可得:(a ﹣b )2=a 2﹣2ab +b 2,故答案为:(a ﹣b )2=a 2﹣2ab +b 2;(2)Q 图③中,大正方形的面积为(a +b )2,小正方形的面积为(a ﹣b )2,每个长方形的面积为ab ,()()224a b a b ab \+=-+,故答案为:()()224a b a b ab +=-+;(3)利用(2)的结论,可知()()224x y x y xy -=+-,Q x +y =8,xy =2,\(x ﹣y )2=(x +y )2﹣4xy =64﹣8=56;(4)根据图④,大正方形的面积可表示为(a +b +c )2,Q 内部9块的面积分别为:222,,,,,,,,a b c ab ab ac ac bc bc ,\(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc故答案为:(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(5)Q (3a +b )(a +3b )=3a 2+3b 2+10ab ,3,3,10x y z \===,即需要3张边长为a 的正方形,3张边长为b 的正方形,10张宽、长分别为a 、b 的长方形纸片,画图如下:∴x +y +z =16;(6)根据图⑥,大正方体的体积为(a +b )3,分割成8个“小块”的体积分别为:33222222,,,,,,,a b a b a b a b ab ab ab ,\(a +b )3=a 2+b 2+3a 2b +3ab 2故答案为:(a +b )3=a 2+b 2+3a 2b +3ab 2.【变式训练5】用几个小的长方形、正方形拼成一个大的正方形,然后利用两种不同的方法计算这个大的正方形的面积,可以得到一个等式,利用这些等式也可以求一些不规则图形的面积.(1)由图1可得乘法公式________;(2)如图2,由几个面积不等的小正方形和几个小长方形拼成一个边长为()a b c ++的正方形,从中你能发现什么结论?该结论用等式表示为________;(3)利用(2)中的结论解决以下问题:已知13a b c ++=,52ab bc ac ++=,求222a b c ++的值;(4)如图3,由两个边长分别为m ,n 的正方形拼在一起,点B ,C ,E 在同一直线上,连接BD ,BF ,若12m n +=,24mn =,求图3中阴影部分的面积.【答案】(1)(a +b 2)=a 2+2ab +b 2;(2)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(3)65;(4)36【详解】解:(1)图1正方形的面积可以表示为:a 2+2ab +b 2.又可以表示为:(a +b )2.∴(a +b 2)=a 2+2ab +b 2.故答案为:(a +b 2)=a 2+2ab +b 2.(2)图2中正方形的面积可以表示为:(a +b +c )2.还可以表示为:a 2+b 2+c 2+2ab +2ac +2b c .∴(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2b c .故答案为:(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2b c .(3)由(2)知:a 2+b 2+c 2=(a +b +c )2-2ab -2ac -2bc=169-2(ab +ac +bc )=169-104=65.(4)()221122S m n n m n =+-+阴影22111222m n mn =+-21[()3]2m n mn =+-21(1272)2=-36=.。
初中数学压轴题技巧有哪些(1)思维方式的调整在面对中考数学压轴题目之前,必须学会合理调整思路,因为数学知识内容本来就是环环相扣的,这里不仅仅包括了代数与几何各自在自身体系中的知识点环环相扣,还包括了代数与几何知识的相互关联,特别是在压轴题这样的高难度题目中尤其体现。
所以教学中不仅仅要求学生掌握数学基础知识,也要能够准确理解压轴题的题意,它所要考察的知识点方向等。
即要学会融会贯通,将题目中所涉及的公式、概念、定理等都理解透彻,保证解题流畅性。
目前有些学生对中考数学压轴题目存在恐惧症,这一点在中考前的各类考试中已经体现出来,甚至有些人会主动放弃解决压轴题,这一思想是明显错误的。
实际上,压轴题并非难度高深不可及,它异于其它题目之处就在于它综合了多个基础知识点的基本概念,所以它的解法也更加多元,教师应该让学生明确这一点,并告诉他们在面对这样的题目时也应该灵活思路,用应对不同知识点的复合性思路来基于多种解法解决题目。
而其难点就在于如何将这些独立的知识点概念结合起来,形成关联。
谈到这一点就可以得知,压轴题的解题思路并非直线型,而是灵活多变的曲线型,学生在某些压轴题的解题过程中必须做到思路勤转换,比如对公式、对图形内涵的转换,对它们恒等意义的转换,要有意识的培养自身一题多解的能力。
要善于通过转换过程中的思路变化来抓住压轴题中的隐藏数量关系,发现题面背后的本质,最终达到解题思路上柳暗花明的效果,简化问题的复杂关系,看到它的核心内容。
问题的分解数学压轴题中知识点很多,但是它们都综合连带在一起,如果学生在解题过程中过于紧张而导致思路不清晰,就很难分辨并归类这些知识点,造成思维混乱进而无法解题。
所以应该教会学生如何分解压轴题中的知识点,将一道大型的综合性压轴题转化为多个独立知识点的小题目,这样就有利于学生逐一击破,最终解题成功。
其实这也是当前初中数学教学的目标,那就是教会学生如何归类和分解知识点。
初中数学压轴题技巧有哪些(2)认真审题很多学生在看到应用题之后往往急于寻找其中可用的条件,因此他们往往把目光都集中在一些数据上,而忽视了文字叙述,尤其是在考试时间比较紧张的时候,很多学生在做应用题的时候往往在读题目时囫囵吞枣,没有审清题意就急于解答,从而导致错误的发生。
最新初二数学压轴题答题技巧初二数学压轴题答题技巧01分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。
在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。
这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。
最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
02四个秘诀切入点一:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
初二数学上册压轴题解题技巧
初二数学上册的压轴题通常是一些综合性较强的题目,考察的知识点较多,难度较大。
以下是一些解题技巧:
1. 仔细审题:压轴题往往文字较多,信息量大,需要仔细审题,理解题意。
2. 数形结合:利用数形结合的方法,将抽象的数学语言与直观的图形结合起来,有助于更好地理解问题。
3. 寻找等量关系:对于涉及方程的问题,需要找到等量关系,列出方程。
4. 分类讨论:对于涉及多种情况的问题,需要进行分类讨论,逐一解决。
5. 善于利用已知条件:解题过程中要善于利用已知条件,寻找解题的突破口。
6. 总结归纳:解题后要进行总结归纳,找出解题的规律和方法,以便今后更好地解题。
初中数学考试压轴题解题技巧方法压轴题这类题目一般分数多,难度大,考验综合能力强,在考试中是能够拉开成绩的题目,也是很多同学重点钻研项目。
下面是小编为大家整理的关于初中数学压轴题解题技巧,希望对您有所帮助!中考数学压轴题解题技巧1.学会运用与方程思想。
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
这种思想在代数、几何及生活实际中有着广泛的应用。
2.学会运用数形结合思想。
数形结合思想是指从几何直观的角度,利用的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
纵观近几年全国各地的中考压轴题,绝大部分都是与有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
3.要学会抢得分点。
一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。
因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
4.学会运用等价转换思想。
转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
2017年中考数学压轴题解题技巧练习如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.解:(1)点A的坐标为(4,8)…………………1分将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=12AP=12t.PB=8-t.∴点E的坐标为(4+12t,8-t).∴点G的纵坐标为:-12(4+12t)2+4(4+12t)=-18t2+8. …………………5分∴EG=-18t2+8-(8-t) =-18t2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分 ②共有三个时刻. …………………8分 t 1=163, t 2=4013,t 3= 8525+. …………………11分 一、 对称翻折平移旋转1.(2017年南宁)如图12,把抛物线2y x =-(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .(1)分别写出抛物线1l 与2l 的解析式;(2)设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形?说明你的理由. (3)在抛物线1l 上是否存在点M ,使得ABM AOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2.(福建2017年宁德市)如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.ACD E B O2l 1l 12y xyxAO B PM 图C 1C 2 C 32(1)yxA OB P N图C 1C 4Q EF 2(2)(1)求P 点坐标及a 的值;(4分)(2)如图(1),抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(4分) (3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.(5分)二、 动态:动点、动线3.(2017年辽宁省锦州)如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式;(2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE的面积最大时,求点P 的坐标;(3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由. 4.(2017年山东省青岛市)已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题:(1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.5.(09年吉林省)如图所示,菱形ABCD 的边长为6厘米,∠B =60°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A →C →B 的方向运动,点Q 以2厘米/秒的速度沿A →B →C →D 的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动.设P 、Q 运动的时间为x 秒时,△APQ 与△ABC 重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为0的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是__________秒;(2)点P 、Q 从开始运动到停止的过程中,当△APQ 是等边三角形时x 的值是__________秒;(3)求y 与x 之间的函数关系式.6.(2017年浙江省嘉兴市)如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?8.(2017年中考天水)如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC ,tan ∠ACO = 13.(1)求这个二次函数的解析式;(2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度;(3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动P 'B 图C(第24题)点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.9.(14年湖南省张家界市)在平面直角坐标系中,已知A (-4,0),B (1,0),且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D . (1)求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; (2)求点D 的坐标;(3)设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由.10.(2017年潍坊市)如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .(1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. (3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.四、比例比值取值范围11.(2017年怀化)图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4). (1)求出图象与x 轴的交点A,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.12. (湖南省长沙市2017年)如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒. (1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.13.(成都市2017年)在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.(1)求直线AC 及抛物线的函数表达式;图9 图1BA PxCQ Oy 第26题图(2)如果P 是线段AC 上一点,设ABP ∆、BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;(3)设Q 的半径为l ,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况?若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切?五、探究型14.(内江市2017)如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标;(2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.15.(重庆市潼南县2017年)如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.A BC ED xyo 题图2616.(2017年福建龙岩)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.17.(09年广西钦州)26.(本题满分10分)如图,已知抛物线y =34x 2+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线y =34tx -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.(1)填空:点C 的坐标是_▲_,b =_▲_,c =_▲_; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.18.(09年重庆市)已知:如图,在平面直角坐标系xO y 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.19.(09年湖南省长沙市)如图,抛物线y =ax2+bx +c (a ≠0)与x 轴交于A (-3,0)、B两点,与y 轴相交于点C (0,3).当x =-4和x =2时,二次函数y =ax2+bx +c (a ≠0)的函数值y 相等,连结AC 、BC . (1)求实数a ,b ,c 的值;(2)若点M 、N 同时从B 点出发,均以每秒1个单位长度的速度分别沿BA 、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将△BMN 沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点Q ,使得以B ,N ,Q 为顶点的三角形与△ABC 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由. 20.(08江苏徐州)如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕.点.E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当CE2EA=时EP 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.六、最值类综合题。