数学建模复习题
- 格式:doc
- 大小:1.55 MB
- 文档页数:13
大学数学建模课程真题试卷一、选择题(每题 5 分,共 20 分)1、在数学建模中,以下哪种模型常用于预测未来的趋势?()A 线性回归模型B 逻辑回归模型C 聚类分析模型D 决策树模型2、对于一个优化问题,若目标函数为凸函数,约束条件为线性,则该问题属于()A 线性规划问题B 非线性规划问题C 凸规划问题D 整数规划问题3、以下哪个方法常用于求解微分方程?()A 有限差分法B 蒙特卡罗方法C 层次分析法D 主成分分析法4、在建模过程中,数据预处理的主要目的是()A 减少数据量B 提高数据质量C 增加数据多样性D 便于数据存储二、填空题(每题 6 分,共 30 分)1、数学建模的基本步骤包括:问题提出、_____、模型假设、模型建立、模型求解、模型分析与检验、_____。
2、线性规划问题的标准形式中,目标函数为_____,约束条件为_____。
3、常见的概率分布有_____、_____、正态分布等。
4、评价模型优劣的指标通常包括准确性、_____、_____等。
5、一个具有 n 个变量,m 个约束条件的线性规划问题,其可行域是由_____个顶点组成的凸多边形。
三、简答题(每题 10 分,共 30 分)1、请简述层次分析法的基本步骤。
2、解释什么是敏感性分析,并说明其在数学建模中的作用。
3、给出一个实际问题,并简述如何将其转化为数学建模问题。
四、应用题(20 分)某工厂生产 A、B 两种产品,已知生产 A 产品每件需要消耗原材料2 千克,劳动力 3 小时,利润为 5 元;生产 B 产品每件需要消耗原材料 3 千克,劳动力 2 小时,利润为 4 元。
现有原材料 180 千克,劳动力 150 小时,问如何安排生产计划,才能使工厂获得最大利润?(1)建立数学模型(8 分)(2)使用软件求解(给出求解过程和结果)(12 分)接下来,我们对这份试卷进行一下分析。
选择题部分主要考查了学生对数学建模中一些基本概念和常见模型方法的理解。
数学建模复习
复习题
1.什么是数学模型和数学建模?数学建模的⽅法和步骤?数学模型的主要特点以及分类。
2.椅⼦放稳问题
3.核军备竞赛的模型及分析,如⼄安全线的性质及分析等,模型解释及应⽤
4.存贮模型相关内容和⽅法
5.植物基因的分布
6.指数增长模型和Logistic 模型,求解、性质及其应⽤
7.某企业⽣产两种混合配料A 和B ,每100千克的成本分别为100元和80元。
两种混合配料含三种营养成分,但它们的含量各不相同,在每100千克混合配料中各种营养成分的含量分别如下表:
少25千克,营养成分丙⾄少36千克,问满⾜这些要求的最低成本为多少?⽤LINDO 软件如何求解。
8. 钢管下料问题及其数学规划模型
9. 试述最⼩⼆乘法的基本原理,并求解如下线性最⼩⼆乘问题。
设通过观测或实验得到⼀列点(,), 1,2,,.i i x y i n 它们⼤体在⼀条直线上,即
⼤概来说可⽤直线⽅程来反映变量x 与y 之间的对应关系。
现在就要确定⼀条直线使得与这n 个点的偏差平⽅和最⼩(即最⼩⼆乘⽅),请给出该直线⽅程。
10. 差分⽅程,市场经济中的蛛⽹模型
11. 酒精残留模型
12. 层次分析法的建模步骤及应⽤
13. 最速降线问题的建模与分析
14. 易拉罐的最优设计问题
15. 消费者均衡问题。
0349)《数学建模》复习思考题一、名词解释1.原型 2.模型3.数学模型 4.机理分析 5.测试分析 6.理想方法 7.直觉 8.灵感9.想象力 10.洞察力 11.类比法 12.思维模型13.符号模型 14 .直观模型 15.物理模型 16.计算机模拟 17.蛛网模型 18.群体决策二、填空题1.模型指为某个特定目的将原形的某一部分信息简缩、提炼而构造的( 2.数学模型是由数字、 字母或其它数字符号组成的, 描述现实对象数量规律的 ( ( )( )。
建立的模型常有明显的物理意义或现实意义。
4.理想方法是从观察和经验中通过( )和( ),把对象简 化、纯化,使其升华到理想状态,以其更本质地揭示对象的固有规律。
5.计算机模拟是根据实际系统或过程的特性,按照一定的(拟司机运行情况并依据大量模拟结构对系统或过程进行(6.测试分析是将研究对象看作一个 ( )系统, 通过对系统 ()、( )数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。
7.物理模型主要指科技工作者为一定的目的根据( 以显示原型的外形或某些特征,而且可以用来进行( 规律。
)分析市场经济稳定性的图示法在经济学中)( )( ))描述受环境约束的所谓 “阻滞增长”)描述随机因素的影响,建立比较简单的随机模)的数学规划,称为混合整数规划。
)( )两个条件。
)两种。
)和( )两种基本方法。
三、判断题 。
(正确的打 R ,错误的打 W ) 1.原型和直观模型是一对对偶体。
( )2.模型只要求反映与某种目的有关的那些方面和层次。
( )3.一个原型只能建立一个模型() W4.用建模法解决实际问题,首先是用数学语言表述问题,其次才用数学工具求解构成的模 型。
( ) R 5. 衡量一个数学模型的优劣在于它采用了什么样的数学方法。
( ) W)。
)),3.机理分析是根据对()的认识,找出反映内部机理的()用计算机程序语言模 )。
)构造的模型,它不仅可 ),间接地研究原型的某些8.用()和(称为蛛网模型。
《数学建模》期末试卷A一、填空题(每题2分,共20分)1、在数学建模中,我们将所要研究的问题________化。
2、在解决实际问题时,我们常常需要收集大量的数据,这些数据通常是不________的。
3、在建立数学模型时,我们通常需要对变量进行假设,这些假设通常是对________的描述。
4、在解决实际问题时,我们通常需要对多个因素进行________,以确定哪些因素对所要研究的问题有显著影响。
5、在建立数学模型时,我们通常需要对数据进行________,以发现数据之间的规律和关系。
6、在解决实际问题时,我们通常需要将复杂的问题________化,以方便我们更好地理解和解决它们。
7、在建立数学模型时,我们通常需要将实际问题________化,以将其转化为数学问题。
8、在解决实际问题时,我们通常需要考虑实际情况的________性,以避免我们的解决方案过于理想化。
9、在建立数学模型时,我们通常需要使用数学语言来________模型,以方便我们更好地描述和解决它。
10、在解决实际问题时,我们通常需要使用计算机来帮助我们进行________和计算。
二、选择题(每题3分,共30分)11、在下列选项中,不属于数学建模步骤的是()。
A.确定变量和参数B.建立模型C.进行实验D.验证模型12、在下列选项中,不属于数学建模方法的是()。
A.归纳法B.演绎法C.类比法D.反证法13、在下列选项中,不属于数学建模应用领域的是()。
A.物理学B.工程学C.经济学D.政治学14、在下列选项中,不属于数学建模语言的是()。
A.文字语言B.符号语言C.图形语言D.自然语言15、在下列选项中,不属于数学建模原则的是()。
A.简洁性原则B.一致性原则C.可行性原则D.可重复性原则16、在下列选项中,不属于数学建模步骤的是()。
A.对数据进行分析和处理B.对模型进行假设和定义C.对模型进行检验和修正D.对结果进行解释和应用17、在下列选项中,不属于数学建模应用领域的是()。
高中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 数学建模的一般步骤不包括以下哪一项?A. 问题提出B. 模型假设C. 模型求解D. 数据收集答案:D2. 在数学建模中,模型的验证通常不包括以下哪一项?A. 模型的逻辑性检验B. 模型的适用性检验C. 模型的稳定性检验D. 模型的美观性检验答案:D3. 以下哪一项不是数学建模中常用的方法?A. 微分方程B. 线性规划C. 概率论D. 文学创作答案:D4. 在数学建模中,以下哪一项不是模型的要素?A. 模型的假设B. 模型的变量C. 模型的参数D. 模型的结论答案:D5. 数学建模中,以下哪一项不是模型的分类?A. 确定性模型B. 随机性模型C. 静态模型D. 动态模型答案:C6. 在数学建模中,以下哪一项不是模型的构建过程?A. 模型的假设B. 模型的建立C. 模型的求解D. 模型的发表答案:D7. 数学建模中,以下哪一项不是模型的分析方法?A. 数值分析B. 符号计算C. 图形分析D. 文字描述答案:D8. 在数学建模中,以下哪一项不是模型的优化方法?A. 线性规划B. 非线性规划C. 动态规划D. 统计分析答案:D9. 数学建模中,以下哪一项不是模型的应用领域?A. 工程技术B. 经济管理C. 生物医学D. 音乐艺术答案:D10. 在数学建模中,以下哪一项不是模型的评估标准?A. 模型的准确性B. 模型的简洁性C. 模型的可解释性D. 模型的复杂性答案:D二、填空题(每题4分,共20分)1. 数学建模的一般步骤包括:问题提出、模型假设、模型建立、模型求解、模型分析、模型验证和______。
答案:模型报告2. 在数学建模中,模型的假设应该满足______、______和______。
答案:科学性、合理性、可行性3. 数学建模中,模型的求解方法包括解析方法和______。
答案:数值方法4. 数学建模中,模型的分析方法包括______、______和______。
数模期末考试试题及答案一、单项选择题(每题3分,共30分)1. 数学建模中,以下哪项不是模型的基本组成部分?A. 假设B. 模型C. 符号D. 结果答案:D2. 在数学建模中,以下哪项不是模型的类型?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:D3. 数学建模中,以下哪项不是模型的建立步骤?A. 模型准备B. 模型假设C. 模型求解D. 模型验证答案:D4. 数学建模中,以下哪项不是模型的验证方法?A. 残差分析B. 敏感性分析C. 模型拟合D. 模型优化答案:D5. 在数学建模中,以下哪项不是模型的分析方法?A. 数值分析B. 图形分析C. 符号分析D. 以上都是答案:C6. 数学建模中,以下哪项不是模型的应用领域?A. 工程领域B. 经济领域C. 社会科学领域D. 艺术领域答案:D7. 在数学建模中,以下哪项不是模型的优化方法?A. 线性规划B. 非线性规划C. 动态规划D. 概率论答案:D8. 数学建模中,以下哪项不是模型的预测方法?A. 时间序列分析B. 回归分析C. 马尔可夫链D. 微分方程答案:D9. 在数学建模中,以下哪项不是模型的稳定性分析方法?A. 李雅普诺夫稳定性理论B. 奈奎斯特稳定性准则C. 劳斯-赫尔维茨稳定性准则D. 傅里叶变换答案:D10. 数学建模中,以下哪项不是模型的误差分析方法?A. 误差传播B. 误差估计C. 误差校正D. 误差消除答案:D二、填空题(每题4分,共20分)1. 数学建模的一般步骤包括:____、____、____、____、____。
答案:模型准备、模型假设、模型求解、模型验证、模型分析2. 确定性模型是指模型的输出与输入之间具有____的关系。
答案:确定性3. 在数学建模中,模型的敏感性分析用于研究模型输出对模型参数的____。
答案:敏感性4. 数学建模中,模型的稳定性分析是研究模型在受到____时,其输出是否能够保持稳定。
考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。
一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。
(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。
A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。
(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3) 结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000 fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。
初中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 某工厂生产一批零件,原计划每天生产100个,实际每天生产120个,原计划需要30天完成,实际需要多少天完成?A. 20天B. 25天C. 30天D. 35天答案:B2. 一个长方体的长、宽、高分别为2厘米、3厘米、4厘米,求其体积。
A. 12立方厘米B. 24立方厘米C. 36立方厘米D. 48立方厘米答案:C3. 某商店销售一种商品,进价为50元,售价为70元,若打8折销售,利润率为多少?A. 20%B. 30%C. 40%D. 50%答案:B4. 一个圆的半径为5厘米,求其面积。
A. 78.5平方厘米B. 157平方厘米C. 78.5平方分米D. 157平方分米答案:A5. 一个班级有50名学生,其中男生占60%,女生占40%,求男生和女生各有多少人?A. 男生30人,女生20人B. 男生30人,女生20人C. 男生25人,女生25人D. 男生35人,女生15人答案:B6. 某工厂生产一批零件,原计划每天生产100个,实际每天生产120个,原计划需要30天完成,实际需要多少天完成?A. 20天B. 25天C. 30天D. 35天答案:B7. 一个长方体的长、宽、高分别为2厘米、3厘米、4厘米,求其体积。
A. 12立方厘米B. 24立方厘米C. 36立方厘米D. 48立方厘米答案:C8. 某商店销售一种商品,进价为50元,售价为70元,若打8折销售,利润率为多少?A. 20%B. 30%C. 40%D. 50%答案:B9. 一个圆的半径为5厘米,求其面积。
A. 78.5平方厘米B. 157平方厘米C. 78.5平方分米D. 157平方分米答案:A10. 一个班级有50名学生,其中男生占60%,女生占40%,求男生和女生各有多少人?A. 男生30人,女生20人B. 男生30人,女生20人C. 男生25人,女生25人D. 男生35人,女生15人答案:B二、填空题(每题4分,共20分)1. 一个长方体的长、宽、高分别为3厘米、4厘米、5厘米,其体积为____立方厘米。
数学建模基础期末考试试题# 数学建模基础期末考试试题## 一、选择题(每题3分,共30分)1. 数学建模的基本步骤不包括以下哪一项?A. 问题定义B. 数据收集C. 模型构建D. 编程实现2. 在数学建模中,以下哪一项不是模型的类型?A. 确定性模型B. 随机性模型C. 线性模型D. 非线性模型3. 以下哪个是数学建模中常用的优化算法?A. 遗传算法B. 神经网络C. 决策树D. 支持向量机4. 在进行数学建模时,以下哪个步骤是不必要的?A. 模型验证B. 模型分析C. 模型求解D. 模型编程5. 以下哪个不是数学建模中的数据预处理方法?A. 数据清洗B. 数据标准化C. 数据可视化D. 数据压缩6. 在数学建模中,以下哪个是模型的评估指标?A. 准确率B. 召回率C. F1分数D. 所有上述7. 下列哪一项不是数学建模的基本原则?A. 可解释性B. 可操作性C. 可验证性D. 复杂性8. 在数学建模中,以下哪个不是模型的构建方法?A. 基于物理的模型B. 基于经验的模型C. 基于统计的模型D. 基于直觉的模型9. 在数学建模中,以下哪个是模型的优化方法?A. 梯度下降法B. 牛顿法C. 蒙特卡洛法D. 所有上述10. 在数学建模中,以下哪个不是模型的验证方法?A. 交叉验证B. 留一法验证C. 随机抽样验证D. 正向验证## 二、简答题(每题10分,共20分)1. 简述数学建模的基本流程,并说明每个步骤的重要性。
2. 描述数学建模中模型评估的常用方法,并解释它们的作用。
## 三、应用题(每题25分,共50分)1. 假设你正在为一家零售商进行库存管理的数学建模。
请描述你将如何定义问题、收集数据、构建模型、求解模型以及验证模型。
2. 给定一个实际问题:预测某城市未来一年的月均温度。
请列出你将使用的建模步骤,并简述你将如何应用这些步骤来解决这个问题。
请注意,以上试题仅供参考,具体考试内容和形式可能因课程设置和教师要求而有所不同。
数学模型试题及答案解析一、单项选择题(每题3分,共30分)1. 以下哪个不是数学模型的特征?A. 抽象性B. 精确性C. 可验证性D. 复杂性答案:D2. 数学模型的建立通常不包括以下哪个步骤?A. 定义问题B. 收集数据C. 建立假设D. 验证结果答案:D3. 在数学建模中,以下哪个不是模型分析的方法?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:D4. 数学模型的验证不包括以下哪项?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:D5. 在数学建模中,以下哪个不是模型的类型?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:D6. 以下哪个是数学模型的典型应用领域?A. 经济学B. 物理学C. 生物学D. 所有以上答案:D7. 数学模型的建立过程中,以下哪个步骤是不必要的?A. 问题定义B. 假设建立C. 模型求解D. 模型展示答案:D8. 数学模型的分析中,以下哪个不是常用的工具?A. 微分方程B. 线性代数C. 概率论D. 量子力学答案:D9. 在数学建模中,以下哪个不是模型的评估标准?A. 准确性B. 可解释性C. 简洁性D. 复杂性答案:D10. 数学模型的建立过程中,以下哪个步骤是至关重要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:A二、多项选择题(每题5分,共20分)11. 数学模型的建立过程中,以下哪些步骤是必要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:ABCD12. 数学模型的类型包括以下哪些?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:ABCD13. 数学模型的分析方法包括以下哪些?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:ABCD14. 数学模型的验证包括以下哪些?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:ABC三、填空题(每题4分,共20分)15. 数学模型的建立通常包括定义问题、______、建立假设和模型求解四个步骤。
1、一房地产公司有50套公寓要出租。
当租金为每月180元时,公寓会全部租出去。
当租金每月增加10元时,就有一套公寓租不出去,而租出去的房子每月需花费20元的整修维护费。
试问房租定为多少可获得最大收入?解:设月租金定为180+10x 元,那么有x 套公寓租不出去,则收入为 (180+10x )(50-x )-(50-x )*20 =9000+320x-10x^2-1000+20x =8000+340x-10x^2 =-10(x^2-34x-800)=-10(x^2-34x+289-1089) =-10(x-17)^2+10890即x=17时,收入为最高为 10890元 180+10x=350 元答:当月租定为350元时,收入最高,最高为10890元2、设某种新产品要推向市场,t 时刻产品销售增长率与销售量x (t )成正比,设市场容量为N ,试确定产品销售增长曲线。
设有某种新产品要推向市场,t 时刻的销量为x(t),由于产品良好性能,每个产品都是一个宣传品,因此,t 时刻产品销售的增长率txd d 与x(t)成正比,同时,考虑到产品销售存在一定的市场容量N ,统计表明txd d 与尚未购买该产品的潜在顾客的数量N=x(t)也成正比,于是有txd d =kx(N=x), (1043)其中k 为比例系数,分离变量积分,可以解得x(t)=kNtC N-+e1 (1044) 方程(1043)也称为逻辑斯谛模型,通解表达式(1044)也称为逻辑斯谛曲线.由t x d d =()221kNt kNtC k CN --+ee以及22t x d d =()3231)1(kNt kNt kNt C C k CN ---+-ee e , 当x(t*)<N 时,则有txd d >0,即销量x(t)单调增加.当x(t*)2N时,22t x d d 0;当x(t*)>2N 时,22t x d d <0;当x(t*)<2N时,22t x d d >0.即当销量达到最大需求量N 的一半时,产品最为畅销,当销量不足N 一半时,销售速度不断增大,当销量超过一半时,销售速度逐渐减小.国内外许多经济学家调查表明,许多产品的销售曲线与公式(1044)的曲线十分接近,根据对曲线性状的分析,许多分析家认为,在新产品推出的初期,应采用小批量生产并加强广告宣传,而在产品用户达到20%到80%期间,产品应大批量生产,在产品用户超过80%时,应适时转产,可以达到最大的经济效益.3、一个人为了积累养老金,他每月按时到银行存A 元,银行的年利率为r ,且可以任意分段按复利计算,试问此人在5年后共积累多少养老金? 解:(1)设月利率为r ,按月按复利进行计算, 第一个月存款所得的复利终值为1F =60)1(100r +; 第二个月存款所得的复利终值为2F =59)1(100r +; 第三个月存款所得的复利终值为3F =58)1(100r +; ·第五年的最后一个月存款所得的复利终值为60F =)1(100r +。
五年后,养老金为 F=1F +2F +·+60F =)]1(``````)1()1[(1005960r r r ++++++=rr r 6060)1](1)1[(100+-+。
价格随时间的变化趋势时,价格上涨。
试分析价格下跌,时,系变化,即。
已知价格根据供求关均为常数且、、、其中,)(,)(和需求函数分别为、设某商品的供给函数D S D S b b a P P D bP a P S <>>β>βαβ-α=+=004,5、一个银行的统计资料表明,存放在银行中的总存款量正比于银行付给存户利率的平方。
现在假设银行可以用12%的利率再投资这笔钱。
试问为得到最大利润,银行所支付给存户的利率应该定为多少?解 假设银行支付给存户的年利率是r,(0<r ≤1), 这样银行的总存款量为 A = kr 2 (k>0, 为比例系数)把这笔钱以12%的年利率贷出一年后可得款额为 (1+0.12)A, 而银行支付给存户的款额为(1+r)A, 银行获利为 L(r) = (1 + 0.12)A - (1+ r)A = (0.12 - r)A = (0.12 - r)k r 20)324.0(2=-=r r k dr dp所以 r=0.08, r=0 (舍去)当 r<0.08时,L ’ ( r ) >0, 当 r>0.08时,L ’ ( r)<0, 且 r = 0.08 是 (0,1) 中唯一的极值点故取8% 的年利率付给存户银行可获得者大利润6、设某航空公司发展新的航线,需要增加5架波音747客机。
如果一次性购入,每架飞机的价格为5000万美金,飞机使用寿命为15年;如果采用租用飞机的方式,每年每架飞机需交纳600万美金的租金,租金以货币均匀流的方式支付。
设银行的年利率为12%,试问该公司应该采用购买飞机还是租借飞机的方案。
解:购买一架飞机可以使用15年,但需要马上支付5000万美元.而同样租一架飞机使用15年,则需要以均匀货币流方式支付15年租金,年流量为600万美元.两种方案所支付的价值无法直接比较,必须将它们都化为同一时刻的价值才能比较-我们以当前价值为准。
购买一架飞机的当前价为5000万美元。
下面计算均匀货币流的当前价值:设t=0时向银行存入美元,按连续复利计算,t 年后的A 美元在t=0时的价值为美元,那么,对流量为a 的均匀货币流,在[t , t+Δt]时所存入的美元,在t=0时的价格是t ae te a n n ∆=∆-- 由微元法可知,当t 从0变到T 时,[0,T]周期内均匀流在 t=0时的总价值可表示为因此,15年的租金在当前的价值为(万美元)当r=12%时(万美元)比较可知,此时租用客机比购买客机合算。
当r=6%时(万美元)此时购买客机比租用客机合算7、设层次分析法中某成对比较矩阵为⎪⎪⎪⎭⎫ ⎝⎛14/16/1412/1621,试计算对应权向量并进行一致性检验。
(三阶矩阵随机一致性指标为0.58)8、在某城市中有15万人具有本科以上学历,其中有1.5万人是教师,据调查,其中每年有10%的教师从教师职业转为其他职业,又有1%的其他职业者转入教师职业,试预测10年后这15万人中有多少人还在从事教师职业。
(0.8910=0.3118)解:用()i X 表示第i 年后做教师职业和其他职业的人数,则()0 1.513.5X ⎡⎤=⎢⎥⎣⎦。
用矩阵⎥⎦⎤⎢⎣⎡=99..010.001.090.0A 表示教师职业和其他职业间的转移,90.011=a 表示每年有90%的人原来是教师现在还是教师;10.021=a 表示每年有10%的人从教师职业转为其他职业。
120.01a =表示每年有1%其它职业的人转为教师;220.99a =表示其它职业的人每年有99%的人仍为其他职业。
显然()()100.900.01 1.5 1.4850.100.9913.513.515X AX ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即一年后从事教师职业和其他职业的人数人别为1.485万及13.515万.又 ()()()()()()210102,,n n n X AX A X X AX A X -====所以()()10010X A X =.为计算10A 先需把A 对角化。
即找出和A 相似的矩阵。
()()890.089.1001.0891.089.1001.099.09.099.01.001.09.022+-=-+-=---=----=-λλλλλλλλλA E 2121,89.0,1λλλλ≠==,故A 可对角化。
11=λ代入()0=-x A E λ.得其对应特征向量⎥⎦⎤⎢⎣⎡=1011p .89.02=λ代入()0=-x A E λ.得其对应特征向量⎥⎦⎤⎢⎣⎡-=112p .令 ()⎥⎦⎤⎢⎣⎡-==1101121p p P ,有⎥⎦⎤⎢⎣⎡=Λ=-89.00011AP P ,Λ为A 的相似矩阵. 1-Λ=P P A ,P P A 1010Λ=,而⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡----=-11011111110111111PA()5.0==A P p ()()10010110111011 1.5 1.5425110100.8910113.513.457511X P P X -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦所以10年后.有1.54万人当教师,13.46万人从事其他职业。
9、某人用分期付款的方式购买一套住宅,已知其贷款了M 元,还贷月利率为r ,共贷款N 年。
此人采用每月还款金额固定减少的方式归还贷款(即前一月与后一月还款金额之差保持不变),(1)试建立模型计算该人第一个月应归还多少贷款且今后每月应减少多少金额,可使其总支付费用最小。
(不需求解) (2)试写出相应的MATLAB 求解程序10、某人随身携带了两盒火柴,分别放在两个衣袋里,每盒有n 根火柴。
每次使用时,随机地从其中一盒中取出一根,试求他将其中一盒火柴用完,而另一盒中剩下的火柴根数的分布规律。
我们不妨把使用一次火柴看作一次试验,每次试验的结果只有两个:取于甲盒(记为 A )和取于乙盒(记为)由于使用时从任一盒中取,因此假如甲盒已空而乙盒还剩r 根火柴,则在此之前一定已经取过 2n-r 次,其中恰好有 n 次取于甲盒,有n- r 次取于乙盒,而第2n-r+1次必然抓了甲盒,因此这种情况的概率为rn n n r n C p --⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=21212121rn nn r n C p --⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=21212122rn nr n rn n n r n C C p p p ----⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=+=22221212121假如乙盒已空而甲盒还剩 r 根火柴,同样的道理可得概率为因此一盒火柴已经用完另一盒中还剩根的概率为11、一家石油公司的炼油厂提供两种无铅汽油燃料:无铅高级汽油和无铅普通汽油。
炼油厂购买四种不同的石油原料,每种原料的化学成分分析、价格及购买上限见下表:无铅高级汽油的售价是1.00美元/加仑,它应至少含有60%的A 成分,20%的B 成分,而不能超过10%的C 成分。
无铅普通汽油的售价是每加仑0.90美元,它应至少含有50%的A 成分,15%的B 成分,而不能超过15%的C 成分。
公司预测:无铅高级汽油的销售量为6000加仑,无铅普通汽油的销售量为9000加仑。
(1)试建立线性规划模型,确定每种汽油中各种原料的用量,使得公司获得最大的利润;(2)写出相应的MATLAB求解程序。
设生产无铅高级汽油分别用到4种原料的量为x11,x12,x13,x14 生产无铅普通汽油分别用到4种原料的量为x21,x22,x23,x24程序如下:model:max=0.3*x11+0.5*x12+0.35*x13+0.15*x14+0.2*x21+0.4*x22+0.25*x23+ 0.05*x24;!4种原料的购买上限;x11+x21<4000;x12+x22<6000;x13+x23<5000;x14+x24<5000;!A,B,C三种成分的含量的约束;0.3*x11+0.1*x12-0.5*x13>0;-0.13*x11+0.5*x13+0.1*x14>0;-0.07*x11+0.1*x13<0;0.4*x21+0.2*x22-0.4*x23+0.1*x24>0;-0.08*x21+0.05*x22+0.55*x23+0.15*x24>0;-0.12*x21-0.05*x22+0.05*x23-0.05*x24<0;!销售的约束;x11+x12+x13+x14<6000;x21+x22+x23+x24<9000;end12 、假定雪球是半径为r的球,其融化时体积的变化率正比于雪球的表面积,比例常数为k>0。