概率论与数理统计说课讲解
- 格式:ppt
- 大小:1.76 MB
- 文档页数:62
第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。
例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
概率论与数理统计讲义稿第⼀章随机事件与概率§1.1 随机事件1.1.1 随机试验与样本空间概率论约定为研究随机现象所作的随机试验应具备以下三个特征:(1)在相同条件下试验是可重复的;(2)试验的全部可能结果不只⼀个,且都是事先可以知道的;(3)每⼀次试验都会出现上述可能结果中的某⼀个结果,⾄于是哪⼀个结果则事前⽆法预知。
为简单计,今后凡是随机试验皆简称试验,并记之以英⽂字母E。
称试验的每个可能结果为样本点,并称全体样本点的集合为试验的样本空间,分别⽤希腊字母ω和Ω表⽰样本点及样本空间。
必须指出的是这个样本空间并不完全由试验所决定,它部分地取决于实验的⽬的。
假设抛掷⼀枚硬币两次,出于某些⽬的,也许只需要考虑三种可能的结果就⾜够了,两次都是正⾯,两次都是反⾯,⼀次是正⾯⼀次是反⾯。
于是这三个结果就构成了样本空间Ω。
但是,如果要知道硬币出现正反⾯的精确次序,那么样本空间Ω就必须由四个可能的结果组成,正⾯-正⾯、反⾯-反⾯、正⾯-反⾯、反⾯-正⾯。
如果还考虑硬币降落的精确位置,它们在空中旋转的次数等事项,则可以获得其它可能的样本空间。
经常使⽤⽐绝对必要的样本空间较⼤的样本空间,因为它便于使⽤。
⽐如,在前⾯的例⼦中,由四个可能结果组成的样本空间便于问题的讨论,因为对于⼀个“均匀”的硬币这四个结果是“等可能”的。
尽管这在有3种结果的样本空间内是不对的。
例 1.1.1 1E :从最简单的试验开始,这些试验只有两种结果。
在抛掷硬币这⼀试验中出现“正⾯”或“反⾯”;在检查零件质量时,可能是“合格”或“不合格”;当⽤来模拟电⼦产品旋转的⽅向时,结果是“左边”或者“右边”;在这些情况下样本空间Ω简化为:Ω={正⾯,反⾯}。
2E :更复杂⼀些,有的随机试验会产⽣多种可能的结果,⽐如掷⼀颗骰⼦,观察出现的点数。
样本空间为:{1,2,3,4,5,6}Ω=。
3E : 掷两枚硬币(或者观察两个零件或两个电⼦产品),可以得到Ω={(正⾯,正⾯)、(反⾯,反⾯)、(正⾯,反⾯)、(反⾯,正⾯) }读者可以将其推⼴到掷n 个硬币,样本空间⾥有多少样本点呢?4E :再复杂⼀些,⼀名射⼿向某⽬标射击,直⾄命中⽬标为⽌,观察其命中⽬标所进⾏的射击次数。
WORD 格式可编辑《概率论与数理统计》说课稿各位老师大家好!我说课的课程是“概率论与数理统计”《概率论与数理统计》是研究随机现象的统计规律的性的一门学科,是高等师范专科学校数学教育专业的一门必修课程。
本课程分为两大部分:第一部分是概率论,主要包括事件与概率;随机变量及其分布;随机变量的数字特征;大数定律与中心极限定理,它是数理统计的理论基础,第二部分是数理统计,主要包括参数估计;假设检验;方差分析与一元线性回归。
通过本课程的学习使学生初步掌握处理随机现象的基础理论和基本方法,使学生具有解决某些实际问题的能力,为从事中、小学数学教学有关内容的教学奠定了扎实的基础。
我说课的内容主要从以下六个方面进行:1、课程设置 2 、课程设计 3 、课程的教学实施4、教学资源 5 、课程特色 6、教学效果一、课程设置(一)本课程的性质、地位、作用数学教育专业主要培养适应基础教育发展需要,德、智、体、美全面发展,具有扎实的数学学科基本知识与基本方法,掌握小学教学的基本规律和基本技能,具有良好的师范素质、较强的实践能力,为从事中、小学数学教学有关内容的教学奠定了扎实的基础。
WORD 格式可编辑课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合数学教育专业的特点介绍性地给出在该领域中的具体应用。
通过本课程的教学,使学生掌握概率论与数理统计的基本概念、理论和思想,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决、处理实际不确定问题的基本技能和基本素质。
先修课程:《数学分析》、《高等代数》等课程。
课程用到了数学分析中的一重积分、二重积分、导数等知识,用到高等代数中的 n 维向量等知识。
后续课可能在数学建模中用到。
(二)教学目标本课程分为两大部分:第一部分是概率论,主要包括事件与概率;随机变量及其分布;随机变量的数字特征;大数定律与中心极限定理,它是数理统计的理论基础,第二部分是数理统计,主要包括参数估计;假设检验;方差分析与一元线性回归。