例题解答 辅导(5) 小专题 例7(1)(2)(3)(分式方程解的讨论)
- 格式:pdf
- 大小:3.45 MB
- 文档页数:2
中小学教育资源站 1.25222345326235221224563522142451,得解这个整式方程)()()(,得)(方程两边同时乘以)()()(=+=-+---+=+---+=+--x x x x x x x x x x x x x 的值。
,即可求出然后再令,的字母系数方程,得。
可解关于根为原方程有增根,说明增m x m mx x x 11341=-==分式方程【知识要点】1、分式方程的定义2、解法3、为什么验根4、解分式方程与分式的化简要区别开来,切不可混为一体。
5、分式方程的应用 【典型例题】例1(1)05131=-+-x x (2)41451-=--+x x x 分析:去分母把分式方程转化成整式方程,求解后验根. 解:(1)方程两边同乘以)3(5+x ,得 0)3()1(5=+--x x ,解得 x =2 检验:把x=2代入方程左边, 得 . ∵左边=右边,∴x=2是原方程的解. (2)方程两边同乘以(x-4).∴检验:把x=5代入方程左边, 得 ; 把x=5代入方程右边, 得145141=-=-x . ∵左边=右边,∴x=5是原方程的解.点评: 1.解分式方程的思想是转化为整式方程.其一般方法是方程两边同乘以各2.所得结果是否为原方程的解,需要检验. 例2、解下列方程.25615251583263522142451222-=--+++-+=+--x x x x x x x x x )(;)(分析:解分式方程的关键是去分母,所以化分式方程为整式方程时,要找出各分母的最简公分母,找最简公分母时,要注意把各分母按同一个字母作降幂排列,能因式分解的一定要先进行因式分解。
解: .4.063)55344365553553556535533256152515832222是原方程的解()()时,(检验:当,得解这个整式方程)()()(,得)()()方程两边同乘以()()()()()()()(=∴≠-=-++==+=++--++-+=-++++-=--+++x x x x x x x x x x x x x x x x x x x x x x x点评:检验是解分式方程的必要步骤,检验的方法是将整式方程得到的根代入最简公分母检验,使最简公分母不等于0的根是原方程的根,使最简公分母等于零的根是原方程的增根,应舍去。
分式方程(二)【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程(1)x x 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程(1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x . 【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x m x 有增根,求m 的值.【例5】若分式方程122-=-+x a x 的解是正数,求a 的取值范围. 提示:032>-=a x 且2≠x ,2<∴a 且4-≠a .题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c d c x b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c.题型五:列分式方程解应用题练习:1.解下列方程:(1)021211=-++-x x x x ; (2)3423-=--x x x ;(3)22322=--+x x x ; (4)171372222--+=--+x x x x x x5)2123524245--+=--x x x x (6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程:(1)b x a 211+=)2(a b ≠;(2))(11b a x b b x a a ≠+=+.3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x k x x 的解为非负数.5.已知关于x 的分式方程a x a =++112无解,试求a 的值.(二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:一、交叉相乘法 二、化归法: 解方程:012112=---x x 解方程:231+=x x三、左边通分法 四、分子对等法 解方程:87178=----x x x 解方程:)(11b a x b b x a a ≠+=+五、观察比较法 六、分离常数法 解方程:417425254=-+-x x x x 解方程:87329821+++++=+++++x x x x x x x x七、分组通分法 解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程x m x x -=--221无解,求m 的值。
第二讲分式方程【知识要点】1.分式方程的概念以及解法 ;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1. 分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程; 方程两边同乘以最简公分母3.解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 .题型一:用常规方法解分式方程解下列分式方程( 1)1 3( 2)2 1x 1 x x 3x( 3)x1 4 1 ( 4)5 x x5 x 1 x2 1 x 3 4 x题型二:特殊方法解分式方程解下列方程(1)x4x 4 4 ;(2)x7 x 9 x 10 x 6x 1 x x 6 x 8 x 9 x 5(3)1 1 1 1 x2 x 5 x3 x 4题型三:求待定字母的值( 1)若关于 x 的分式方程2 1 m有增根,求 m 的值 . x 3 x3( 2)若分式方程2 xa 1 的解是正数,求 a 的取值范围 . x2( 3)若分式方程 x1m 无解,求 m 的值。
x 2 2 x( 4)若关于 x 的方程x k 2x不会产生增根,求 k 的值。
x 1x21 x 1( 5)若关于 x 分式方程1 k x2 3有增根,求 k 的值。
x 2x 24题型四:解含有字母系数的方程解关于 x 的方程(1 )xa c(c d 0) (2)11 2 (b 2a) ; bx dax b1a1 b( 3)(a b) .题型五:列分式方程解应用题一、工程类应用性问题1、一项工程,甲、乙、丙三队合做 4 天可以完成,甲队单独做 15 天可以完成,乙队单独做 12 天可以完成,丙队单独做几天可以完成?2、某市为治理污水,需要铺设一段全长3000 米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30 天完成了任务,实际每天铺设多长管道?二、行程中的应用性问题2、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的 1.5 倍.直达快车比普通快车晚出发2h,比普通快车早4h 到达乙地,求两车的平均速度.3、甲、乙两人分别从相距 36 千米的 A 、B 两地同时相向而行,甲从 A 地出发和行至 1 千米时,发现有物件遗忘在 A 地,便立即返回,取到物件后又立即从 A 地向 B 地行进,这样甲、乙两人恰好在 AB 中点处相遇,又知甲比乙每小时多走0.5 千米,求甲、乙两人的速度?三、轮船顺逆水应用问题3、轮船在顺水中航行30 千米的时间与在逆水中航行20 千米所用的时间相等,已知水流速度为 2 千米/时,求船在静水中的速度。
分式方程的解法及应用(基础)【学习目标】1.了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2.会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于 0,则这个解是原分式方程的解,若最简公分母等于 0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为 0 的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是 0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点四、分式方程的应用分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行:(1) 审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2) 设未知数;(3) 找出能够表示题中全部含义的相等关系,列出分式方程; (4) 解这个分式方程; (5) 验根,检验是否是增根; (6) 写出答案.【典型例题】 类型一、判别分式方程1、下列方程中,是分式方程的是( ).A .x + 3 - x - 2 = 1B .x -1 - x + 2 =44 3 12 x +1 x -1 x -1 C . 3x 2 + 1x = 05D . x + a = x ,( a , b 为非零常数) a b【答案】B ;【解析】A 、C 两项中的方程尽管有分母,但分母都是常数;D 项中的方程尽管含有分母,但分母中不含未知数,由定义知这三个方程都不是分式方程,只有 B 项中的方程符合分式方程的定义.【总结升华】要判断一个方程是否为分式方程,就看其有无分母,并且分母中是否含有未知数. 类型二、解分式方程2、 解分式方程(1)【答案与解析】10 510+ 5 = 2 ;(2) 2x -1 1- 2x 5 - 1 = 0 . x 2 + 3x x 2 - x解:(1)+ = 2 ,2x -1 1- 2x将方程两边同乘(2x -1) ,得10 + (-5) = 2(2x -1) .7解方程,得 x = .7 4 5检验:将 x = 代入2x -1,得2x -1 = ≠0 . 4 2= -∴ x =7是原方程的解.4 (2)5- 1 = 0 , x 2 + 3x x 2 - x方程两边同乘以 x (x + 3)(x -1) ,得5(x -1) - (x + 3) = 0 .解这个方程,得 x = 2 .检验:把 x = 2 代入最简公分母,得 2×5×1=10≠0. ∴ 原方程的解是 x = 2 .【总结升华】将分式方程化为整式方程时,乘最简公分母时应乘原分式方程的每一项,不要漏乘常数项.特别提醒:解分式方程时,一定要检验方程的根. 举一反三: 2 - x1【变式】解方程:2 . x -3 3 - x【答案】 2 - x1解:= - 2 , x - 3 3 - x方程两边都乘 x - 3 ,得2 - x = -1- 2(x - 3) , 解这个方程,得 x = 3 ,检验:当 x = 3 时, x - 3 = 0 , ∴ x = 3 是增根, ∴ 原方程无解. 类型三、分式方程的增根【高清课堂 分式方程的解法及应用 例 3(1)】23、 m 为何值时,关于 x 的方程 x - 2 + mx = x 2- 4 3 x + 2会产生增根? 【思路点拨】若分式方程产生增根,则(x - 2)(x + 2) = 0 ,即 x = 2 或 x = -2 ,然后把 x = ±2 代入由分式方程转化得的整式方程求出 m 的值. 【答案与解析】解: 方程两边同乘(x + 2)(x - 2) 约去分母,得2(x + 2) + mx = 3(x - 2) .整理得(m -1)x = -10 .∵ 原方程有增根,∴ (x - 2)(x + 2) = 0 ,即 x = 2 或 x =-2 . 把 x = 2 代入(m -1)x = -10 ,解得 m = -4 .把 x = -2 代入(m -1)x = -10 ,解得 m = 6 .所以当 m = -4 或 m = 6 时,方程会产生增根.【总结升华】处理这类问题时,通常先将分式方程转化为整式方程,再将求出的增根代入整式方程,即可求解. 举一反三:【变式】如果方程 1+ 3 = 1- x x - 2 2 - x【答案】 x = 2 ;有增根,那么增根是.提示:因为增根是使分式的分母为零的根,由分母 x - 2 = 0 或2 - x = 0 可得 x = 2 .所以增根是 x = 2 .类型四、分式方程的应用4、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种 2 棵树,甲班种 60 棵树所用的时间与乙班种 66 棵树所用的时间相等.求甲、乙两班每小时各种多少棵树? 【思路点拨】本题的等量关系为:甲班种 60 棵树所用的时间与乙班种 66 棵树所用的时间相等. 【答案与解析】解:设甲班每小时种 x 棵树,则乙班每小时种(x + 2)棵树. 6066由题意可得 =,解这个方程,得 x = 20 .x x + 2经检验 x = 20 是原方程的根且符合题意. 所以 x + 2 = 22 (棵).答:甲班每小时种 20 棵树,乙班每小时种 22 棵树.【总结升华】解此题的关键是设出未知数后,用含 x 的分式表示甲、乙两班种树所用的时间. 举一反三:1【变式】两个工程队共同参与一个建筑工程,甲队单独施工 1 个月完成总工程的 ,这时增加了乙队,两队又3共同工作了半个月,总工程全部完成.哪个队的施工速度快?【答案】1解:设乙队单独施工 1 个月能完成工程的 ,总工程量为 1.x根据工程的实际进度,得 1 + 1 + 1= 1.3 6 2x方程两边同时乘以6x ,得2x + x + 3 = 6x . 解这个方程得 x = 1 . 检验:当 x = 1 时, 6x =6≠0, 所以 x = 1 是原分式方程的解.1由上可知,若乙队单独工作 1 个月可以完成全部任务,对比甲队 1 个月完成任务的 ,可知乙队施工速度3快.答:乙队施工速度快. 【巩固练习】一.选择题1. 下列关于 x 的方程中,不是分式方程的是() A . 1 + x = 1xB. 3x = 4x 2 +1C. x + 3xD.x = 5= 3451216x - 62. 解分式方程x - 1 =x 2 -1,可得结果( ). A. x = 1B. x = -1C. x = 3D.无解2时,分式 与x - 44 - 2x 3. 要使的值和的值互为倒数,则 x 的值为().x - 54 - x1 A.0B.-1C.D.124. 已 知x -1 = x + 2 x + 10 y - 3 ,若用含 x 的代数式表示 y ,则以下结果正确的是( ).y - 4 10 - xA. y = 3B. y = x + 2 3 kC. y = 3D. y = -7x - 25.若关于 x 的方程x - 1= 1- 1 - x 有增根,则 k 的值为( ).A.3B.1C.0D.-16. 完成某项工作,甲独做需 a 小时,乙独做需b 小时,则两人合作完成这项工作的 80%,所需要的时间是().A. 4(a + b ) 小时 B. 4 (1 + 1) 小时 5C.4ab5 a b 小时D.ab小 时5(a + b )a + b二.填空题 7. 当x =3x2 6 - x的值互为相反数.8. 仓库贮存水果 a 吨,原计划每天供应市场 m 吨,若每天多供应 2 吨,则要少供应天.439. x =时,两分式与的值相等.x - 4x - 12ax + 3 510. 当 a = 时,关于 x 的方程a - x = 的根是 1. 411.若方程 x + 1- x - 1 4 x 2 - 1 a= 1 有增根,则增根是 . 12.关于 x 的方程三.解答题x + 1= 1 的解是负数,则 a 的取值范围为 .13. 解下列分式方程: 1 1- x(1)=-3 ;(2) 5x - 7= 2 + 3;(3)x - 2+ 1= 0 . x - 2 2 - x x 2 - 3x + 2 x -1 x - 2 x 2 -1 x + 2 x -1 14. 甲、乙两地相距 50 km ,A 骑自行车,B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5 倍,B 中途休息了 0.5 小时还比 A 早到 2 小时,求自行车和汽车的速度.15. 有一个两位数,它的个位数字比十位数字大 1,这个两位数被个位数字除时,商是 8,余数是 2,求这个两位数. 【答案与解析】一.选择题 1. 【答案】C ;【解析】C 选项中分母不含有未知数,故不是分式方程. 2. 【答案】D ;【解析】 x = 1 是原方程的增根. 3. 【答案】B ;3 2a【解析】由题意 x - 4 ⨯ 4 - 2x= 1,化简得: 2x -4 = 1解得 x = -1 .4. 【答案】C ;x - 5 4 - x x -5【解析】由题意(x -1)(y - 4)= (x + 2)(y - 3),化简得: 3y = 10 - x ,所以选 C. 5. 【答案】A ;【解析】将 x = 1 代入3 = x -1+ k ,得 k = 3 .6. 【答案】C ;4 1 1 4 ab【解析】由题意 5 二.填空题 7. 【答案】18;÷ ( + a b ) = ⨯ ,所以选 C.5 a + b【解析】+ 2= 0 ,解得 x = 18 .x 2a 6 - x;8. 【答案】 m 2 + 2maa天.【解析】原计划能供应 m 天,现在能供应 m + 2天,则少供应 m 2 + 2m9. 【答案】-8;43 【解析】x - 4 =x -1 ,解得 x = -8 .1710. 【答案】 - ;317【解析】将 x = 1 代入原方程,得8a + 5 = 5a -12 ,解得 a = - .311. 【答案】 x = 1 ;【解析】原方程化为: (x +1)2- 4 = x 2 -1 ,解得 x = 1 ,经检验 x = 1 是增根.12. 【答案】 a < 1 且 a≠0;【解析】原方程化为 a = x +1,x = a -1 < 0 ,解得 a < 1 .x≠-1,解得 a≠0. 三.解答题13. 【解析】解:(1)方程的两边都乘 x - 2 ,得1 = x -1- 3(x -2) . 解这个整式方程,得 x =2.检验:当 x =2 时, x -2=0,所以 2 是增根,所以原方程无解.(2)方程两边同乘(x - 2)(x -1) 约去分母,得5x - 7 = 2(x - 2) + 3(x-1) . 整理,得5x - 7 = 5x - 7 .这个式子为恒等式.检验:当 x = 1 , x = 2 时, (x - 2)(x -1) = 0 , 所以 x = 1 和 x = 2 是增根.因此,原方程的解是 x ≠ 1 且 x ≠ 2 的任何实数. (3)方程两边同乘(x + 2)(x +1)(x -1) ,⎪ ⎪ ⎪ 得 x (x + 2) - 2(x +1)(x -1) + (x + 2)(x +1) = 0 .4解此方程,得 x = - .4检验:把 x = - 55 代入(x + 2)(x +1)(x -1)得⎛ - 4 + 2 ⎫⨯⎛ - 4 +1⎫⨯⎛ - 4 -1⎫≠ 0 , 5 5 5 ⎝ ⎭ ⎝ ⎭ ⎝ ⎭4所以原方程的解是 x = - .514. 【解析】解:设自行车的速度为 xkm / h ,汽车的速度为2.5xkm / h ,50 50 由题意,= + 0.5 + 2 , x 2.5x解方程得:125 = 50 + 6.25x 经检验, x = 12 是原方程的根, 2.5x = 30 .所以自行车的速度为 12 km / h ,汽车的速度是 30 km / h . 答:自行车的速度为 12 km / h ,汽车的速度是 30 km / h .15. 【解析】解:设十位上的数字为 x ,则个位上的数字为 x +1,10x + (x +1) - 2则: = 8 .x + 1解方程得: x = 3 .经检验: x = 3 是原方程的根.所以个位上的数字为: x + 1=3+1=4. 所以这个两位数是:3×10+4=34. 答:这个两位数是 34.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
分式方程(二)【知识要点】1。
分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1。
分式方程主要是看分母是否有未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母。
3。
解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根。
题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x=+1;(2)裂项法,61167++=++x x x 。
【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值。
【例5】若分式方程122-=-+x a x 的解是正数,求a 的取值范围.提示:032>-=a x 且2≠x ,2<∴a 且4-≠a .题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c。
题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-xxx x ;(2)3423-=--x x x ;(3)22322=--+x x x ; (4)171372222--+=--+x x xx xx5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程:(1)bxa211+=)2(a b ≠;(2))(11b a xbb x a a ≠+=+。
第6讲分式方程模块一:分式方程及其解法知识精讲1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.例题解析例1.(1)下列方程中,是分式方程的为( )A .12x -=B 1=C 10-=D 1=【答案】C【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】A. 是整式方程,故选项错误;B. 是整式方程,故选项错误;分母中含有未知数x ,所以是分式方程,故选项正确;D. 是整式方程,故选项错误.故选C.【点睛】此题考查分式方程的判定,掌握分式方程的定义是解题的关键.(2)在3253x +=;11(1)(1)432x x ++-=;21x -=;2371x x x ++=-;1(37)x x-中,分式方程有().A .1个B .2个C .3个D .4个【难度】★【答案】B【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)(2)两个方程分 母中不含未知数,(5)不是方程,(3)(4)满足定义,故选B .【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.例2.(1)用换元法解分式方程251x x +21x x+-+1=0,如果设21x x +=y ,那么原方程可以化为( )A .2+y y -5=0B .2y -5y+1=0C .25y y 10++=D .25y 10y +-=【答案】D【分析】直接把21xx +换成y ,整理即可.【详解】解:设21xy x =+,则原方程化为1510y y -+=,去分母得,25y 10y +-=,故选:D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.(2).用换元法解方程221165380x x x x æöæö+++-=ç÷ç÷èøèø,设1y x x =+,则方程变为()A .265380y y +-=B .265400y y +-=C .265260y y +-=D .265500y y +-=【难度】★【答案】D【解析】1y x x =+,则有22221122x x y x x æö+=+-=-ç÷èø,原方程即为()2625380y y -+-=,展开整理即为265500y y +-=,故选D .【总结】考查分式方程中换元法的应用,注意含有未知数部分的恒等变形转化.例3.分式方程2227381x x x x x +=+--的最简公分母是____________.【难度】★【答案】3x x -.【解析】分式方程中三个分母位置上分别为2x x +,2x x -,21x -,分解因式的结果分别为()1x x +,()1x x -,()()11x x +-,由此可得方程的最简公分母为()()311x x x x x +-=-.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.例4.直接写出下列分式方程的根:(1)11211x x x -=---:_________________;(2)11111x x x -=---:_________________;(3)2121x x -=-:_________________;(4)2111x x -=-:_________________.【难度】★【答案】(1)2x =;(2)无解;(3)无解;(4)0x =.【解析】(1)根据等式性质,两边同时加上分式部分,即得2x =, 检验得2x =是原分式方程的根;(2)根据等式性质,两边同时加上分式部分,即得1x =,检验得1x =为方程的增根, 即方程无解;(3)约分得12x +=,解得1x =,检验得1x =为方程的增根,即方程无解;(4)约分得11x +=,解得0x =,检验得0x =是原分式方程的根.【总结】考查根据等式的性质求解简单的分式方程,注意求解结果是否是增根.例5.解方程:(1)3363142x x -=-+;(2)43252x xx x =++;(3)23312222x x x x x ++=--+-.【难度】★★【答案】(1)123x =,29x =-;(2)10x =,267x =-;(3)无解.【解析】(1)方程两边同乘()()43123x x -+,得()()()()42312831x x x x +--+=-,整理得2325180x x +-=,解得123x =,29x =-,经检验,123x =,29x =-都是原方程的根;(2)方程两边同乘()()3252x x ++,得()()52432x x x x +=+,整理得2760x x +=,解得:10x =,267x =-,经检验,10x =,267x =-都是原方程的根;(3)方程两边同乘()()212x x +-,得()()()63221x x x ++-=+,整理得220x x --=,解得:11x =-,22x =,经检验,11x =-,22x =都是原方程的增根,即原方程无解.例6.解方程:(1)2213211x x x x -=+--; (2)24221422x x x x =++--+;(3)23211214124x x x x++=+--.【难度】★★【答案】(1)13x =-;(2)6x =;(3)54x =.【解析】(1)方程两边同乘21x -,得()221213x x x x +=-+-,整理得23210x x --=, 解得:113x =-,21x =,经检验,21x =是原方程的增根,即原方程的根为13x =-;(2)方程两边同乘24x -,得()()2442222x x x x =--++-,整理得24120x x --=,解得:16x =,22x =-,经检验,22x =-是原方程的增根,即原方程的根为6x =;(3)两边同乘()2241x -,得()()()2621421241x x x x -+-+=-,整理得281450x x -+=,解得:112x =,254x =,经检验,112x =是原方程的增根,即原方程的根为54x =.【总结】考查分式方程的解法,注意检验所求是否为增根.例7.已知关于x 的方程22312x m x x x +-=-+-有增根,求m 的值.【难度】★★【答案】12m =或3m =.【解析】分式方程两边同乘22x x +-,得()223x m +=-,分式方程有增根,由220x x +-=,解得:11x =,22x =-,即为原分式方程的增根,代入相应整式方程得39m -=或30m -=,解得12m =或3m =.【总结】考查分式方程的增根,代入相应的整式方程可使得方程成立且使得分式分母为0的未知数的值.例8.已知关于x 的方程7155x m xx x--=---无解,求m 的值.【难度】★★【答案】3m =.【解析】分式方程两边同乘5x -,得()75x x m x -=---,整理解得:2x m =+,因为原分式方程无解,则相应解应为分式方程的增根,即得25x m =+=,解得3m =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根.例9.已知关于x 的方程301a xx +-=+的根是负数,求a 的取值范围.【难度】★★【答案】3a <且1a ≠.【解析】分式方程两边同乘1x +,得()310a x x +-+=,整理解得:32a x -=,方程的根是 负数,则有302a x -=<,得3a <,同时分式方程的根不能为相应增根,即312a x -=≠-, 得1a ≠,由此即得3a <且1a ≠.【总结】考查分式方程的解满足条件的求解,注意方程的解不能为相应的增根.例10.解方程:(1)2220383x x x x+-=+;(2)2191502x x x x æöæö+-++=ç÷ç÷èøèø.【难度】★★【答案】(1)15x =-,22x =,31x =-,42x =-;(2)11x =,22x =,312x =.【解析】(1)令23x x a +=,原方程即为208a a-=,两边同乘a 整理得28200a a --=,解得:110a =,22a =-;由2310x x +=,解得:15x =-,22x =;由232x x +=-,解得:11x =-,22x =-;经检验,15x =-,22x =,31x =-,42x =-都是原方程的根;(2)令1x a x +=,原方程即为29502a a -+=,解得12a =,252a =;由12x x+=,整理得2210x x -+=,解得:121x x ==;由152x x +=,整理得22520x x -+=,解得12x =,212x =;经检验,11x =,22x =,312x =都是原方程的根.【总结】考查用换元法求解具有特殊形式的分式方程,注意对方法的总结.例11.解方程:(1)225(16(1)1711x x x x +++=++);(2)2216104()933x x x x+=-.【难度】★★【答案】(1)1x =2x =(2)13x =,23x =,32x =-,46x =.【解析】(1)令211x a x +=+,原方程即为6517a a +=,两边同乘a 整理得251760a a -+=,解得:125a =,23a =;由21215x x +=+,整理得25230x x -+=,方程无解;由2131x x +=+,整理得2320x x --=,解得:1x 2x =经检验,1x =2x = (2)令43x a x -=,则有2222164889333x x a x x æö+=-+=+ç÷èø,原方程即为281033a a +=,整理得231080a a -+=,解得:12a =,243a =;由423x x-=,整理得26120x x --=,解得:13x =,23x =;由4433x x -=,整理得24120x x --=,解得:12x =-,26x =;经检验,13x =+23x =-,32x =-,46x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例12.解方程组:(1)413538x y x y x y x y ì+=ï+-ïíï-=ï+-î;(2)132013251x y x y ì+=ï-ïíï-=-ï-î.【难度】★★【答案】(1)01x y =ìí=î;(2)565x y =ìïí=ïî.【解析】(1)令1a x y =+,1b x y =-,原方程组即为43538a b a b +=ìí-=î,解得:11a b =ìí=-î,由此可得11x y =+,11x y =--,由此得11x y x y +=ìí-=-î,解得:01x y =ìí=î,经检验,01x y =ìí=î是原分式方程的根;(2)令11a y =-,原方程组即为320235x a x a +=ìí-=-î,解得:55x a =ìí=î,由此可得:151y =-, 解得:65y =, ∴565x y =ìïí=ïî, 经检验,565x y =ìïí=ïî是原分式方程的根.【总结】考查利用换元法求分式方程组的解,注意解完之后要检验.例13.解方程组:(1)253489156x x x x +=+++++;(2)11212736x x x x x x ++-=-++++.【难度】★★【答案】(1)16x =,2334x =-;(2)92x =-.【解析】(1)对分式方程移项通分得()()()()()()()()21538495681569x x x x x x x x +-++-+=++++,展开即得2266231201554x x x x x x -+-+=++++,由此即得60x -+=或22231201554x x x x ++=++,解得:16x =,2334x =-, 经检验,16x =,2334x =-都是原分式方程的根; (2)对分式方程变形得1111112736x x x x --=--++++,由此得11112736x x x x +=+++++,两边分别通分即得222929914918x x x x x x ++=++++, 两边分母不同,则必有290x +=,解得92x =-,经检验,92x =-是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.例14.解方程:226205x x +-=+.【难度】★★【答案】11x =,21x =-.【解析】令25x a +=,则有25x a =-,原方程即为6520a a+--=,两边同乘a 整理,得2760a a -+=,解得:11a =,26a =;由251x +=,方程无解; 由256x +=,解得:11x =,21x =-;经检验,11x =,21x =-都是原方程的根.【总结】考查用换元法解分式方程,注意取值范围和增根.例15.a 为何值时,关于x 的方程211a a x +=+无解?【难度】★★【答案】12a =-或0a =.【解析】分式方程两边同乘1x +,得:()211a a x +=+,展开移项得1ax a =+,当0a =时,方程无解; 当0a ≠时,1a x a +=,方程无解,即得11a x a+==-,解得12a =-;综上,12a =-或0a =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根,注意考虑未知项系数为0的情况.例16.已知关于x 的方程222022x x x k x x x x-+++=--只有一个解,求k 的值及这个解.【难度】★★★【答案】72k =-时,1212x x ==或4k =-时,1x =或8k =-时,1x =-.【解析】方程两边同乘22x x -,得()22220x x x k +-++=,展开整理得:22240x x k -++=,分式方程可能产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行 分类讨论:①当整式方程有两相等实数根时,()()224240k ∆=--⨯+=,解得:72k =-,此时方程为212202x x -+=,解得:1212x x ==,此时分式方程只有一个解,符合题意;②当整式方程有一根为分式方程增根0x =时,此时有40k +=,解得:4k =-,此时方程为2220x x -=,解得:10x =,21x =,此时分式方程只有一个解1x =,符合题意;③当整式方程有一根为分式方程增根2x =时,此时有2222240k ⨯-⨯++=,解得:8k =-,此时方程为22240x x --=,解得:12x =,21x =-,此时分式方程只有一个解1x =-,符合题意; 综上,72k =-或4k =-或8k =-.【总结】考查分式方程只有一个解的情况,方程为二次方程时,注意包含方程有一个根为分式方程的增根的情形.例17.解关于x 的方程:22112(3()1x x x x+-+= 【难度】★★★【答案】12x =,212x =.【解析】令1x a x +=,则有22221122x x a x x æö+=+-=-ç÷èø,原方程即为()22231a a --=,展开整理得22350a a --=,解得:11a =-,252a =;由11x x+=-,整理得210x x ++=,方程无解;由152x x +=,整理得22520x x -+=,解得:12x =,212x =; 经检验,12x =,212x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程,注意解完之后进行检验.例18.解关于x 的方程()()450b x a xa b b x a x+-=-+≠+-.【难度】★★★【答案】12a b x -=,245a bx -=.【解析】令a x kb x -=+,原方程即为45k k=-,两边同乘k 整理,得2540k k -+=,解得:11k =,24k =; 由1a x b x -=+,又0a b +≠,可解得:2a bx -=;由4a x b x -=+,又0a b +≠,可解得:45a bx -=;经检验,12a b x -=,245a bx -=都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例19.已知方程22222(1)21()x ax a a x a +-++=+有实数根,求实数a 的取值范围.【难度】★★★【答案】1122a -≤≤且0a ≠.【解析】展开得()()22222222121x ax a ax a a x a +--+++=+,根据等式性质移项得()()222220x ax a ax x a +-+=+,即为()20x a x a x a ⎡⎤+-=⎢⎥+⎣⎦,由此得()0xa x a x a+-=+, 移项得()2a x a x +=,展开整理得()223210ax a x a +-+=,当0a =时,方程有实数根0x =是分式方程的增根,应舍去;当0a ≠时,方程为一元二次方程,此时根据韦达定理可得2122112a x x a a a-+=-=-,可知1x 、2x 不可能同时为a -,分式方程有实数根,则相应的整式方程应满足()2232214410a a a a ∆=--⋅=-+≥,得1122a -≤≤;综上,实数a 的取值范围为:1122a -≤≤且0a ≠.【总结】考查分式方程有实数根的情形,对分式方程整理变形满足相应的条件即可.模块二分式方程应用题知识精讲1、列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.例题解析例1.要在规定日期内完成一项工程,如甲队单独做,刚好按期完成;如乙队单独做,则要超过规定时间3天才能完成;甲、乙两队合作2天,剩下的工程由乙队单独做,则刚好按期完成.那么求规定日期为x天的方程是().A.2213xx x-+=+B.233x x=+C.2213xx x++=+D.213xx x+=+【难度】★【答案】D【解析】设工作总量为“1”,则甲工作量+乙工作量=1,根据工作总量=工作效率×工作天数,乙工作天数为x天,由此可知选D.【总结】考查工程问题中的单位“1”,注意分清对应的工作效率和工作时间.例2.某车间加工300个零件,在加工80个以后,改进了操作方法,每天能多加工15个,一共用6天完成了任务.如果设改进操作后每天加工x个零件,那么下列根据题意列出的方程中,错误的是()A.8030080615x x-+=-B.30080615x-=-C.80(6)8030015xx-+=-D.8015300806xx-=--【难度】★【答案】B 【解析】略【总结】考查根据题意列方程的应用,根据工作量和工作效率、工作时间之间的相互关系进行列方程的应用.例3.甲、乙两个工程队合做一项工程,6天可以完成.如果单独工作,甲队比乙队少用5天完成.两队单独工作各需多少天完成?【难度】★★【答案】甲单独需10天完成,乙单独需15天完成.【解析】设甲单独需用x天完成,则乙单独需用()5x+天完成,依题意可得11615x xæö+=ç÷+èø,整理得27300x x--=,解得:13x=-,210x=,经检验,13x=-,210x=都是原方程的根,但13x=-不合题意应舍去,即得10x=,即甲单独需10天完成,乙单独需10515+=天完成.【总结】考查工程问题中的列方程解应用题,把工作总量当作单位“1”解题.例4.登山比赛时,小明上山时的速度为a米/分,下山的速度是b米/分,已知上山和下山的路径是一样的,求小明在全程中的平均速度?【难度】★★【答案】2aba b+.【解析】设小明上山的路程为sm,则整个过程中小明总行程为2sm,根据平均速度=总行程÷总时间,即得平均速度22s abvs s a ba b==++.【总结】考查平均速度的求取,平均速度==总行程÷总时间,与行程远近无关,注意平均速度的求法.例5.甲、乙两人分别从相距9千米的A、B两地同时出发,相向而行,1小时后相遇.相遇后,各自继续以原有的速度前进,已知甲到B地比乙到A地早27分钟,求两人的速度各是多少?【难度】★★★【答案】甲速度为5/km h,乙速度为4/km h.【解析】设甲速度为/xkm h,则乙速度为()9/x km h-,927min20h=,依题意可得999920x x-=-,整理得2311800x x+-=,解得:136x=-,25x=,经检验,136x=-,25x=都是原方程的根,但136x=-不合题意应舍去,即得5x=,即甲速度为5/km h,乙速度为954/km h-=.【总结】考查行程问题中的列方程解应用题,根据相遇问题的基本关系一个条件作设一个条件列式进行求解.例6.甲、乙两辆车同时从A地出发开往距A地240千米的B地,结果甲车比乙车早到了60分钟;第二次,乙车提速30千米/时,结果比甲车早到了20分钟,求第一次甲、乙两车的速度各是多少?【难度】★★★【答案】甲速度为80/km h,乙速度为60/km h.【解析】设甲车xh到达B地,60min1h=,120min3h=,依题意可得24024030113xx-=+-,整理得232330x x+-=,解得1113x=-,23x=,经检验,111 3x=-,23x=都是原方程的根,但111 3x=-不合题意应舍去,即得3x=,可得甲速度为24080/3km h=,乙速度为24060/31km h=+.【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解,注意本题中用时间作设速度列式解题更方便.例7.某服装厂接到一宗生产13万套衣服的业务,在生产了4万套后,接到了买方急需货物的通知,为满足买方的要求,该厂改进了操作方法,每月能多生产1万套,一共5个月完成了这宗业务.求改进操作方案后每月能生产多少万套衣服?【难度】★★★【答案】3万套.【解析】设改进操作方案后每月能生产x 万套衣服,则改进之前每月生产()1x -万套,依题意可得413451x x -+=-,整理得251890x x -+=,解得:135x =,23x =,经检验,135x =,23x =都是原方程的根,但135x =不合题意应舍去,即得:3x =,即改进操作方案后每月能生产3万套衣服.【总结】考查工作总量问题,一个条件作设一个条件列式进行求解.随堂检测1.已知方程:(1)2412x x -=-;(2)221x x =-;(3)11x x x æö-=ç÷èø;(43x -=,其中是分式方程的有_____________.【难度】★【答案】(1)、(2)、(3).【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)、(2)、(3)满足 条件,(4)方程中不含有分式,故答案为(1)、(2)、(3).【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.2.当x 取何值时,分式方程1112x x x +=--的最简公分母的值等于0?【难度】★【答案】1x =或2x =.【解析】分式方程的最简公分母为()()12x x --,最简公分母值为0,即()()120x x --=,解得:1x =或2x =.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.3.分式方程22228(2)331112x x x x x x +-+=-+,如果设2221x xy x +=-,那么原方程可以化为关于y 的整式方程为 .【难度】★【答案】281130y y -+=.【解析】2221x x y x +=-,则有22112x x x y-=+,原方程即为3811y y +=,整理化作关于y 的整式方 程即为281130y y -+=.【总结】考查利用换元法对复杂形式的分式方程进行转化,注意最终要化成整式方程的形式.4.解方程:(1)26531111x x x x =++--+;(2)22161242x x x x +-=--+; (3)243455121760x x x x x x --+=---+.【难度】★★【答案】(1)9x =;(2)5x =-;(3)12x =,29x =.【解析】(1)方程两边同乘21x -,得()()2615131x x x x =--++-,整理得2890x x --=,解得:11x =-,29x =,经检验,11x =-是原方程的增根,即原方程的根为9x =;(2)方程两边同乘24x -,得()22162x x +-=-,整理得23100x x +-=,解得:12x =,25x =-,经检验,12x =是原方程的增根,即原方程的根为5x =-;(3)两边同乘21760x x -+,得()()()4123545x x x x ----=-,整理得211180x x -+=,解得“”12x =,29x =,经检验,12x =,29x =都是原方程的根.【总结】考查分式方程的解法,注意检验所求是否为增根.5.解方程:221313x x x x ++=+.【难度】★★【答案】11x =,21x =+.【解析】令1x a x =+,原方程即为2133a a +=,整理即为231060a a -+=,解得:1a =2a =由1x x =+,解得:1x =;由1x x =+,解得:1x =+经检验11x =,21x =【总结】考查利用换元法解分式方程.6.解方程组311332412463324x y x y x y y x ì+=ï+-ïíï-=ï+-î【难度】★★【答案】1011711x y ì=ïïíï=ïî.【解析】令132a x y =+,14b x y =-,原方程组即为13312463a b a b ì+=ïíï+=î,解得:1413a b ì=ïïíï=ïî,由此可得113241143x y x y ì=ï+ïíï=ï-î, 去分母得32443x y x y +=ìí-=î,解得:1011711x y ì=ïïíï=ïî,经检验,1011711x y ì=ïïíï=ïî是原分式方程的根.【总结】考查用换元法解有特殊形式的分式方程组,注意验根.7.若分式方程22111x m x x x x x++-=++产生增根,求m 的值.【难度】★★【答案】2m =-或1m =.【解析】方程两边同乘2x x +,得()()22211x m x -+=+,展开整理得2220x x m ---=,分式方程产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行分类 讨论:①整式方程有一根为分式方程增根0x =时,此时有20m --=,解得:2m =-;②整式方程有一根为分式方程增根1x =-时,此时有()()212120m --⨯---=,解得:1m =;综上,2m =-或1m =.【总结】考查分式方程有增根的情况,即对应的整式方程有一个根为分式方程的增根.8.甲、乙两地间铁路长400千米,现将火车的行驶速度每小时比原来提高了45千米,因此,火车由甲地到乙地的行驶时间缩短了2小时.求火车原来的速度.【难度】★★【答案】75/km h .【解析】设火车原来的速度为/xkm h ,依题意可得400400245x x -=+,整理得24590000x x +-=,解得:1120x =-,275x =,经检验,1120x =-,275x =都是原方程的根,但1120x =-不合题意应舍去,即得75x =,即可得火车原来速度为75/km h .【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解.9.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.【难度】★★★【答案】原计划平均每年绿化面积40万亩.【解析】设原计划平均每年的绿化面积为x 万亩,则新计划每年()20x +万亩,依题意可得()200120%200120x x ⨯+-=+,整理得26040000x x +-=,解得:1100x =-,240x =,经检验,1100x =-,240x =都是原方程的根,但1100x =-不合题意应舍去,即得40x =,即原计划平均每年的绿化面积为40万亩.【总结】考查工作量的问题,根据相应的等量关系式列方程求解.10.解方程:221114(4)12()12433x x x -=-++.【难度】★★★【答案】11x =+,21x =,33x =+,43x =【解析】方程两边同乘12展开得22364881616x x x x-+=--+,根据等式的性质移项变形得2668120x x x x æöæö---+=ç÷ç÷èøèø,因式分解得:66260x x x x æöæö----=ç÷ç÷èøèø,由此可得620x x --=或660x x --=;由620x x--=,整理得2260x x --=,解得:11x =+21x =-;由660x x --=,整理得2660x x --=,解得:13x =+23x =经检验,11x =21x =-33x =43x =-都是原方程的根.【总结】考查用整体思想先对分式方程变形,然后求解分式方程的根,注意对方法的总结.11.解方程:596841922119968x x x x x x x x ----+=+----.【难度】★★★【答案】12314x =.【解析】对分式方程变形得1155514219968x x x x -++=++-----,根据等式的性质可变形得115519986x x x x -=-----,两边分别通分即得221010281711448x x x x =-+-+,由此可得22281711448x x x x -+=-+, 解得:12314x =,经检验,12314x =是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.12.已知关于x 的方程21221232a a x x x x ++=---+有增根,求a .【难度】★★★【答案】32a =-或2a =-.【解析】方程两边同乘232x x -+,得()2122x a x a -+-=+,展开整理得()134a x a +=+,当10a +≠,即1a ≠-时,得341a x a +=+,分式方程可能产生增根,由此进行分类讨论:①整式方程根为分式方程增根1x =时,此时有3411a a +=+,解得32a =-;②整式方程有一根为分式方程增根2x =时,此时有3421a a +=+,解得2a =-;综上,32a =-或2a =-.【总结】考查分式方程有增根的情况,即对应的整式方程根为分式方程的增根.13.已知:关于x 的方程227()72120a a x x a x x+--++=只有一个实数根,求a .【难度】★★★【答案】94a =或4a =.【解析】整理原方程得27120a a x x x x æöæö+-++=ç÷ç÷èøèø,因式分解得340a a x x x x æöæö+-+-=ç÷ç÷èøèø,由此可得30a x x +-=或40a x x +-=,分别整理得:230x x a -+=和240x x a -+=,两方程根的判别式分别为194a ∆=-,2164a ∆=-.因为方程仅有一实数根,所以940a -=或1640a -=,解得:94a =或4a =.【总结】考查分式方程的根与对应整式方程的根相结合的问题,根据实际题目进行问题的分析转化,解决问题.。
第十六章分式知识点和典型例习题【知识网络】【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd ac ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义(一)分式的概念: 形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件:1、分母中字母的取值不能使分母值为零,否则分式无意义2、当分子为零且分母不为零时,分式值为零。
分式方程的特殊解法举例解分式方程的基本思想,是通过去分母,化分式方程为整式方程。
其常规解法有“去分母法”和“换元法”两种。
但对一些结构较特殊的分式方程,若仍用这两种常规方法求解,往往会使未知数的次数增高,或使运算变繁,增大解题难度,甚至无法解出。
因此,我们应针对题目的结构特征,研究一些非常规解法。
1. 分组通分例1 解方程65327621--+--=--+--x x x x x x x x 分析:通过移项,将方程两边变形为两分式的差,通分后的分子中含未知数的项可相互抵消,从而降低了解题难度。
解:移项,得21653276-----=-----x x x x x x x x 两边分别通分,得)2)(6(4)3)(7(4--=--x x x x 所以)2)(6()3)(7(--=--x x x x 解得29=x 经检验,知29=x 是原方程的根。
2. 用“带余除法”将分子降次例2 解方程x x x x x x x 211112323=+--++++ 分析:方程左边是两个假分式的和的形式,所以可将它们分别化成整式与真分式之和的形式,从而降低未知数的次数,简化运算。
解:原方程可化为x x x x x x x 212112122=⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛+++-所以121222+-=++x x x x 即1122+-=++x x x x所以002==x x ,经检验,知x=0是原方程的根。
3. 拆项相消例3 解方程 1011009900199165123112222=+++++++++++x x x x x x x x 分析:表面不易发现题目特点,但将各分母因式分解后,便发现各分式同时都具有AB A B -的形式。
因此,可用BA AB A B 11-=-将每个分式都拆成两个分式差的形式,这样除首末两项外,中间的项从左往右依次抵消。
解:将原方程变形,得101100)100)(99(1)3)(2(1)2)(1(1)1(1=+++++++++++x x x x x x x x 拆项得⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-100199131212111111x x x x x x x x 101100= 化简得10110010011=+-x x 即01011002=-+x x 解得101121-==x x , 经检验,知11=x 和1012-=x 都是原方程的解。
专题5.31分式方程的应用(题型分类专题)(例题讲解)列分式方程解应用题中考中是必考内容之一,下面结合近几年中考题型举例进行巩固:类型一、直接列分式方程求解1.(2022·辽宁丹东·统考中考真题)为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?【答案】每个篮球的原价是120元.【分析】设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据题意,得12000x=1000020x-.解得x=120.经检验x=120是原方程的解.答:每个篮球的原价是120元.【点拨】本题考查了分式方程的应用,根据题意列出方程是解题的关键.举一反三:【变式1】(2022·贵州铜仁·统考中考真题)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?【答案】该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.【分析】设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,利用工作时间=工作总量÷工作效率,结合提前2天完成订单任务,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,依题意得:2802(140%2)80x x-=+,解得:x=40,经检验,x=40是原方程的解,且符合题意.答:该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.【点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.【变式2】(2022·贵州贵阳·统考中考真题)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?【答案】每辆大货车货运量是16吨,每辆小货车货运量是12吨【分析】设每辆小货车货运量x 吨,则每辆大货车货运量()4x +吨,根据题意,列出分式方程,解方程即可求解.解:设每辆小货车货运量x 吨,则每辆大货车货运量()4x +吨,根据题意,得,80604x x=+,解得12x =,经检验,12x =是原方程的解,412416x +=+=吨,答:每辆大货车货运量是16吨,每辆小货车货运量是12吨.【点拨】本题考查了分式方程的应用,根据题意列出方程是解题的关键.类型二、分式方程✮✮不等式(组)2.(2021·山东济南·统考中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【分析】(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,然后根据(1)及题意可列不等式进行求解.解:(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,由题意得:1200800502x x+=,解得:4x =,经检验4x =是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,由(1)及题意得:()842001150m m +-≤,解得:87.5m ≤,∵m 为正整数,∴m 的最大值为87;答:最多购进87个甲种粽子.【点拨】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.举一反三:【变式1】(2022·辽宁营口·一模)某单位计划选购甲,乙两种物品,已知甲物品单价比乙物品单价高20元,用240元单独购买甲物品的数量是用80元单独购买乙物品数量的2倍.(1)求甲,乙两种物品的单价分别是多少元?(2)如果该单位计划购买甲,乙两种物品共80件,且总费用不超过4060元,求最多能购买甲物品多少件?【答案】(1)甲物品的单价是60元,乙物品的单价是40元(2)43件【分析】(1)设乙物品的单价是x 元,则甲物品的单价是()20x +元,利用数量=总价÷单价,结合用240元单独购买甲物品的数量是用80元单独购买乙物品数量的2倍,可得出关于x 的分式方程,解之经检验后,可得出乙物品的单价,再将其代入()20x +中,可求出甲物品的单价;(2)设购买m 件甲物品,则购买()80m -件乙物品,利用总价=单价×数量,结合总价不超过4060元,可得出关于m 的一元一次不等式,解之取其中的最大值,即可得出结论.解:(1)设乙物品的单价是x 元,则甲物品的单价是()20x +元,根据题意得:24080220x x=⨯+,解得:40x =,经检验,40x =是所列方程的解,且符合题意,∴20402060x +=+=.答:甲物品的单价是60元,乙物品的单价是40元.(2)设购买m 件甲物品,则购买()80m -件乙物品,根据题意得:()6040804060m m +-≤,解得:43m ≤,又∵m 为正整数,∴m 的最大值为43.答:最多能购买甲物品43件.【点拨】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是正确分析题目中的等量关系.【变式2】(2023·山东济南·一模)为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用900元购进乒乓球若干盒,第二次又用900元购进该款乒乓球,但这次每盒的进价是第一次进价的1.2倍,购进数量比第一次少了30盒.(1)求第一次每盒乒乓球的进价是多少元?(2)若要求这两次购进的乒乓球按同一价格全部销售完后获利不低于510元,则每盒乒乓球的售价至少是多少元?【答案】(1)5元(2)7元【分析】(1)设第一次每盒乒乓球的进价是x 元,则第二次每盒乒乓球的进价是1.2x 元,根据购进数量比第一次少了30盒列方程即可;(2)设每盒乒乓球的售价为y 元,根据全部销售完后获利不低于510元列出不等式即可.(1)解:设第一次每盒乒乓球的进价是x 元,则第二次每盒乒乓球的进价是1.2x 元,由题意得:900900301.2x x=+解得:x =5,经检验:x =5是原分式方程的解,,且符合题意,答:第一次每盒乒乓球的进价是5元;(2)解:设每盒乒乓球的售价为y 元,第一次每盒乒乓球的进价为5元,则第二次每盒乒乓球的进价为5 1.26⨯=(元),由题意得:()()9009005651056y y ⨯-+-≥,解得:7y ≥.答:每盒乒乓球的售价至少是7元.【点拨】本题考查了分式方程和一元一次不等式的应用,解题关键是准确理解题意,根据题目中的数量关系列出方程和不等式.类型三、分式方程✮✮一次函数增减性3.(2022·山东东营·统考中考真题)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?【答案】(1)甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;(2)水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【分析】(1)设乙种水果的进价是x 元/千克,根据“甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克”列出分式方程,解方程检验后可得出答案;(2)设水果店购进甲种水果a 千克,获得的利润为y 元,则购进乙种水果(150-a )千克,根据利润=(售价-进价)×数量列出y 关于a 的一次函数解析式,求出a 的取值范围,然后利用一次函数的性质解答.(1)解:设乙种水果的进价是x 元/千克,由题意得:()1000120010120%x x=+-,解得:5x =,经检验,5x =是分式方程的解且符合题意,则()120%0.854x -=⨯=,答:甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;(2)解:设水果店购进甲种水果a 千克,获得的利润为y 元,则购进乙种水果(150-a )千克,由题意得:()()()6485150450y a a a =-+--=-+,∵-1<0,∴y 随a 的增大而减小,∵甲种水果的重量不低于乙种水果重量的2倍,∴()2150a a -≥,解得:100a ≥,∴当100a =时,y 取最大值,此时100450350y =-+=,15050a -=,答:水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【点拨】本题考查了分式方程的应用,一次函数与一元一次不等式的应用,正确理解题意,找出合适的等量关系列出方程和解析式是解题的关键.举一反三:【变式1】(2020·新疆·统考中考真题)某超市销售A 、B 两款保温杯,已知B 款保温杯的销售单价比A 款保温杯多10元,用480元购买B 款保温杯的数量与用360元购买A 款保温杯的数量相同.(1)A 、B 两款保温杯的销售单价各是多少元?(2)由于需求量大,A 、B 两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A 款保温杯的数量不少于B 款保温杯数量的两倍.若A 款保温杯的销售单价不变,B 款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?【答案】(1)A 款保温杯的销售单价是30元,B 款保温杯的销售单价是40元(2)进货方式为购进B 款保温杯数量为40个,A 款保温杯数量为80个,最大利润是1440元【分析】(1)设A 款保温杯的销售单价是x 元,B 款保温杯的销售单价是(x +10)元,根据用480元购买B 款保温杯的数量与用360元购买A 款保温杯的数量相同列分式方程解答即可;(2)设购进B 款保温杯数量为y 个,则A 款保温杯数量为(120-y )个,根据题意求出0<y ≤40,设总销售利润为W 元,列出一次函数,根据一次函数的性质求解即可.(1)解:设A 款保温杯的销售单价是x 元,B 款保温杯的销售单价是(x +10)元,48036010x x=+,解答x =30,经检验,x =30是原方程的解,∴x +10=40,答:A 款保温杯的销售单价是30元,B 款保温杯的销售单价是40元;(2)B 款保温杯销售单价为40×(1-10%)=36元,设购进B 款保温杯数量为y 个,则A 款保温杯数量为(120-y )个,120-y ≥2y ,解得y ≤40,∴0<y ≤40,设总销售利润为W 元,W =(30-20)(120-y )+(36-20)y =6y +1200,∵W 随y 的增大而增大,∴当y =40时,利润W 最大,最大为6×40+1200=1440元,进货方式为购进B 款保温杯数量为40个,A 款保温杯数量为80个,最大利润是1440元.【点拨】此题考查了分式方程的实际应用,一次函数的实际应用,正确理解题意是解题的关键.【变式2】(2022·广东深圳·统考中考真题)某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的笔记本的单价比乙种类型的要便宜1元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少【答案】(1)甲类型的笔记本电脑单价为11元,乙类型的笔记本电脑单价为12元(2)最低费用为1100元【分析】(1)设甲类型的笔记本电脑单价为x 元,则乙类型的笔记本电脑为()10x +元.列出方程即可解答;(2)设甲类型笔记本电脑购买了a 件,最低费用为w ,列出w 关于a 的函数,利用一次函数的增减性进行解答即可.解:(1)设甲类型的笔记本电脑单价为x 元,则乙类型的笔记本电脑为()10x +元.由题意得:1101201x x =+解得:11x =经检验11x =是原方程的解,且符合题意.∴乙类型的笔记本电脑单价为:11112+=(元).答:甲类型的笔记本电脑单价为11元,乙类型的笔记本电脑单价为12元.(2)设甲类型笔记本电脑购买了a 件,最低费用为w ,则乙类型笔记本电脑购买了()100a -件.由题意得:1003a a -≤.∴25a ≥.()1112100111200121200w a a a a a =+-=+-=-+.∵100-<,∴当a 越大时w 越小.∴当100a =时,w 最小,最小值为110012001100-⨯+=(元).答:最低费用为1100元.【点拨】此题考查了分式方程的应用,以及一次函数的应用,掌握分式方程的应用,以及一次函数的应用是解题的关键.类型四、分式方程✮✮不等式(组)✮✮一次函数增减性➽➼方案问题4.(2022·黑龙江牡丹江·统考中考真题)某工厂准备生产A 和B 两种防疫用品,已知A 种防疫用品每箱成本比B 种防疫用品每箱成本多500元.经计算,用6000元生产A 种防疫用品的箱数与用4500元生产B 种防疫用品的箱数相等.请解答下列问题:(1)求A ,B 两种防疫用品每箱的成本;(2)该工厂计划用不超过90000元同时生产A 和B 两种防疫用品共50箱,且B 种防疫用品不超过25箱,该工厂有几种生产方案?(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)【答案】(1)A 种防疫用品2000元/箱,B 种防疫用品1500元/箱(2)共有6种方案(3)4种,33台【分析】(1)设B 种防疫用品成本x 元/箱,A 种防疫用品成本()500x +元/箱,根据题意列出分式方程解得即可;(2)设B 种防疫用品生产m 箱,A 种防疫用品生产()50m -箱,根据题意列得不等式解得即可;(3)先根据(2)求得最低成本,设购进甲和乙两种设备分别为a ,b 台,根据题意列得方程,解得正整数解即可.(1)解:设B 种防疫用品成本x 元/箱,A 种防疫用品成本()500x +元/箱,由题意,得45006000500x x =+,解得x =1500,检验:当x =1500时,()5000x x +≠,所以x =1500是原分式方程的解,50015005002000x +=+=(元/箱),答:A 种防疫用品2000元/箱,B 种防疫用品1500元/箱;(2)解:设B 种防疫用品生产m 箱,A 种防疫用品生产()50m -箱,()150020005090000m m +-≤,解得20m ≥,∵B 种防疫用品不超过25箱,∴2025m ≤≤,∵m 为正整数,∴m =20,21,22,23,24,25,共有6种方案;(3)解:设生产A 和B 两种防疫用品费用为w ,w =1500m +2000(50-m )=-500m +100000,∵k <0,∴w 随m 的增大而减小,∴当m =25时,w 取得最小值,此时w =87500,设购进甲和乙两种设备分别为a ,b 台,∴2500a +3500b =87500,∴17575b a -=,∵两种设备都买,∴a ,b 都为正整数,∴285a b =⎧⎨=⎩,2110a b =⎧⎨=⎩,1415a b =⎧⎨=⎩,720a b =⎧⎨=⎩,∴一共4种方案,最多可购买甲乙两种设备共28+5=33台.【点拨】本题考查了分式方程、一元一次不等式组、二元一次方程的实际应用,根据题意列出等式或不等式是解题的关键.举一反三:【变式1】(2022·贵州黔东南·统考中考真题)某快递公司为了加强疫情防控需求,提高工作效率,计划购买A 、B 两种型号的机器人来搬运货物,已知每台A 型机器人比每台B 型机器人每天少搬运10吨,且A 型机器人每天搬运540吨货物与B 型机器人每天搬运600吨货物所需台数相同.(1)求每台A 型机器人和每台B 型机器人每天分别搬运货物多少吨?(2)每台A 型机器人售价1.2万元,每台B 型机器人售价2万元,该公司计划采购A 、B 两种型号的机器人共30台,必须满足每天搬运的货物不低于2830吨,购买金额不超过48万元.请根据以上要求,完成如下问题:①设购买A 型机器人m 台,购买总金额为w 万元,请写出w 与m 的函数关系式;②请你求出最节省的采购方案,购买总金额最低是多少万元?【答案】(1)每台A 型机器人每天搬运货物90吨,每台B 型机器人每天搬运货物为100吨.(2)①0.860w m =-+;②当购买A 型机器人17台,B 型机器人13台时,购买总金额最少,最少金额为46.4万元.【分析】(1)设每台A 型机器人每天搬运货物x 吨,则每台B 型机器人每天搬运货物为(x +10)吨,然后根据题意可列分式方程进行求解;(2)①由题意可得购买B 型机器人的台数为()30m -台,然后由根据题意可列出函数关系式;②由题意易得()901003028300.86048m m m ⎧+-≥⎨-+≤⎩,然后可得1517m ≤≤,进而根据一次函数的性质可进行求解.(1)解:设每台A 型机器人每天搬运货物x 吨,则每台B 型机器人每天搬运货物为(x +10)吨,由题意得:54060010x x =+,解得:90x =;经检验:90x =是原方程的解;答:每台A 型机器人每天搬运货物90吨,每台B 型机器人每天搬运货物为100吨.(2)解:①由题意可得:购买B 型机器人的台数为()30m -台,∴()1.22300.860w m m m =+-=-+;②由题意得:()901003028300.86048m m m ⎧+-≥⎨-+≤⎩,解得:1517m ≤≤,∵-0.8<0,∴w 随m 的增大而减小,∴当m =17时,w 有最小值,即为0.8176046.4w =-⨯+=,答:当购买A 型机器人17台,B 型机器人13台时,购买总金额最少,最少金额为46.4万元.【点拨】本题主要考查分式方程的应用、一元一次不等式组的应用及一次函数的应用,熟练掌握分式方程的应用、一元一次不等式组的应用及一次函数的应用是解题的关键.【变式2】(2022·湖南怀化·统考中考真题)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售.优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可;(2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论;(3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.(1)解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =,经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;(2)解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩;(3)解:320270> ,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈,答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点拨】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.。
分式方程的典型例题解析分式方程是一种含有分式的方程,它的解法可以通过化简分式,通分消去分母,然后根据整式方程的解法进行求解。
在解分式方程时,我们需要注意分式的约分和消去分母的方法,以及解方程过程中可能出现的特殊情况。
下面我们通过几个典型的例题来具体解析分式方程的解法。
例题一:求解方程$\frac{2}{x} + \frac{3}{x+2} = \frac{5}{x^2+2x}$。
解:首先将分式方程中的分式通分,得到$\frac{2(x+2)}{x(x+2)} +\frac{3x}{x(x+2)} = \frac{5}{x(x+2)}$。
然后将分式相加并合并同类项,得到$\frac{2x+4+3x}{x(x+2)} =\frac{5}{x(x+2)}$。
继续化简,得到$\frac{5x+4}{x(x+2)} = \frac{5}{x(x+2)}$。
由于等号两边的分式相等,所以分子相等,即$5x+4=5$。
解得$x=1$。
因此,原方程的解为$x=1$。
例题二:求解方程$\frac{1}{x-1} + \frac{2}{x-2} = \frac{3}{x-3}$。
解:同样地,将方程通分,得到$\frac{x-2}{(x-1)(x-2)} + \frac{2(x-1)}{(x-1)(x-2)} = \frac{3(x-2)}{(x-1)(x-2)}$。
合并同类项,得到$\frac{x-2+2(x-1)}{(x-1)(x-2)} = \frac{3(x-2)}{(x-1)(x-2)}$。
进一步化简,得到$\frac{x-2+2x-2}{(x-1)(x-2)} = \frac{3x-6}{(x-1)(x-2)}$。
继续化简,得到$\frac{3x-4}{(x-1)(x-2)} = \frac{3x-6}{(x-1)(x-2)}$。
由于等号两边的分式相等,所以分子相等,即$3x-4=3x-6$。
然而,这个方程没有解,因为等号两边的式子相等,无法将方程化简成一个恒等式。