创新设计全国通用2017届高考数学二轮复习小题综合限时练三文
- 格式:pdf
- 大小:413.69 KB
- 文档页数:5
星期五 (选考系列)2017年____月____日一、(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1-12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的方程为ρ=23sin θ.(1)写出直线l 的普通方程和圆C 的直角坐标方程; (2)若点P 的直角坐标为(1,0),圆C 与直线l 交于A ,B 两点,求|PA |+|PB |的值. 解 (1)消去参数得直线l 的普通方程为 3x +y -3=0,由ρ=23sin θ得圆C 的直角坐标方程x 2+y 2-23y =0.(2)由直线l 的参数方程可知直线过点P ,把直线l 的参数方程代入圆C 的直角坐标方程x 2+y 2-23y =0,得⎝ ⎛⎭⎪⎫1-12t 2+⎝ ⎛⎭⎪⎫32t -32=3,化简得t 2-4t +1=0,因为Δ=12>0,故设t 1,t 2是上述方程的两个实数根,所以t 1+t 2=4,t 1t 2=1, A ,B 两点对应的参数分别为t 1,t 2,所以|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=4.二、(本小题满分10分)选修4-5:不等式选讲设f (x )=|x -1|-|x +3|.(1)解不等式f (x )>2;(2)若不等式f (x )≤kx +1在x ∈[-3,-1]上恒成立,求实数k 的取值范围. 解 (1)当x <-3时,f (x )=1-x +x +3=4>2恒成立;当-3≤x ≤1时,f (x )=1-x -(x +3)=-2x -2>2,解得-3≤x <-2;当x >1时,f (x )=x -1-x -3=-4<2,综上可得不等式f (x )>2的解集为{x |x <-2}.(2)f (x )≤kx +1即-2x -2≤kx +1,∵x ∈[-3,-1],∴k ≤⎝⎛⎭⎪⎫-2-3x min , 即k ≤-2-3-3=-1.。
小题综合限时练 文限时练(一) (限时:40分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P ={x |x 2-2x ≥3},Q ={x |2<x <4},则P ∩Q =( ) A.[3,4)B.(2,3]C.(-1.2)D.(-1,3]解析 P ={x |x 2-2x ≥3}={x |x ≤-1,或x ≥3},Q ={x |2<x <4},∴P ∩Q ={x |3≤x <4}=[3,4]. 答案 A2.下列命题中,是真命题的是( ) A.∃x 0∈R ,e x0≤0 B.∀x ∈R ,2x >x 2C.已知a ,b 为实数,则a +b =0的充要条件是ab=-1 D.已知a ,b 为实数,则a >1,b >1是ab >1的充分条件解析 ∵e x >0,∴A 错;当x =2时,2x =x 2,B 错;a +b =0是a b=-1的必要不充分条件,C 错;由题意,D 正确. 答案 D3.以下四个命题中:①在回归分析中,可用相关指数R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好; ②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;③若数据x 1,x 2,x 3,…,x n 的方差为1,则2x 1,2x 2,2x 3,…,2x n 的方差为2;④对分类变量x 与y 的随机变量K 2的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大.其中真命题的个数为( ) A.1B.2C.3D.4解析 由相关指数R 2越接近于1,模型的拟合效果越好知①正确;由相关系数r 的绝对值越接近于1,两个随机变量的线性相关性越强知②正确;③④错误. 答案 B4.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A.y =±14xB.y =±13xC.y =±12xD.y =±x解析 e =ca=c 2a 2=a 2+b 2a 2=1+b 2a 2=52,∴b a =12,∴c 的渐近线方程为y =±12x . 答案 C5.设a =log 0.80.9,b =log 1.10.9,c =1.10.9,则a ,b ,c 的大小关系是( ) A.a <b <c B.a <c <b C.b <a <cD.c <a <b解析 因为0=a =log 0.80.9<1,b =log 1.10.9<0,c =1.10.9>1,所以b <a <c .答案 C6.已知a ,b 均为单位向量,(2a +b )·(a -2b )=-332,则向量a ,b 的夹角为( )A.π6B.π4C.3π4D.5π6解析 因为a ,b 均为单位向量,所以(2a +b )·(a -2b )=2-2-3a ·b =-332,解得a ·b=32,所以cos 〈a ,b 〉=a ·b |a ||b |=32,又〈a ,b 〉∈[0,π],所以〈a ,b 〉=π6. 答案 A7.将函数y =cos 2x 的图象向左平移π4个单位,得到函数y =f (x )·cos x 的图象,则f (x )的表达式可以是( ) A.f (x )=-2sin x B.f (x )=2sin x C.f (x )=22sin 2xD.f (x )=22(sin 2x +cos 2x ) 解析 将函数y =cos 2x 的图象向左平移π4个单位,得到函数y =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 的图象,因为-sin 2x =-2sin x cos x ,所以f (x )=-2sin x .答案 A 8.已知b ∈⎩⎨⎧⎭⎬⎫x |3-x x≥0,则直线x +by =0与圆(x -2)2+y 2=2相离的概率为( )A.13B.12C.23D.34解析 b ∈⎩⎨⎧⎭⎬⎫x |3-x x≥0=(0,3],若直线x +by =0与圆(x -2)2+y 2=2相离,则21+b2>2,得-1<b <1,故所求概率P =1-03-0=13. 答案 A9.某程序框图如图所示,现将输出(x ,y )值依次记为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),…,若程序运行中输出的一个数组是(x ,-10),则数组中的x =( )A.32B.24C.18D.16解析 运行第一次,输出(1,0),n =3,x =2,y =-2;运行第二次,输出(2,-2),n =5,x =4,y =-4;运行第三次,输出(4,-4),n =7,x =8,y =-6;运行第四次,输出(8,-6)n =9,x =16,y =-8;运行第五次,输出(16,-8),n =11,x =32,y =-10;运行第六次,输出(32,-10),n =13,x =64,y =-12. 答案 A10.在直角坐标系中,P 点的坐标为⎝ ⎛⎭⎪⎫35,45,Q 是第三象限内一点,|OQ |=1且∠POQ =3π4,则Q 点的横坐标为( ) A.-7210B.-325C.-7212D.-8213解析 设∠xOP =α,则cos α=35,sin α=45,x Q =cos ⎝ ⎛⎭⎪⎫α+3π4=35·⎝ ⎛⎭⎪⎫-22-45×22=-7210,选A. 答案 A11.某几何体的三视图如图所示,则该几何体的体积为( )A.1136B. 3C.533D.433解析 由三视图知该几何体是一个四棱锥P -ABCD ,其直观图如图所示,设E 为AD 的中点,则BE ⊥AD ,PE ⊥平面ABCD ,△PAD 为正三角形,四棱锥的底面是直角梯形,上底1,下底2,高2;棱锥的高为3,∴体积V =13×⎣⎢⎡⎦⎥⎤12×(1+2)×2×3=3,故选B. 答案 B12.已知函数f (x )=x +x ln x ,若k ∈Z ,且k (x -2)<f (x )对任意的x >2恒成立,则k 的最大值为( ) A.3B.4C.5D.6解析 先画f (x )=x +x ln x 的简图,设y =k (x -2)与f (x )=x +x ln x 相切于M (m ,f (m ))(m >2), 所以f ′(m )=f (m )m -2,即2+ln m =m +m ln mm -2,可化为 m -4-2ln m =0,设g (m )=m -4-2ln m .因为g (e 2)=e 2-8<0,g (e 3)=e 3-10>0, 所以e 2<m <e 3,f ′(m )=2+ln m ∈(4,5), 又k ∈Z ,所以k max =4,选B. 答案 B二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.)13.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________. 解析 抛物线y 2=2px (p >0)的准线方程是x =-p2,双曲线x 2-y 2=1的一个焦点F 1(-2,0),因为抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,所以-p2=-2,解得p =2 2. 答案 2 214.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≤2,3x -y -3≤0,2x +y -2≥0,则目标函数z =3x +y 的最大值为________.解析 作出可行域如图所示:作直线l 0:3x +y =0,再作一组平行于l 0的直线l :3x +y =z ,当直线l 经过点M 时,z =3x +y 取得最大值,由⎩⎪⎨⎪⎧3x -y -3=0,y =2,得⎩⎪⎨⎪⎧x =53,y =2,所以点M 的坐标为⎝ ⎛⎭⎪⎫53,2,所以z max =3×53+2=7.答案 715.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________. 解析 由已知f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫92-4=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110.又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则-12+a =110,a =35,∴f (5a )=f (3)=f (3-4)=f (-1)=-1+35=-25.答案 -2516.已知平面四边形ABCD 为凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧),且AB =2,BC =4,CD =5,DA =3,则平面四边形ABCD 面积的最大值为________.解析 设AC =x ,在△ABC 中,由余弦定理有:x 2=22+42-2×2×4cos B =20-16cos B ,同理,在△ADC 中,由余弦定理有:x 2=32+52-2×3×5cos D =34-30cos D ,即15cos D -8cos B =7,①又平面四边形ABCD 面积为S =12×2×4sin B +12×3×5sin D =12(8sin B +15sin D ),即8sin B +15sin D =2S ,② ①②平方相加得64+225+240(sin B sin D -cos B cos D )=49+4S 2, -240cos(B +D )=4S 2-240, 当B +D =π时,S 取最大值230. 答案 230限时练(二) (限时:40分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={x |x 2-2x -3≤0},B ={x |log 2(x 2-x )>1},则A ∩B =( ) A.(2,3) B.(2,3] C.(-3,-2)D.[-3,-2)解析 ∵x 2-2x -3≤0,∴-1≤x ≤3,∴A =[-1,3].又∵log 2(x 2-x )>1,∴x 2-x -2>0,∴x <-1或x >2,∴B =(-∞,-1)∪(2,+∞).∴A ∩B =(2,3].故选B. 答案 B2.若复数z 满足(3-4i)z =5,则z 的虚部为( ) A.45B.-45C.4D.-4解析 依题意得z =53-4i =5(3+4i )(3-4i )(3+4i )=35+45i ,因此复数z 的虚部为45.故选A. 答案 A3.设向量a =(m ,1),b =(2,-3),若满足a ∥b ,则m =( ) A.13B.-13C.23D.-23解析 依题意得-3m -2×1=0,∴m =-23.故选D.答案 D4.某大学对1 000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图),则这1 000名学生在该次自主招生水平测试中成绩不低于70分的学生数是( )A.300B.400C.500D.600解析 依题意得,题中的1 000名学生在该次自主招生水平测试中成绩不低于70分的学生数是1 000×(0.035+0.015+0.010)×10=600.故选D. 答案 D5.在等比数列{a n }中,若a 4、a 8是方程x 2-3x +2=0的两根,则a 6的值是( ) A.± 2B.- 2C. 2D.±2解析 由题意可知a 4=1,a 8=2,或a 4=2,a 8=1. 当a 4=1,a 8=2时,设公比为q ,则a 8=a 4q 4=2,∴q 2=2,∴a 6=a 4q 2=2; 同理可求当a 4=2,a 8=1时,a 6= 2. 答案 C6.已知双曲线y 2t 2-x 23=1(t >0)的一个焦点与抛物线y =18x 2的焦点重合,则此双曲线的离心率为( ) A.2B. 3C.3D.4解析 依题意得,抛物线y =18x 2即x 2=8y 的焦点坐标是(0,2),因此题中的双曲线的离心率e =2t =222-3=2.故选A. 答案 A7.已知A (1,-1),B (x ,y ),且实数x ,y 满足不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y ≥2,x ≤2,则z =OA →·OB →的最小值为( ) A.2B.-2C.-4D.-6解析 画出不等式组所表示的可行域为如图所示的△ECD 的内部(包括边界),其中E (2,6),C (2,0),D (0,2).目标函数z =OA →·OB →=x -y .令直线l :y =x -z ,要使直线l 过可行域上的点且在y 轴上的截距-z 取得最大值,只需直线l 过点E (2,6).此时z 取得最小值,且最小值z min =2-6=-4.故选C. 答案 C8.将函数f (x )=4sin 2x 的图象向右平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位长度后得到函数g (x )的图象,若对于满足|f (x 1)-g (x 2)|=8的x 1,x 2,有|x 1-x 2|min =π6,则φ=( )A.π6B.π4C.π3D.5π12解析 由题意知,g (x )=4sin(2x -2φ),-4≤g (x )≤4,又-4≤f (x )≤4,若x 1,x 2满足|f (x 1)-g (x 2)|=8,则x 1,x 2分别是函数f (x ),g (x )的最值点,不妨设f (x 1)=-4,g (x 2)=4,则x 1=3π4+k 1π(k 1∈Z ),x 2=⎝ ⎛⎭⎪⎫π4+φ+k 2π(k 2∈Z ),|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ+(k 1-k 2)π(k 1,k 2∈Z ),又|x 1-x 2|min =π6,0<φ<π2,所以π2-φ=π6,得φ=π3,故选C.答案 C9.如图,多面体ABCD -EFG 的底面ABCD 为正方形,FC =GD =2EA ,其俯视图如下,则其正视图和侧视图正确的是( )解析 注意BE ,BG 在平面CDGF 上的投影为实线,且由已知长度关系确定投影位置,排除A ,C 选项,观察B ,D 选项,侧视图是指光线从几何体的左面向右面正投影,则BG ,BF 的投影为虚线,故选D. 答案 D10.已知直线ax +by +c -1=0(bc >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是( ) A.9B.8C.4D.2解析 依题意得,圆心坐标是(0,1),于是有b +c =1,4b +1c =⎝ ⎛⎭⎪⎫4b +1c (b +c )=5+4c b +bc≥5+24c b ×b c =9,当且仅当⎩⎪⎨⎪⎧b +c =1(bc >0),4c b =b c,即b =2c =23时取等号,因此4b +1c 的最小值是9.故选A. 答案 A11.已知四面体P -ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,PB =AB =2,则球O 的表面积为( )A.7πB.8πC.9πD.10π解析 依题意记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2、1、2,于是有(2R )2=12+22+22=9,4πR 2=9π,∴球O 的表面积为9π.故选C. 答案 C12.已知函数y =f (x )是R 上的可导函数,当x ≠0时,有f ′(x )+f (x )x>0,则函数F (x )=xf (x )+1x的零点个数是( )A.0B.1C.2D.3解析 依题意,记g (x )=xf (x ), 则g ′(x )=xf ′(x )+f (x ),g (0)=0, 当x >0时,g ′(x )=x ⎣⎢⎡⎦⎥⎤f ′(x )+f (x )x >0,g (x )是增函数,g (x )>0;当x <0时,g ′(x )=x ⎣⎢⎡⎦⎥⎤f ′(x )+f (x )x <0,g (x )是减函数,g (x )>0,在同一坐标系内画出函数y =g (x )与y =-1x的大致图象,结合图象可知,它们共有1个公共点,因此函数F (x )=xf (x )+1x的零点个数是1.答案 B二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.)13.执行如图所示的程序框图,输出的S 值为________.解析 由程序框图得S =11×2+12×3+13×4+14×5=1-12+12-13+13-14+14-15=1-15=45. 答案 4514.(2016·浙江卷)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.解析 ∵2cos 2x +sin 2x =cos 2x +1+sin 2x =2⎝⎛⎭⎪⎫22cos 2x +22sin 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1=A sin(ωx +φ)+b (A >0), ∴A =2,b =1. 答案2 115.在△ABC 中,若AB =43,AC =4,B =30°,则△ABC 的面积是________.解析 由余弦定理AC 2=BA 2+BC 2-2·BA ·BC ·cos B 得42=(43)2+BC 2-2×43×BC ×cos 30°,解得BC =4或BC =8.当BC =4时,△ABC 的面积为12×AB ×BC ×sin B =12×43×4×12=43;当BC =8时,△ABC的面积为12×AB ×BC ×sin B =12×43×8×12=8 3.答案 43或8 316.已知F 1、F 2分别为椭圆x 24+y 2=1的左、右焦点,过椭圆的中心O 任作一直线与椭圆交于P 、Q 两点,当四边形PF 1QF 2的面积最大时,PF 1→·PF 2→的值为________.解析 易知点P 、Q 分别是椭圆的短轴端点时,四边形PF 1QF 2的面积最大.由于F 1(-3,0),F 2(3,0),不妨设P (0,1),∴PF 1→=(-3,-1),PF 2→=(3,-1),∴PF 1→·PF 2→=-2.答案 -2限时练(三) (限时:40分钟)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设i 是虚数单位,若复数z 与复数z 0=1-2i 在复平面上对应的点关于实轴对称,则z 0·z =( ) A.5B.-3C.1+4iD.1-4i解析 因为z 0=1-2i ,所以z =1+2i ,故z 0·z =5.故选A. 答案 A2.已知集合M ={y |y =4-x 2},N ={x |y =ln(x 2-2x )},则( ) A.M ⊂N B.N ⊂M C.M ∩N =∅D.M ∪N ≠R解析 M =[0,2],N =(-∞,0)∪(2,+∞),所以M ∩N =∅.故选C. 答案 C3.在-20到40之间插入8个数,使这10个数成等差数列,则这10个数的和为( ) A.200B.100C.90D.70解析 S =10×(-20+40)2=100.故选B.答案 B4.我们知道,可以用模拟的方法估计圆周率π的近似值.如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n ,落到正方形内的豆子数为m ,则圆周率π的估算值是( ) A.n mB.2n mC.3nm.2mn解析 设圆的半径为r ,则P =m n =(2r )2πr 2,得π=2nm.故选B. 答案 B5.已知直线y =3x 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)有两个不同的交点,则双曲线C 的离心率的取值范围是( ) A.(1,3) B.(1,2) C.(3,+∞)D.(2,+∞)解析 直线y =3x 与C 有两个不同的公共点⇒b a>3⇒e >2.故选D. 答案 D6.若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A.0B.1C.32D.2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.答案 D7.若函数f (x )=sin ωx (ω>0)在区间⎝ ⎛⎭⎪⎫0,2π3上单调递增,且f ⎝ ⎛⎭⎪⎫2π3>f ⎝ ⎛⎭⎪⎫5π6,则ω的一个可能值是( )A.12B.35C.34D.32解析 由函数f (x )=sin ωx (ω>0)在区间⎝ ⎛⎭⎪⎫0,2π3上单调递增,得2π3≤π2ω⇒ω≤34.由f ⎝⎛⎭⎪⎫2π3>f ⎝ ⎛⎭⎪⎫5π6,得5π6>π2ω,ω>35,所以35<ω≤34.故选C.答案 C8.一个空间几何体的三视图如图所示,则该几何体的体积为( )A.43π+833B.43π3+8 3 C.43π+833D.43π+8 3解析 由三视图可知该几何体是一个半圆锥和一个三棱锥组合而成的,其体积为:V =13Sh =2π+43×23=43π+833. 答案 A9.已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c .若a =2,cos A =13,则△ABC 面积的最大值为( ) A.2B. 2C.12D. 3解析 由a 2=b 2+c 2-2bc cos A 得4=b 2+c 2-23bc ≥2bc -23bc =43bc ,所以bc ≤3,S =12bc sin A =12bc ·223≤12×3×223= 2.故选B.答案 B10.函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且 x ≠0)的图象可能为( )解析 ∵f (x )=(x -1x)cos x ,∴f (-x )=-f (x ),∴f (x )为奇函数,排除A ,B ;当x →π时,f (x )<0,排除C.故选D. 答案 D11.已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点A 为双曲线虚轴的一个顶点,过F ,A 的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若FA →=(2-1)AB →,则此双曲线的离心率是( ) A. 2B. 3C.2 2D. 5 解析 过F ,A 的直线方程为y =b c (x +c )①,一条渐近线方程为y =b ax ②,联立①②, 解得交点B ⎝⎛⎭⎪⎫ac c -a ,bc c -a ,由FA →=(2-1)AB →,得c =(2-1)ac c -a,c =2a ,e = 2.答案 A12.已知函数f (x )=⎩⎨⎧1-|x |, (x ≤1),x 2-4x +3, (x >1).若f (f (m ))≥0,则实数m 的取值范围是( )A.[-2,2]B.[-2,2]∪[4,+∞)C.[-2,2+2]D.[-2,2+2]∪[4,+∞)解析 令f (m )=n ,则f (f (m ))≥0就是f (n )≥0.画出函数f (x )的图象可知,-1≤n ≤1,或n ≥3,即-1≤f (m )≤1或f (m )≥3. 由1-|x |=-1得x =-2.由x 2-4x +3=1,x =2+2,x =2-2(舍).由x 2-4x +3=3得,x =4.再根据图象得到,m ∈[-2,2+2]∪[4,+∞).故选D. 答案 D二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在答题中的横线上.)13.如图,根据图中的数构成的规律,a 表示的数是________.1 2 2 3 4 3 4 12 12 4 5 48 a 48 5……解析 数表的规律是每行从第二个数起一个数等于它肩上的两个数的乘积,所以a =12×12=144. 答案 14414.实数x ,y 满足⎩⎪⎨⎪⎧y -2x ≤-2,y ≥1,x +y ≤4,则x 2+y2xy的取值范围是________.解析 x 2+y 2xy =x y +y x .令k =y x ,则k 表示可行域内的点与坐标原点连线的斜率,由图形可知13≤k ≤1,根据函数y =1k +k 的单调性得2≤k ≤103.答案 ⎣⎢⎡⎦⎥⎤2,10315.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.解析 由AO →=12(AB →+AC →),可得O 为BC 的中点,故BC 为圆O 的直径,所以AB →与AC →的夹角为90°. 答案 90°16.已知数列{a n }的各项取倒数后按原来顺序构成等差数列,各项都是正数的数列{x n }满足x 1=3,x 1+x 2+x 3=39,则x n =________.解析 设因为数列{a n }的各项取倒数后按原来顺序构成等差数列,所以2log k x n +1=log k x n +log k x n +2⇒x 2n +1=x n x n +2,所以数列{x n }是等比数列,把x 1=3代入x 1+x 2+x 3=39得公比q =3(负值舍去),所以x n =3×3n -1=3n.答案 3n限时练(四) (限时:40分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m +n 等于( ) A.9B.8C.7D.6解析 ∵M ={x |x 2-4x <0}={x |0<x <4},N ={x |m <x <5},且M ∩N ={x |3<x <n },∴m =3,n =4,∴m +n =3+4=7.故选C. 答案 C 2.复数1+52-i(i 是虚数单位)的模等于( ) A.10B.10C. 5D.5解析 ∵1+52-i =1+5(2+i )(2-i )(2+i )=1+2+i =3+i ,∴其模为10.故选A. 答案 A3.“x >1”是“log 12(x +2)<0”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析 由x >1⇒x +2>3⇒log 12(x +2)<0,log 12(x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“log 12(x +2)<0”成立的充分不必要条件.因此选B.答案 B4.(2015·湖北卷)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥12”的概率,p 2为事件“|x -y |≤12”的概率,p 3为事件“xy ≤12”的概率,则( )A.p 1<p 2<p 3B.p 2<p 3<p 1C.p 3<p 1<p 2D.p 3<p 2<p 1解析 在直角坐标系中,依次作出不等式⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1,x +y ≥12,|x -y |≤12,xy ≤12的可行域如图所示:依题意,p 1=S 多边形BACDE S 四边形OCDE ,p 2=S 多边形BOAFDGS 四边形OCDE,p 3=S 曲边多边形GEOCFS 四边形OCDE,因为S △ABO =S △BEG =S △DGF ,所以p 2<p 3<p 1.故选B. 答案 B5.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( ) A.47尺 B.1629尺 C.815尺D.1631尺 解析 依题意知,每天的织布数组成等差数列,设公差为d ,则5×30+30×292d =390,解得d =1629.故选B.答案 B6.多面体MN -ABCD 的底面ABCD 为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则该多面体的体积是( )A.16+33B.8+632C.163D.203解析 将多面体分割成一个三棱柱和一个四棱锥,如图所示,∵正视图为等腰梯形,侧视图为等腰三角形,∴四棱锥底面BCFE 为正方形,S BCFE =2×2=4,四棱锥的高为2,∴V N -BCFE =13×4×2=83.可将三棱柱补成直三棱柱,则V ADM -EFN =12×2×2×2=4,∴多面体的体积为203.故选D. 答案 D7.已知直线l :x +y +m =0与圆C :x 2+y 2-4x +2y +1=0相交于A 、B 两点,若△ABC 为等腰直角三角形,则m =( ) A.1B.2C.-5D.1或-3解析 △ABC 为等腰直角三角形,等价于圆心到直线的距离等于圆的半径的22.圆C 的标准方程是(x -2)2+(y +1)2=4,圆心到直线l 的距离d =|1+m |2,依题意得|1+m |2=2,解得m =1或-3.故选D.答案 D8.阅读如图所示的程序框图,运行相应的程序,若输入某个正整数n 后,输出的S ∈(31,72),则n 的值为( ) A.5 B.6 C.7D.8解析 由程序框图知,当S =1时,k =2;当S =3时,k =3;当S =7时,k =4;当S =15时,k =5;当S =31时,k =6;当S =63时,k =7.∴n 的值为6.故选B. 答案 B9.若函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( )A.5π12B.π4C.π3D.π6解析 由题意得T 2=π2,T =π,ω=2,又2x 0+π6=k π(k ∈Z ),x 0=k π2-π12(k ∈Z ),而x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴x 0=5π12.故选A. 答案 A10.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( ) A.有最小值-1,最大值1 B.有最大值1,无最小值 C.有最小值-1,无最大值 D.有最大值-1,无最小值解析 由题意得,利用平移变换的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )有最小值-1,无最大值. 答案 C11.设双曲线x 24-y 23=1的左、右焦点分别为F 1、F 2,过F 1的直线l 交双曲线左支于A 、B 两点,则|BF 2|+|AF 2|的最小值为( ) A.192B.11C.12D.16解析 由双曲线定义可得|AF 2|-|AF 1|=2a =4,|BF 2|-|BF 1|=2a =4,两式相加可得|AF 2|+|BF 2|=|AB |+8,由于AB 为经过双曲线的左焦点与左支相交的弦,而|AB |min =2b2a=3,∴|AF 2|+|BF 2|=|AB |+8≥3+8=11.故选B. 答案 B12.在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中,x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( )A.1063B.1463C.4 3D.6 2解析 根据向量加法的平行四边形法则得动点P 的轨迹是以OB ,OC 为邻边的平行四边形,其面积为△BOC 面积的2倍,在△ABC 中,由余弦定理a 2=b 2+c 2- 2bc cos A ,得BC =7,设△ABC 的内切圆的半径为r , 则12bc sin A =12(a +b +c )r ,解得r =263, ∴S △BOC =12×BC ×r =12×7×263=763.∴动点P 的轨迹所覆盖图形的面积为2S △BOC =1463.答案 B二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在答题中的横线上.)13.学校为了调查学生的学习情况,决定用分层抽样的方法从高一、高二、高三三个年级的相关学生中抽取若干人,相关数据如下表:则抽取的总人数为解析 由分层抽样得b 56=3a =535,∴a =21,b =8,∴抽取的总人数为8+3+5=16.答案 1614.若x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,若目标函数z =ax +3y 仅在点(1,0)处取得最小值,则实数a 的取值范围为________.解析 画出关于x 、y 约束条件的平面区域如图所示,当a =0时,显然成立.当a >0时,直线ax +3y -z =0的斜率k =-a3>k AC =-1,∴0<a <3.当a <0时,k =-a3<k AB =2,∴-6<a <0.综上所得,实数a 的取值范围是(-6,3). 答案 (-6,3)15.已知偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,若区间[-1,3]上,函数g (x )=f (x )-kx -k 有3个零点,则实数k 的取值范围是________.解析 根据已知条件知函数f (x )为周期为2的周期函数;且x ∈[-1,1]时,f (x )=|x |;而函数g (x )的零点个数便是函数f (x )和函数y =kx +k 的交点个数.∴①若k >0,如图所示,当y =kx +k 经过点(1,1)时,k =12;当经过点(3,1)时,k =14.∴14<k <12.②若k <0,即函数y =kx +k 在y 轴上的截距小于0,显然此时该直线与f (x )的图象不可能有三个交点,即这种情况不存在.③若k =0,得到直线y =0,显然与f (x )图象只有两个交点.综上所得,实数k 的取值范围是⎝ ⎛⎭⎪⎫14,12.答案 ⎝ ⎛⎭⎪⎫14,12 16.已知数列{a n }满足a 1=-1,a 2>a 1,|a n +1-a n |=2n,若数列{a 2n -1}单调递减,数列{a 2n }单调递增,则数列{a n }的通项公式为a n =________.解析 由题意得a 1=-1,a 2=1,a 3=-3,a 4=5,a 5=-11,a 6=21,……,然后从数字的变化上找规律,得a n +1-a n =(-1)n +12n,则利用累加法即得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=-1+2-22+…+(-1)n 2n -1=(-1)[1-(-2)n ]1-(-2)=(-2)n-13.答案 (-2)n-13限时练(五) (限时:40分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]解析 由M ={x |x 2=x }={0,1},N ={x |lg x ≤0}=(0,1],得M ∪N ={0,1}∪(0,1]=[0,1].故选A. 答案 A 2.已知复数z =21+i+2i ,则z 的共轭复数是( ) A.-1-i B.1-i C.1+iD.-1+i解析 由已知z =21+i +2i =1+i ,则z 的共轭复数z =1-i ,选B. 答案 B3.已知函数y =f (x )是偶函数,当x >0时,f (x )=x 13,则在区间(-2,0)上,下列函数中与y =f (x )的单调性相同的是( )A.y =-x 2+1 B.y =|x +1|C.y =e |x |D.y =⎩⎪⎨⎪⎧2x -1,x ≥0,x 3+1,x <0解析 由已知得f (x )是在(-2,0)上的单调递减函数,所以答案为C. 答案 C4.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2 在一个周期内的图象如图所示,则f ⎝ ⎛⎭⎪⎫π4=( )A.1B.12C.-1D.-12解析 由图知,A =2,且34T =5π6-π12=3π4,则周期T =π,所以ω=2.因为f ⎝ ⎛⎭⎪⎫π12=2,则2×π12+φ=π2,从而φ=π3.所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,故f ⎝ ⎛⎭⎪⎫π4=2sin 5π6=1,选A.答案 A5.下列四个结论:①p ∧q 是真命题,则綈p 可能是真命题;②命题“∃x 0∈R ,x 20-x 0-1<0”的否定是“∃x ∈R ,x 2-x -1≥0”; ③“a >5且b >-5”是“a +b >0”的充要条件; ④当a <0时,幂函数y =x a在区间(0,+∞)上单调递减. 其中正确结论的个数是( ) A.0个B.1个C.2个D.3个解析 ①若p ∧q 是真命题,则p 和q 同时为真命题,綈p 必定是假命题; ②命题“∃x 0∈R ,x 20-x 0-1<0”的否定是“∀x ∈R ,x 2-x -1≥0”; ③“a >5且b >-5”是“a +b >0”的充分不必要条件; ④y =x a⇒y ′=a ·xa -1,当a <0时,y ′<0,所以在区间(0,+∞)上单调递减.选B.答案 B6.过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,则CA →·CB →=( ) A.0B.5C.5D.503解析 由圆C :x 2+y 2-4y -1=0得C (0,2),半径r = 5.∵过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,∴BA →·CB →=0,∴CA →·CB →=(CB →+BA →)·CB →=CB →2=5,所以选C.答案 C7.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为y ^=0.8x -155,后因某未知原因第5组数据的y 值模糊不清,此位置数据记为m (如下表所示),则利用回归方程可求得实数m 的值为( )A.8.3解析 x =196+197+200+203+2045=200,y =1+3+6+7+m 5=17+m 5.由回归直线经过样本中心,17+m5=0.8×200-155⇒m =8.故选D.答案 D8.如图是某几何体的三视图,则该几何体的体积等于( ) A.2 B.1 C.23D.223解析 由三视图知:几何体是三棱柱削去一个同高的三棱锥,其中三棱柱的高为2,底面是直角边长为1的等腰直角三角形,三棱锥的底面是直角边长为1的等腰直角三角形,∴几何体的体积V =12×1×1×2-13×12×1×1×2=23.故选C.答案 C9.执行如图所示的程序框图,则输出的结果是( )A.14B.15C.16D.17解析 由程序框图可知,从n =1到n =15得到S <-3,因此将输出n =16. 答案 C10.若实数x ,y 满足的约束条件⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y +1≥0,将一颗骰子投掷两次得到的点数分别为a ,b ,则z =2ax +by 在点(2,-1)处取得最大值的概率为( ) A.56B.25C.15D.16解析 约束条件为一个三角形ABC 及其内部,其中A (2,-1),B (-2,-1),C (0,1),要使函数z =2ax +by 在点(2,-1)处取得最大值,需满足-2ab≤-1⇒b ≤2a ,将一颗骰子投掷两次共有36个有序实数对(a ,b ),其中满足b ≤2a 有6+6+5+5+4+4=30对,所以所求概率为3036=56.选A.答案 A11.如图所示,已知△EAB 所在的平面与矩形ABCD 所在的平面互相垂直,EA =EB =3,AD =2,∠AEB =60°,则多面体E -ABCD 的外接球的表面积为( ) A.16π3B.8πC.16πD.64π解析 将四棱锥补形成三棱柱,设球心为O ,底面重心为G ,则△OGD 为直角三角形,OG =1,DG =3,∴R 2=4,∴多面体E -ABCD 的外接球的表面积为4πR 2=16π.故选C. 答案 C12.已知函数f (x )=a -x 2⎝ ⎛⎭⎪⎫1e ≤x ≤e (其中e 为自然对数的底数)与函数g (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤1,1e 2+2B.⎣⎢⎡⎦⎥⎤1e 2+2,e 2-2C.[1,e 2-2]D.[e 2-2,+∞)解析 由已知得方程-(a -x 2)=2ln x ,即-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解,设h (x )=2ln x-x 2,求导得h ′(x )=2x -2x =2(1-x )(1+x )x ,因为1e ≤x ≤e,所以h (x )在x =1处有唯一的极大值点,且为最大值点,则h (x )max =h (1)=-1,h ⎝ ⎛⎭⎪⎫1e =-2-1e 2,h (e)=2-e 2,且h (e)<h ⎝ ⎛⎭⎪⎫1e ,所以h (x )的最小值为h (e)=2-e 2.故方程-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解等价于2-e 2≤-a ≤-1,从而解得a 的取值范围为[1,e 2-2],故选C.答案 C二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在答题中的横线上.)13.已知函数f (x )=ln x ,若在(0,3e)上随机取一个数x ,则使得不等式f (x )≤1成立的概率为________.解析 ∵ln x ≤1⇔ln x ≤ln e ⇔0<x ≤e ,故所求概率p =e -03e -0=13.答案 1314.已知向量a ,b 的夹角为120°,且|a |=1,|b |=2,则向量a +b 在向量a 方向上的投影是________.解析 依题意得:(a +b )·a =a 2+a ·b =0,因此向量a +b 在向量a 方向上的投影是0. 答案 015.已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线x 2a-y 2=1(a >0)的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a =______. 解析 因为抛物线的准线为x =-p 2,则有1+p2=5,得p =8,所以m =4,又双曲线的左顶点坐标为(-a ,0),则有41+a =1a ,解得a =19.答案 1916.已知函数f (x )=⎩⎪⎨⎪⎧-|x 3-2x 2+x |,x <1,ln x ,x ≥1,若命题“∃t ∈R ,且t ≠0,使得f (t )≥kt ”是假命题,则实数k 的取值范围是________.解析 当x <1时,f (x )=-|x 3-2x 2+x |=-|x (x -1)2|=⎩⎪⎨⎪⎧x (x -1)2,x ≤0,-x (x -1)2,0<x <1,当x ≤0时,f ′(x )=3x 2-4x +1=(x -1)(3x -1)>0,f (x )是增函数;当0<x <1时,f ′(x )=-(x -1)(3x-1),所以f (x )在⎝ ⎛⎭⎪⎫0,13上是减函数,在⎝ ⎛⎭⎪⎫13,1上是增函数,作出函数y =f (x )在R 上的图象,如图所示.命题“∃t ∈R ,且t ≠0,使得f (t )≥kt ”是假命题,即对任意的t ∈R ,且t ≠0,f (t )<kt 恒成立,作出直线y =kx ,设直线y =kx 与函数y =lnx (x ≥1)的图象相切于点(m ,ln m ),则由(ln x )′=1x ,得k =1m ,即ln m =km ,解得m =e ,k =1e.设直线y =kx 与y =x (x -1)2(x ≤0)的图象相切于点(0,0),所以y ′=(x -1)(3x -1),则k =1,由图象可知,若f (t )<kt 恒成立,则实数k 的取值范围是⎝ ⎛⎦⎥⎤1e ,1. 答案 ⎝ ⎛⎦⎥⎤1e ,1限时练(六) (限时:40分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数z 1=1-i ,z 2=1+i ,则z 1z 2i等于( )A.2iB.-2iC.2+ID.-2+i解析z 1z 2i =(1-i )(1+i )i=-2i.故选B.答案 B2.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( ) A.-3∈A B.3∉B C.A ∩B =BD.A ∪B =B解析 依题意得,A =[-1,+∞),B =[2,+∞),∴A ∩B =B .故选C. 答案 C3.若f (x )=sin(2x +θ),则“f (x )的图象关于x =π3对称”是“θ=-π6”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件解析 若f (x )的图象关于x =π3对称,则2π3+θ=π2+k π,k ∈Z ,即θ=-π6+k π,k ∈Z ,当k =0时,θ=-π6;当k =1时,θ=5π6.若θ=-π6时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,2x -π6=π2+k π,k ∈Z ,∴x =π3+k π2,k ∈Z ,当k =0时,f (x )的图象关于x =π3对称.故选B. 答案 B4.若1a <1b<0,则下列四个不等式恒成立的是( )A.|a |>|b |B.a <bC.a 3<b 3D.a +b <ab解析 由1a <1b<0可得b <a <0,从而|a |<|b |,即A 、B 项不正确;b 3<a 3,即C 项不正确;a +b <0,ab >0,则a +b <ab ,即D 项正确.故选D.答案 D5.如图,AB 是⊙O 的直径,点C 、D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A.12a +b B.12a -b C.a +12bD.a -12b解析 连接CD 、OD ,∵点C 、D 是半圆弧AB 的两个三等分点,∴AC ︵=BD ︵=CD ︵,∴CD ∥AB ,∠CAD =∠DAB =13×90°=30°,∵OA =OD ,∴∠ADO =∠DAO =30°,由此可得∠CAD =∠DAO =30°,∴AC ∥DO ,∴四边形ACDO 为平行四边形,∴AD →=AO →+AC →=12AB →+AC →=12a +b .故选A.答案 A6.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =5b sin C ,且cos A =5cos B cos C ,则tan A 的值为( ) A.5B.6C.-4D.-6解析 由正弦定理得sin A =5sin B sin C ①,又cos A =5cos B cos C ②,②-①得,cosA -sin A =5(cosB cosC -sin B sin C )=5cos(B +C )=-5cos A ,∴sin A =6cos A ,∴tan A =6.故选B .答案 B7.如图是一个算法的流程图,若输入x 的值为2,则输出y 的值是( ) A.0 B.-1 C.-2D.-3解析 由程序框图知,x =2,y =12×2-1=0,|0-2|>1;x =0,y=0-1=-1,|-1-0|=1;x =-2,y =12×(-2)-1=-2,|-2+2|<1满足条件,输出y 为-2,结束程序.故选C. 答案 C8.若过点(3,-3)的直线l 将圆C :x 2+y 2+4y =0平分,则直线l 的倾斜角为( ) A.π6B.π3C.2π3D.5π6解析 由题意可知直线l 过圆C :x 2+y 2+4y =0的圆心(0,-2),且直线l 过点(3,-3),∴直线l 的斜率k =-3-(-2)3-0=-33,又直线l 的倾斜角α∈[0,π),k =tan α,∴α=5π6. 答案 D9.椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A 、B 两点,过原点与线段AB 中点的直线的斜率为32,则ba=( ) A.32B.233C.932D.2327解析 设交点分别为A (x 1,y 1)、B (x 2,y 2),AB 的中点为(x 中,y 中),代入椭圆方程得ax 21+by 21=1,ax 22+by 22=1,由两式相减整理得:b a ·y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-1,即b a ·y 1-y 2x 1-x 2·y 中x 中=-1,又y 中x 中=y 中-0x 中-0=32,可得b a ·(-1)·32=-1,即b a =233.故选B. 答案 B10.已知S n 表示数列{a n }的前n 项和,若对任意n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2 014=( )A.1 006×2 013B.1 006×2 014C.1 007×2 013D.1 007×2 014解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,∴a 1=0,令n =2,则a 3=2a 2=2,∴a 2=1,于是a n +1-a n =1,∴数列{a n }是首项为0,公差为1的等差数列,∴S 2 014=2 014×2 0132=1 007×2 013.故选C. 答案 C11.已知函数f (x )=x 3+2bx 2+cx +1有两个极值点x 1、x 2,且x 1∈[-2,-1],x 2∈[1,2],则f (-1)的取值范围是( )A.⎣⎢⎡⎦⎥⎤-32,3 B.⎣⎢⎡⎦⎥⎤32,6 C.[3,12]D.⎣⎢⎡⎦⎥⎤-32,12解析 f ′(x )=3x 2+4bx +c ,依题意知,方程f ′(x )=0有两个根x 1、x 2,且x 1∈[-2,-1],x 2∈[1,2]等价于f ′(-2)≥0,f ′(-1)≤0,f ′(1)≤0,f ′(2)≥0.由此得b 、c满足的约束条件为⎩⎪⎨⎪⎧12-8b +c ≥0,3-4b +c ≤0,3+4b +c ≤0,12+8b +c ≥0,满足这些条件的点(b ,c )的区域为图中阴影部分.由题设知f (-1)=2b -c ,由z =2b -c ,将其转化为直线c =2b -z ,当直线z =2b -c 经过点A (0,-3)时,z 最小,其最小值z min =3;当直线z =2b -c 经过点B (0,-12)时,z 最大,其最大值z max =12. 答案 C12.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P 是A 1D 1的中点,Q 是A 1B 1上任意一点,E 、F 是CD 上任意两点,且EF 长为定值,现有下列结论:①异面直线PQ 与EF 所成的角为定值;②点P 到平面QEF 的距离为定值;③直线PQ 与平面PEF 所成的角为定值;④三棱锥P -QEF 的体积为定值.其中正确结论的个数为( ) A.0B.1C.2D.3解析 当点Q 与A 1重合时,异面直线PQ 与EF 所成的角为π2;当点Q 与B 1重合时,异面直线PQ 与EF 所成的角不为π2,即①错误.当点Q 在A 1B 1上运动时,三棱锥P -QEF 的底面△QEF的面积以及三棱锥的高都不变,∴体积不变,即②正确.④也正确.当点Q 在A 1B 1上运动时,直线QP 与平面PEF 所成的角随点Q 的变化而变化,即③错误.故选C. 答案 C二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在答题中的横线上.)13.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物. 如图是据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是________.解析 从茎叶图上可以观察到:甲监测点的样本数据比乙监测点的样本数据更加集中,因此甲地浓度的方差较小. 答案 甲14.如图是某个四面体的三视图,若在该四面体的外接球内任取一点,则该点落在四面体内的概率为________.解析 由题意可知三棱锥的一条侧棱垂直于底面,则几何体的体积为13×12×6×3×4=12,外接球的直径为42+(32)2+(32)2=213,∴外接球的半径为13,体积为52133π,∴该点落在四面体内的概率P =1252133π=913169π.答案913169π15.在实数集R 中定义一种运算“*”,对任意a 、b ∈R ,a *b 为唯一确定的实数,且具有性质:(1)对任意a ∈R ,a *0=a ;(2)对任意a 、b ∈R ,a *b =ab +(a *0)+(b *0). 关于函数f (x )=(e x)*1ex 的性质,有如下说法:①函数f (x )的最小值为3;②函数f (x )为偶函数;③函数f (x )的单调递增区间为(-∞,0]. 其中所有正确说法的序号为________.解析 依题意得f (x )=(e x )*1e x =e x ·1e x +[(e x )*0]+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x *0=1+e x+1e x ,其中x ∈R .∴f ′(x )=e x-1e x ,令f ′(x )=0,则x =0,∴函数f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴当x =0,f (0)min =3,即①正确,③错误.又f (-x )=1+e -x +1e -x =1+e x+1e x =f (x ),∴函数f (x )为偶函数,即②正确. 答案 ①② 16.若关于x 的方程|x |x +2=kx 2有四个不同的实根,则实数k 的取值范围是________. 解析 由于关于x 的方程|x |x +2=kx 2有四个不同的实根,x =0是此方程的一个根,故关于x 的方程|x |x +2=kx 2有3个不同的非零的实数解.∴方程1k =⎩⎪⎨⎪⎧x (x +2),x >0,-x (x +2),x <0有3个不同的非零的实数解,即函数y =1k 的图象和函数g (x )=⎩⎪⎨⎪⎧x (x +2),x >0,-x (x +2),x <0的图象有3个交点,画出函数g (x )图象,如图所示, 故0<1k<1,解得k >1.答案 (1,+∞)限时练(七) (限时:40分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U 为R ,集合A ={x |x 2<16},B ={x |y =log 3(x -4)},则下列关系正确的是( ) A.A ∪B =R B.A ∪(∁U B )=R C.(∁U A )∪B =RD.A ∩(∁U B )=A解析 因为A ={x |-4<x <4},B ={x |x >4},所以∁U B ={x |x ≤4},所以A ∩(∁U B )=A ,故选D. 答案 D2.已知复数z =2-i x -i 为纯虚数,其中i 为虚数单位,则实数x 的值为( )A.-12B.12C.-3D.13解析 z =2-i x -i =(2-i )(x +i )x 2+1=2x +1+(2-x )i x 2+1,因为复数z =2-ix -i为纯虚数,所以⎩⎪⎨⎪⎧2x +1=0,2-x ≠0,即x =-12,故选A.答案 A3.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“a ⊥b ”是“α⊥β”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 因为α⊥β,b ⊥m ,所以b ⊥α,又直线a 在平面α内,所以a ⊥b ;但直线a ,m 不一定相交,所以“a ⊥b ”是“α⊥β”的必要不充分条件,故选B. 答案 B。
星期三 (解析几何) 2017年____月____日解析几何(命题意图:考查椭圆方程与几何性质,直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点到直线x -y +32=0的距离为5,且椭圆C 的一个长轴端点与一个短轴端点间的距离为10.(1)求椭圆C 的标准方程;(2)给出定点Q ⎝ ⎛⎭⎪⎫655,0,对于椭圆C 的任意一条过Q 的弦AB ,1|QA |2+1|QB |2是否为定值?若是,求出该定值,若不是,请说明理由.解 (1)由题意知右焦点(c ,0)到直线x -y +32=0的距离d =|c +32|2=5,所以c =22,则a 2-b 2=8.①又由题意,得a 2+b 2=10,即a 2+b 2=10.②由①②解得a 2=9,b 2=1,所以椭圆C 的标准方程为x 29+y 2=1. (2)当直线AB 与x 轴重合时,1|QA |2+1|QB |2=1⎝ ⎛⎭⎪⎫655+32+1⎝ ⎛⎭⎪⎫655-32=10. 当直线AB 不与x 轴重合时,设A (x 1,y 1),B (x 2,y 2), 设直线AB 的方程为x =my +65,与椭圆C 方程联立. 化简得(m 2+9)y 2+12m 5y -95=0, 所以y 1+y 2=-12m 5(m 2+9).③ y 1y 2=-95(m 2+9).④ 又1|QA |2=1⎝ ⎛⎭⎪⎫x 1-652+y 21=1m 2y 21+y 21=1(m 2+1)y 21.同理1|QB|2=1(m2+1)y22,所以1|QA|2+1|QB|2=1(m2+1)y21+1(m2+1)y22=(y1+y2)2-2y1y2(m2+1)y21y22,(*)将③④代入(*)式,化简可得1|QA|2+1|QB|2=10.综上所述,1|QA|2+1|QB|2为定值10.。
星期六(综合限时练)2017年____月____日解答题综合练(设计意图:训练考生在规定时间内得高分,限时:80分钟)1.(本小题满分12分)某个团购网站为了更好地满足消费者,对在其网站发布的团购产品展开了用户调查,每个用户在使用了团购产品后可以对该产品进行打分,最高分是10分.上个月该网站共卖出了100份团购产品,所有用户打分的平均分作为该产品的参考分值,将这些产品按照得分分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到的频率分布直方图如图所示.(1)分别求第三,四,五组的频率;(2)该网站在得分较高的第三、四,五组中用分层抽样的方法抽取了6个产品作为下个月团购的特惠产品,某人决定在这6个产品中随机抽取2个购买,求他抽到的两个产品均来自第三组的概率.解(1)第三组的频率是0.150×2=0.3;第四组的频率是0.100×2=0.2;第五组的频率是0.050×2=0.1.(2)设“抽到的两个产品均来自第三组”为事件A,由题意可知,分别抽取3个,2个,1个.不妨设第三组抽到的是A1,A2,A3;第四组抽到的是B1,B2;第五组抽到的是C1,所含基本事件总数为:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,C1},{A2,B1},{A2,B2},{A2,C1},{A3,B1},{A3,B2},{A3,C1},{B1,B2},{B1,C1},{B2,C1}共15种.事件A包含的事件数为:{A1,A2},{A1,A3},{A2,A3},所以P(A)=315=15.2.(本小题满分12分)已知数列{a n}和{b n}满足a1a2a3…a n=(2)b n(n∈N*).若{a n}为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n-1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *均有S k ≥S n . 解 (1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去), 所以数列{a n }的通项为a n =2n (n ∈N *).所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). (2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *), 所以S n =1n +1-12n (n ∈N *).②因为c 1=0,c 2>0,c 3>0,c 4>0; 当n ≥5时,c n =1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n -1,而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0, 得n (n +1)2n≤5·(5+1)25<1,所以,当n ≥5时,c n <0. 综上,对任意n ∈N *,恒有S 4≥S n ,故k =4.3.(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,D 、E 分别为A 1B 1、AA 1的中点,点F 在棱AB 上,且AF =14AB .(1)求证:EF ∥平面BDC 1;(2)在棱AC 上是否存在一点G ,使得平面EFG 将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G 的位置;若不存在,说明理由.(1)证明 取AB 的中点M ,连接A 1M ,∵AF =14AB , ∴F 为AM 的中点,又∵E 为AA 1的中点,∴EF ∥A 1M .在三棱柱ABC -A 1B 1C 1中,D ,M 分别为A 1B 1,AB 的中点, 在A 1D ∥BM ,A 1D =BM ,∴A 1DBM 为平行四边形,∴A 1M ∥BD , ∴EF ∥BD ,∵BD ⊂平面BC 1D ,EF ⊄平面BC 1D , ∴EF ∥平面BC 1D .(2)解 设AC 上存在一点G ,使得平面EFG 将三棱柱分割成的两部分的体积之比为1∶15,则V E -AFG ∶V ABC -A 1B 1C 1=1∶16,∵V E -AFG V ABC -A 1B 1C 1=13×12AF ·AG ·sin ∠GAF ·AE12AB ·AC ·sin ∠CAB ·A 1A =13×14×12×AG AC =124·AGAC , ∴124·AG AC =116,∴AG AC =32,∴AG =32AC >AC ,所以符合要求的点G 不存在. 4.(本小题满分12分)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点为A ,左顶点为B ,F 为右焦点,过F 作平行于AB 的直线交椭圆于C 、D 两点,作平行四边形OCED ,点E 恰在椭圆上. (1)求椭圆的离心率;(2)若平行四边形OCED 的面积为26,求椭圆的方程.解 (1)∵焦点为F (c ,0),AB 的斜率为b a ,故直线CD 的方程为y =ba (x -c ). 与椭圆方程联立后消去y 得到2x 2-2cx -b 2=0. ∵CD 的中点为G ⎝ ⎛⎭⎪⎫c 2,-bc 2a ,点E ⎝ ⎛⎭⎪⎫c ,-bc a 在椭圆上.∴将E 的坐标代入椭圆方程并整理得2c 2=a 2,∴离心率e =c a =22.(2)由(1)知ca=22,b=c,则直线CD的方程为y=22(x-c),与椭圆方程联立消去y得到2x2-2cx-c2=0.∵平行四边形OCED的面积为S=c|y C-y D|=22c(x C+x D)2-4xCx D=22c c2+2c2=62c2=26,所以c=2,b=2,a=2 2.故椭圆方程为x28+y24=1.5.(本小题满分12分)已知函数f(x)=e x+ax+b(a,b∈R,e是自然对数的底数)在点(0,1)处的切线与x轴平行.(1)求a,b的值;(2)若对一切x∈R,关于x的不等式f(x)≥(m-1)x+n恒成立,求m+n的最大值.解(1)求导得f′(x)=e x+a,由题意可知f(0)=e0+b=1,且f′(0)=e0+a=0,解得a=-1,b=0.(2)由(1)知f(x)=e x-x,所以不等式f(x)≥(m-1)x+n可化为e x≥mx+n,令g(x)=e x-mx-n,g′(x)=e x-m,当m≤0时,g′(x)>0恒成立,则g(x)在R上恒增,没有最小值,故不成立,当m>0时,解g′(x)=0得x=ln m,当g′(x)<0时,解得x<ln m;当g′(x)>0时,解得x>ln m;即当x∈(-∞,ln m)时,g(x)单调递减;x∈(ln m,+∞)时,g(x)单调递增,故当x=ln m时取得最小值g(ln m)=e ln m-m·ln m-n=m-m·ln m-n≥0,即m-m·ln m≥n,2m-m·ln m≥m+n,令h(m)=2m-m·ln m,则h′(m)=1-ln m,令h′(m)=0,则m=e,当m∈(0,e)时,h(m)单调递增;m∈(e,+∞)时,h(m)单调递减,故当m =e 时,h (m )取得最大值h (e)=e ,∴e ≥m +n , 即m +n 的最大值为e.6.请考生在以下两题中任选一题做答,如果多做,则按所做的第一题计分. A.(本小题满分10分)选修4-4:坐标系与参数方程已知在平面直角坐标系中,曲线C 的参数方程为:⎩⎨⎧x =3cos t ,y =2+2sin t (t 为参数),P是C 上任意一点.以x 轴的非负半轴为极轴,原点为极点建立极坐标系,并在两坐标系中取相同的长度单位. (1)求曲线C 的直角坐标方程;(2)直线l 的极坐标方程为θ=π4(ρ∈R ),求P 到直线l 的最大距离. 解 (1)由x =3cos t ,y =2+2sin t ,消去参数t , 得曲线C 的直角坐标方程为x 29+(y -2)24=1.(2)直线l 的直角坐标方程为y =x . 设与直线l 平行的直线方程为y =x +m ,代入x 29+(y -2)24=1,整理得13x 2+18(m -2)x +9[(m -2)2-4]=0.由Δ=[18(m -2)]2-4×13×9[(m -2)2-4]=0,得(m -2)2=13, 所以m =2±13.当点P 位于直线y =x +2+13与曲线C 的交点(切点)时,点P 到直线l 的距离最大,为2+132=22+262.或:设点P (3cos t ,2+2sin t ),则点P 到直线x -y =0的距离为 |3cos t -2-2sin t |2=|13sin (t -φ)+2|2,其中cos φ=213,sin φ=313.所以距离的最大值是13+22=22+262.B.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|x -a |,a <0.(1)证明:f (x )+f ⎝ ⎛⎭⎪⎫-1x ≥2;(2)若不等式f (x )+f (2x )<12的解集非空,求a 的取值范围.(1)证明 f (x )+f ⎝ ⎛⎭⎪⎫-1x =|x -a |+⎪⎪⎪⎪⎪⎪-1x -a ≥⎪⎪⎪⎪⎪⎪(x -a )-⎝ ⎛⎭⎪⎫-1x -a =⎪⎪⎪⎪⎪⎪x +1x =|x |+1|x |≥2.(2)解 y =f (x )+f (2x )=|x -a |+|2x -a |=⎩⎪⎨⎪⎧2a -3x ,x ≤a ,-x ,a <x ≤a2,3x -2a ,x >a2.函数图象为:当x =a 2时,y min =-a 2,依题意,-a 2<12,则a >-1, ∴a 的取值范围是(-1,0).。
第1讲 函数图象与性质及函数与方程高考定位 1.以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、最值与值域、奇偶性、单调性;2.利用图象研究函数性质、方程及不等式的解,综合性强;3.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理.数形结合思想是高考考查函数零点或方程的根的基本方式.真 题 感 悟1.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是( ) A.y =11-xB.y =cos xC.y =ln(x +1)D.y =2-x解析 y =11-x与y =ln(x +1)在区间(-1,1)上为增函数;y =cos x 在区间(-1,1)上不是单调函数;y =2-x=⎝ ⎛⎭⎪⎫12x在(-1,1)上单调递减.答案 D2.(2016·全国Ⅰ卷)函数y =2x 2-e |x |在[-2,2]上的图象大致为( )解析 令f (x )=2x 2-e |x |(-2≤x ≤2),则f (x )是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B ;当x >0时,令g (x )=2x 2-e x ,则g ′(x )=4x -e x ,而当x ∈⎝ ⎛⎭⎪⎫0,14时,g ′(x )<14×4-e 0=0,因此g (x )在⎝ ⎛⎭⎪⎫0,14上单调递减,排除C ,故选D.答案 D3.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A.y =xB.y =lg xC.y =2xD.y =1x解析 函数y =10lg x 的定义域为{x |x >0},值域为{y |y >0},所以与其定义域和值域分别相同的函数为y =1x,故选D. 答案 D4.(2016·四川卷)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________.解析 ∵f (x )周期为2,且为奇函数,已知(0,1)内f (x )=4x ,则可大致画出(-1,1)内图象如图,∴f (0)=0, ∴f ⎝ ⎛⎭⎪⎫-52+f (2) =-f ⎝ ⎛⎭⎪⎫52+f (2)=-f ⎝ ⎛⎭⎪⎫12+f (0)=-2+0=-2.答案 -2考 点 整 合1.函数的性质 (1)单调性①用来比较大小,求函数最值,解不等式和证明方程根的唯一性.②常见判定方法:(ⅰ)定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;(ⅱ)图象法;(ⅲ)复合函数的单调性遵循“同增异减”的原则;(ⅳ)导数法.(2)奇偶性:①若f (x )是偶函数,那么f (x )=f (-x );②若f (x )是奇函数,0在其定义域内,则f (0)=0;③奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性.(3)周期性:常见结论有:①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x -2a )=f (x )(a >0)恒成立,则y =f (x )是周期为2a 的周期函数;②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数;③若y =f (x )是奇函数,其图象又关于直线x =a 对称,则f (x )是周期为4|a |的周期函数;④若f (x +a )=-f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数. 2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换. (2)在研究函数性质特别是单调性、最值、零点时,要注意结合其图象研究. 3.指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注函数图象中两种情况的公共性质. 4.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解.热点一 函数性质的应用[微题型1] 单一考查函数的奇偶性、单调性、对称性【例1-1】 (1)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A.奇函数,且在(0,1)上是增函数 B.奇函数,且在(0,1)上是减函数 C.偶函数,且在(0,1)上是增函数 D.偶函数,且在(0,1)上是减函数(2)(2015·全国Ⅰ卷)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. (3)(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为________. 解析 (1)易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f(x)为奇函数,又f(x)=ln 1+x1-x =ln⎝⎛⎭⎪⎫-1-2x-1,由复合函数单调性判断方法知,f(x)在(0,1)上是增函数,故选A.(2)f(x)为偶函数,则ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,即ln(a+x2-x2)=0,∴a=1.(3)f(x)=xx-1=1+1x-1,所以f(x)在[2,+∞)上单调递减,则f(x)最大值为f(2)=22-1=2.答案(1)A(2)1(3)2探究提高牢记函数的奇偶性、单调性的定义以及求函数定义域的基本条件,这是解决函数性质问题的关键点.[微题型2]综合考查函数的奇偶性、单调性、周期性【例1-2】(1)(2016·天津二模)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为() A.a<b<c B.c<a<bC.a<c<bD.c<b<a(2)(2016·广州4月模拟)若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于________.解析(1)由函数f(x)=2|x-m|-1为偶函数,得m=0,所以f(x)=2|x|-1,当x>0时,f(x)为增函数,log0.53=-log23,∴log25>|-log23|>0,∴b=f(log25)>a=f(log0.53)>c=f(2m)=f(0),故选B.(2)∵f(1+x)=f(1-x),∴f(x)的对称轴为x=1,∴a=1,f(x)=2|x-1|,∴f(x)的增区间为[1,+∞),∵[m,+∞)⊆[1,+∞),∴m≥1.∴m的最小值为1.答案(1)B(2)1探究提高函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.【训练1】 (1)(2016·山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x ),当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A.-2B.-1C.0D.2(2)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则实数a 的取值范围是________.解析 (1)当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,即f (x )=f (x +1),∴T =1,∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1)=-[(-1)3-1]=2,故选D. (2)由题意知a >0,又log 12a =-log 2a .∵f (x )是R 上的偶函数, ∴f (log 2a )=f (-log 2a )=f (log 12a ).∵f (log 2a )+f (log 12a )≤2f (1),∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1). 又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,即-1≤log 2a ≤1,∴a ∈⎣⎢⎡⎦⎥⎤12,2.答案 (1)D (2)⎣⎢⎡⎦⎥⎤12,2热点二 函数图象与性质的融合问题 [微题型1] 函数图象的识别【例2-1】 (1)函数y =x ln|x ||x |的图象可能是()(2)函数f (x )=⎝ ⎛⎭⎪⎫1x -x sin x 的大致图象为()解析 (1)法一 函数y =x ln|x ||x |的图象过点(e ,1),排除C ,D ;函数y =x ln|x ||x |的图象过点(-e ,-1),排除A ,选B.法二 由已知,设f (x )=x ln|x ||x |,定义域为{x |x ≠0}.则f (-x )=-f (x ),故函数f (x )为奇函数,排除A ,C ;当x >0时,f (x )=ln x 在(0,+∞)上为增函数,排除D ,故选B.(2)由y 1=1x -x 为奇函数,y 2=sin x 为奇函数,可得函数f (x )=⎝ ⎛⎭⎪⎫1x -x sin x 为偶函数,因此排除C 、D.又当x =π2时,y 1<0,y 2>0,f ⎝ ⎛⎭⎪⎫π2<0,因此选B.答案 (1)B (2)B探究提高 根据函数的解析式判断函数的图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时也可结合特殊的函数值进行辅助推断,这是解决函数图象判断类试题的基本方法. [微题型2] 函数图象的应用【例2-2】 (1)(2016·全国Ⅱ卷)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A.0B.mC.2mD.4m(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c >a >b B.c >b >a C.a >c >bD.b >a >c解析 (1)由题f (x )=f (2-x )关于x =1对称,函数y =|x 2-2x -3|的图象也关于x =1对称,两函数的交点成对出现,因此根据图象的特征可得∑i =1mx i =m ,故选B.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .选D.答案 (1)B (2)D探究提高 (1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在运用函数图象时要避免只看表象不联系其本质,透过函数的图象要看到它所反映的函数的性质,并以此为依据进行分析、推断,才是正确的做法. 【训练2】 (1)函数y =x 33x -1的图象大致是()(2)(2015·全国Ⅰ卷)设函数y =f (x )的图象与y =2x +a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a 等于( ) A.-1B.1C.2D.4解析 (1)由3x -1≠0得x ≠0,∴函数y =x 33x -1的定义域为{x |x ≠0},可排除A ;当x =-1时,y =(-1)313-1=32>0,可排除B ;当x =2时,y =1,当x =4时,y =45,但从D 中函数图象可以看出函数在(0,+∞)上是单调递增函数,两者矛盾,可排除D.故选C.(2)设f (x )上任意一点为(x ,y )关于y =-x 的对称点为(-y ,-x ),将(-y ,-x )代入y =2x +a ,所以y =a -log 2(-x ),由f (-2)+f (-4)=1,得a -1+a -2=1,2a =4,a =2. 答案 (1)C (2)C热点三 函数的零点与方程根的问题 [微题型1] 函数零点的判断【例3-1】 (1)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A.0B.1C.2D.3(2)函数f (x )=⎩⎨⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是________.解析 (1)法一 函数f (x )=2x +x 3-2在区间(0,1)内的零点个数即函数y 1=2x -2与y 2=-x 3的图象在区间(0,1)内的交点个数.作图(图略),可知在(0,+∞)内最多有一个交点,故排除C ,D 项;当x =0时,y 1=-1<y 2=0,当x =1时,y 1=0>y 2=-1,因此在区间(0,1)内一定会有一个交点,所以A 项错误.选B. 法二 因为f (0)=1+0-2=-1,f (1)=2+13-2=1,所以f (0)·f (1)<0.又函数f (x )在(0,1)内单调递增,所以f (x )在(0,1)内的零点个数是1. (2)当x >0时,作函数y =ln x 和y =x 2-2x 的图象,由图知,当x >0时,f (x )有两个零点;当x ≤0时,由f (x )=0得x =-14,综上,f (x )有三个零点. 答案 (1)B (2)3探究提高 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. [微题型2] 由函数的零点(或方程的根)求参数【例3-2】 (1)(2016·山东卷)已知函数f (x )=⎩⎨⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.(2)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C.(1,2)D.(2,+∞)解析 (1)如图,当x ≤m 时,f (x )=|x |. 当x >m 时,f (x )=x 2-2mx +4m , 在(m ,+∞)为增函数.若存在实数b ,使方程f (x )=b 有三个不同的根, 则m 2-2m ·m +4m <|m |.又m >0,∴m 2-3m >0,解得m >3.(2)由f (x )=g (x ),∴|x -2|+1=kx ,即|x -2|=kx -1,所以原题等价于函数y =|x -2|与y =kx -1的图象有2个不同交点. 如图:∴y =kx -1在直线y =x -1与y =12x -1之间, ∴12<k <1,故选B. 答案 (1)(3,+∞) (2)B探究提高 利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.【训练3】 (1)已知二次函数f (x )=x 2-bx +a 的部分图象如图所示,则函数g (x )=e x +f ′(x )的零点所在的区间是( ) A.(-1,0) B.(0,1) C.(1,2)D.(2,3)(2)(2016·海淀二模)设函数f (x )=⎩⎨⎧2x-a ,x <1,4(x -a )(x -2a ),x ≥1.①若a =1,则f (x )的最小值为________;②若f (x )恰有2个零点,则实数a 的取值范围是________.解析 (1)由函数f (x )的图象可知,0<f (0)=a <1,f (1)=1-b +a =0,所以1<b <2.又f ′(x )=2x -b ,所以g (x )=e x +2x -b ,所以g ′(x )=e x +2>0,即g (x )在R 上单调递增,又g (0)=1-b <0,g (1)=e +2-b >0,根据函数的零点存在性定理可知,函数g (x )的零点所在的区间是(0,1),故选B.(2)①当a =1时,f (x )=⎩⎨⎧2x-1,x <1,4(x -1)(x -2),x ≥1.当x <1时,f (x )=2x -1∈(-1,1),当x ≥1时,f (x )=4(x 2-3x +2)=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -322-14≥-1,∴f (x )min =-1.②由于f (x )恰有2个零点,分两种情况讨论: 当f (x )=2x -a ,x <1没有零点时,a ≥2或a ≤0.当a ≥2时,f (x )=4(x -a )(x -2a ),x ≥1时,有2个零点; 当a ≤0时,f (x )=4(x -a )(x -2a ),x ≥1时无零点. 因此a ≥2满足题意.当f (x )=2x -a ,x <1有一个零点时, 0<a <2.f (x )=4(x -a )(x -2a ),x ≥1有一个零点,此时a <1, 2a ≥1,因此12≤a <1.综上知实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |12≤a <1或a ≥2.答案 (1)B (2)①-1 ②⎣⎢⎡⎭⎪⎫12,1∪[2,+∞)1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f (x )=1x ln x 的定义域时,只考虑x >0,忽视ln x ≠0的限制.2.如果一个奇函数f (x )在原点处有意义,即f (0)有意义,那么一定有f (0)=0.3.奇函数在两个对称的区间上有相同的单调性,偶函数在两个对称的区间上有相反的单调性.4.三招破解指数、对数、幂函数值的大小比较.(1)底数相同,指数不同的幂用指数函数的单调性进行比较; (2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同,真数也不同的两个数,常引入中间量或结合图象比较大小.5.对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.一、选择题1.(2016·沈阳模拟)下列函数中,既是奇函数,又在区间(-1,1)上单调递减的函数是( ) A.f (x )=sin x B.f (x )=2cos x +1 C.f (x )=2x-1D.f (x )=ln 1-x1+x解析 由函数f (x )为奇函数排除B 、C ,又f (x )=sin x 在(-1,1)上单调递增,排除A ,故选D. 答案 D2.(2015·全国Ⅱ卷)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A.3B.6C.9D.12解析 因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=2log 212-1=2log 212×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C. 答案 C3.(2016·浙江卷)函数y =sin x 2的图象是( )解析 ∵y =sin x 2为偶函数,其图象关于y 轴对称,排除A 、C.又当x 2=π2,即x =±π2时,y max =1,排除B ,故选D.答案 D4.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ 解析 由f (x )=ln(1+|x |)-11+x 2,知f (x )为R 上的偶函数,于是f (x )>f (2x -1)即为f (|x |)>f (|2x -1|).当x >0时,f (x )=ln(1+x )-11+x 2,所以f (x )为[0,+∞)上的增函数,则由f (|x |)>f (|2x -1|)得|x |>|2x -1|,平方得3x 2-4x +1<0,解得13<x <1,故选A. 答案 A5.(2015·全国Ⅱ卷)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析 当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △P AB 中,|P A |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|P A |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ; 当点P 与点C 重合,即x =π4时,由以上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△P AO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|P A |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B. 答案 B 二、填空题6.(2016·成都二诊)若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 解析 由题意f (x )的图象如图,则⎩⎨⎧a >1,3+log a 2≥4,∴1<a ≤2. 答案 (1,2]7.设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________.解析 根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14.所以f (3)+f ⎝ ⎛⎭⎪⎫-32=0+⎝ ⎛⎭⎪⎫-14=-14.答案 -148.已知函数f (x )=⎩⎨⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x +1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________.解析 根据[x ]表示的意义可知,当0≤x <1时,f (x )=x ,当1≤x <2时,f (x )=x -1,当2≤x <3时,f (x )=x -2,以此类推,当k ≤x <k +1时,f (x )=x -k ,k ∈Z ,当-1≤x <0时,f (x )=x +1,作出函数f (x )的图象如图,直线y =k (x +1)过点(-1,0),当直线经过点(3,1)时恰有三个交点,当直线经过点(2,1)时恰好有两个交点,在这两条直线之间时有三个交点,故k ∈⎣⎢⎡⎭⎪⎫14,13.答案 ⎣⎢⎡⎭⎪⎫14,13三、解答题9.已知函数f (x )=mx 2-2x +1有且仅有一个正实数的零点,求实数m 的取值范围. 解 当m =0时,f (x )=-2x +1,它显然有一个为正实数的零点.当m ≠0时,函数f (x )=mx 2-2x +1的图象是抛物线,且与y 轴的交点为(0,1),由f (x )有且仅有一个正实数的零点,则得:①⎩⎪⎨⎪⎧x =1m >0,Δ=0或②x =1m <0,解①,得m=1:解②,得m <0.综上所述,m 的取值范围是(-∞,0]∪{1}.10.已知函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),令f ′(x )=2x -2x =0,得x =1. 当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0, 所以函数f (x )在x =1处取得极小值为1,无极大值. (2)k (x )=f (x )-h (x )=x -2ln x -a (x >0),所以k ′(x )=1-2x ,令k ′(x )>0,得x >2,所以k (x )在[1,2)上单调递减,在(2,3]上单调递增,所以当x =2时,函数k (x )取得最小值,k (2)=2-2ln 2-a , 因为函数k (x )=f (x )-h (x )在区间[1,3]上恰有两个不同零点. 即有k (x )在[1,2)和(2,3]内各有一个零点,所以⎩⎨⎧k (1)≥0,k (2)<0,k (3)≥0,即有⎩⎨⎧1-a ≥0,2-2ln 2-a <0,3-2ln 3-a ≥0,解得2-2ln 2<a ≤3-2ln 3.所以实数a 的取值范围为(2-2ln 2,3-2ln 3]. 11.已知函数f (x )=e x -m -x ,其中m 为常数.(1)若对任意x ∈R 有f (x )≥0成立,求m 的取值范围; (2)当m >1时,判断f (x )在[0,2m ]上零点的个数,并说明理由. 解 (1)f ′(x )=e x -m -1,令f ′(x )=0,得x =m .故当x ∈(-∞,m )时,e x -m <1,f ′(x )<0,f (x )单调递减; 当x ∈(m ,+∞)时,e x -m >1,f ′(x )>0,f (x )单调递增. ∴当x =m 时,f (m )为极小值,也是最小值. 令f (m )=1-m ≥0,得m ≤1,即若对任意x ∈R 有f (x )≥0成立,则m 的取值范围是(-∞,1].(2)由(1)知f (x )在[0,2m ]上至多有两个零点,当m >1时,f (m )=1-m <0.∵f (0)=e -m >0,f (0)f (m )<0,∴f (x )在(0,m )上有一个零点.∵f (2m )=e m -2m ,令g (m )=e m -2m , ∵当m >1时,g ′(m )=e m -2>0, ∴g (m )在(1,+∞)上单调递增, ∴g (m )>g (1)=e -2>0,即f (2m )>0.∴f (m )·f (2m )<0,∴f (x )在(m ,2m )上有一个零点. ∴故f (x )在[0,2m ]上有两个零点.第2讲 不等式问题高考定位 1.利用不等式性质比较大小,不等式的求解,利用基本不等式求最值及线性规划问题是高考的热点,主要以选择题、填空题为主;2.但在解答题中,特别是在解析几何中求最值、范围问题或在解决导数问题时常利用不等式进行求解,难度较大.真 题 感 悟1.(2016·全国Ⅰ卷)若a >b >0,0<c <1,则( ) A.log a c <log b c B.log c a <log c b C.a c <b cD.c a >c b解析 取a =4,b =2,c =12,逐一验证可得B 正确. 答案 B2.(2015·湖南卷)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( ) A. 2B.2C.2 2D.4解析 由1a +2b =ab ,知a >0,b >0,由于1a +2b ≥22ab ,当且仅当b =2a 时取等号.∴ab ≥22ab,∴ab ≥2 2.故选C. 答案 C3.(2015·陕西卷)设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.q =r >pC.p =r <qD.p =r >q解析 ∵0<a <b ,∴a +b2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数, 故f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln(ab )12=f (ab )=p . 故p =r <q .选C. 答案 C4.(2016·全国Ⅱ卷)若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到最小值为-5. 答案 -5考 点 整 合1.简单分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); (2)f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. 2.(1)解含有参数的一元二次不等式,要注意对参数的取值进行讨论:①对二次项系数与0的大小进行讨论;②在转化为标准形式的一元二次不等式后,对判别式与0的大小进行讨论;③当判别式大于0,但两根的大小不确定时,对两根的大小进行讨论. (2)四个常用结论①ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎨⎧a >0,Δ<0.②ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎨⎧a <0,Δ<0.③a >f (x )恒成立⇔a >f (x )max . ④a <f (x )恒成立⇔a <f (x )min . 3.利用基本不等式求最值已知x ,y ∈R +,则(1)若x +y =S (和为定值),则当x =y 时,积xy 取得最大值S 24⎝ ⎛⎭⎪⎫xy ≤⎝ ⎛⎭⎪⎫x +y 22=S 24;(2)若xy =P (积为定值),则当x =y 时,和x +y 取得最小值2P (x +y ≥2xy =2P ).4.二元一次不等式(组)和简单的线性规划(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等. (2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定其取得最优解的点;③求出目标函数的最大值或者最小值. 5.不等式的证明不等式的证明要注意和不等式的性质结合起来,常用的方法有:比较法、作差法、作商法(要注意讨论分母)、分析法、综合法、反证法,还要结合放缩和换元的技巧.热点一 利用基本不等式求最值 [微题型1] 基本不等式的简单应用【例1-1】 (1)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是( ) A.53 B.83C.8D.24(2)已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为________.解析(1)∵a∥b,∴3(y-1)+2x=0,即2x+3y=3.∵x>0,y>0,∴3x+2y=⎝⎛⎭⎪⎫3x+2y·13(2x+3y)=13⎝⎛⎭⎪⎫6+6+9yx+4xy≥13(12+2×6)=8.当且仅当3y=2x时取等号.(2)设正项等比数列{a n}的公比为q,则q>0,∵a7=a6+2a5,∴a5q2=a5q+2a5,∴q2-q-2=0,解得q=2或q=-1(舍去). ∴a m·a n=a1·2m-1·a1·2n-1=4a1,平方得2m+n-2=16=24,∴m+n=6,∴1m+4n=16⎝⎛⎭⎪⎫1m+4n(m+n)=16⎝⎛⎭⎪⎫5+nm+4mn≥16(5+4)=3 2,当且仅当nm=4mn,即n=2m,亦即m=2,n=4时取等号.答案(1)C(2)3 2探究提高在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.[微题型2]带有约束条件的基本不等式问题【例1-2】(1)已知两个正数x,y满足x+4y+5=xy,则xy取最小值时,x,y 的值分别为()A.5,5B.10,52 C.10,5 D.10,10(2)(2016·郑州模拟)设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是________.解析(1)∵x>0,y>0,∴x+4y+5=xy≥24xy+5,即xy-4xy-5≥0,可求xy≥25.当且仅当x=4y时取等号,即x=10,y=5 2.(2)∵4x2+y2+xy=1,∴(2x+y)2-3xy=1,即(2x+y)2-32·2xy=1,∴(2x+y)2-32·⎝⎛⎭⎪⎫2x+y22≤1,解之得(2x+y)2≤85,即2x+y≤2105.等号当且仅当2x=y>0,即x=1010,y=105时成立.答案(1)B(2)210 5探究提高在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,或对约束条件中的一部分利用基本不等式,构造不等式进行求解.【训练1】(1)(2016·广州模拟)若正实数x,y满足x+y+1=xy,则x+2y的最小值是()A.3B.5C.7D.8(2)(2015·山东卷)定义运算“⊗”:x⊗y=x2-y2xy(x,y∈R,xy≠0),当x>0,y>0时,x⊗y+(2y)⊗x的最小值为________.解析(1)由x+y+1=xy,得y=x+1x-1,又y>0,x>0,∴x>1.∴x+2y=x+2×x+1x-1=x+2×⎝⎛⎭⎪⎫1+2x-1=x+2+4x-1=3+(x-1)+4x-1≥3+4=7,当且仅当x=3时取“=”.(2)由题意,得x⊗y+(2y)⊗x=x2-y2xy+(2y)2-x22yx=x2+2y22xy≥2x2·2y22xy=2,当且仅当x=2y时取等号. 答案(1)C(2) 2热点二 含参不等式恒成立问题 [微题型1] 分离参数法解决恒成立问题【例2-1】 (1)关于x 的不等式x +4x -1-a 2+2a >0对x ∈(0,+∞)恒成立,则实数a 的取值范围为________.(2)已知x >0,y >0,x +y +3=xy ,且不等式(x +y )2-a (x +y )+1≥0恒成立,则实数a 的取值范围是________.解析 (1)设f (x )=x +4x ,因为x >0,所以f (x )=x +4x ≥2x ·4x =4,当且仅当x =2时取等号.又关于x 的不等式x +4x -1-a 2+2a >0对x ∈(0,+∞)恒成立,所以a 2-2a +1<4,解得-1<a <3,所以实数a 的取值范围为(-1,3).(2)要使(x +y )2-a (x +y )+1≥0恒成立,则有(x +y )2+1≥a (x +y ),由于x >0,y >0,即a ≤(x +y )+1x +y恒成立. 由x +y +3=xy ,得x +y +3=xy ≤⎝⎛⎭⎪⎫x +y 22, 即(x +y )2-4(x +y )-12≥0,解得x +y ≥6或x +y ≤-2(舍去).设t =x +y ,则t ≥6,(x +y )+1x +y=t +1t .设f (t )=t +1t ,则在t ≥6时,f (t )单调递增,所以f (t )=t +1t 的最小值为6+16=376,所以a ≤376,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,376. 答案 (1)(-1,3) (2)⎝ ⎛⎦⎥⎤-∞,376探究提高 一是转化法,即通过分离参数法,先转化为f (a )≥g (x )(或f (a )≤g (x ))对∀x ∈D 恒成立,再转化为f (a )≥g (x )max (或f (a )≤g (x )min ); 二是求最值法,即求函数g (x )在区间D 上的最大值(或最小值)问题. [微题型2] 函数法解决恒成立问题【例2-2】 (1)已知f (x )=x 2-2ax +2,当x ∈[-1,+∞)时,f (x )≥a 恒成立,则a 的取值范围为________.(2)已知二次函数f (x )=ax 2+x +1对x ∈[0,2]恒有f (x )>0.则实数a 的取值范围为________.解析 (1)法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a ,①当a ∈(-∞,-1)时,结合图象知,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a , 即2a +3≥a ,解得-3≤a <-1;②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-2≤a ≤1.∴-1≤a ≤1. 综上所述,所求a 的取值范围为[-3,1].法二 设g (x )=f (x )-a ,则g (x )=x 2-2ax +2-a ≥0在[-1,+∞)上恒成立, 即Δ=4a 2-4(2-a )≤0或⎩⎨⎧Δ>0,a <-1,g (-1)≥0,解得-3≤a ≤1.(2)法一 函数法.若a >0,则对称轴x =-12a <0, 故f (x )在[0,2]上为增函数,且f (0)=1, 因此在x ∈[0,2]上恒有f (x )>0成立. 若a <0,则应有f (2)>0,即4a +3>0, ∴a >-34.∴-34<a <0.综上所述,a 的取值范围是⎝ ⎛⎭⎪⎫-34,0∪(0,+∞).法二 分离参数法.当x =0时,f (x )=1>0成立.当x ≠0时,ax 2+x +1>0变为a >-1x 2-1x ,令g (x )=-1x 2-1x ⎝ ⎛⎭⎪⎫1x ≥12.∴当1x ≥12时,g (x )∈⎝ ⎛⎦⎥⎤-∞,-34.∵a >-1x 2-1x ,∴a >-34.又∵a ≠0,∴a 的取值范围是⎝ ⎛⎭⎪⎫-34,0∪(0,+∞).答案 (1)[-3,1] (2)⎝ ⎛⎭⎪⎫-34,0∪(0,+∞)探究提高 参数不易分离的恒成立问题,特别是与二次函数有关的恒成立问题的求解,常用的方法是借助函数图象根的分布,转化为求函数在区间上的最值或值域问题.【训练2】 若不等式x 2-ax +1≥0对于一切a ∈[-2,2]恒成立,则x 的取值范围是________.解析 因为a ∈[-2,2],可把原式看作关于a 的一次函数, 即g (a )=-xa +x 2+1≥0,由题意可知⎩⎨⎧g (-2)=x 2+2x +1≥0,g (2)=x 2-2x +1≥0,解之得x ∈R . 答案 R热点三 简单的线性规划问题[微题型1] 已知线性约束条件,求目标函数最值【例3-1】 (2016·全国Ⅲ卷)设x ,y 满足约束条件⎩⎨⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y-5的最小值为________.解析 可行域为一个三角形ABC 及其内部,其中A (1,0),B (-1,-1),C (1,3),直线z =2x +3y -5过点B 时取最小值-10. 答案 -10探究提高 线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得. [微题型2] 线性规划中的含参问题【例3-2】 (1)(2016·成都诊断)变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -2y +2≥0,mx -y ≤0.若z =2x-y 的最大值为2,则实数m 等于( ) A.-2B.-1C.1D.2(2)(2015·山东卷)已知x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a =( ) A.3 B.2 C.-2D.-3解析 (1)由图形知A ⎝ ⎛⎭⎪⎫-23,23,B ⎝ ⎛⎭⎪⎫22m -1,2m 2m -1,O (0,0).只有在B 点处取最大值2, ∴2=42m -1-2m2m -1.∴m =1.(2)不等式组表示的平面区域如图阴影部分所示.易知A (2,0),由⎩⎨⎧x -y =0,x +y =2,得B (1,1). 由z =ax +y ,得y =-ax +z .∴当a =-2或-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D ;当a =2或3时,z =ax +y 在A (2,0)处取得最大值,∴2a =4,∴a =2,排除A ,故选B. 答案 (1)C (2)B探究提高 对于线性规划中的参数问题,需注意:(1)当最值是已知时,目标函数中的参数往往与直线斜率有关,解题时应充分利用斜率这一特征加以转化.(2)当目标函数与最值都是已知,且约束条件中含有参数时,因为平面区域是变动的,所以要抓住目标函数及最值已知这一突破口,先确定最优解,然后变动参数范围,使得这样的最优解在该区域内即可.【训练3】 (1)(2016·江苏卷)已知实数x ,y 满足⎩⎨⎧x -2y +4≥02x +y -2≥0,3x -y -3≤0则x 2+y 2的取值范围是________.(2)已知x ,y 满足⎩⎨⎧y ≥x ,y ≤-x +2,x ≥a ,且目标函数z =2x +y 的最小值为1,则实数a 的值是( ) A.34B.12C.13D.14解析 (1)已知不等式组所表示的平面区域如图中阴影部分所示,则(x ,y )为阴影部分内的动点,x 2+y 2表示原点到可行域内的点的距离的平方. 解方程组⎩⎨⎧3x -y -3=0,x -2y +4=0,得A (2,3).由图可知(x 2+y 2)min =⎝ ⎛⎭⎪⎫|-2|22+122=45, (x 2+y 2)max =|OA |2=22+32=13.(2)依题意,不等式组所表示的可行域如图所示(阴影部分),观察图象可知,当目标函数z =2x +y 过点B (a ,a )时,z min =2a +a =3a ;因为目标函数z =2x +y 的最小值为1,所以3a =1,解得a =13,故选C. 答案 (1)⎣⎢⎡⎦⎥⎤45,13 (2)C1.多次使用基本不等式的注意事项当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.2.基本不等式除了在客观题考查外,在解答题的关键步骤中也往往起到“巧解”的作用,但往往需先变换形式才能应用.3.解决线性规划问题首先要作出可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.4.解答不等式与导数、数列的综合问题时,不等式作为一种工具常起到关键的作用,往往涉及到不等式的证明方法(如比较法、分析法、综合法、放缩法、换元法等).在求解过程中,要以数学思想方法为思维依据,并结合导数、数列的相关知识解题,在复习中通过解此类问题,体会每道题中所蕴含的思想方法及规律,逐步提高自己的逻辑推理能力.一、选择题1.(2016·全国Ⅲ卷)已知a=243,b=323,c=2513,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b解析a=243=316,b=323=39,c=2513=325,所以b<a<c.答案 A2.(2016·浙江卷)已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a-1)(b-1)<0B.(a-1)(a-b)>0C.(b-1)(b-a)<0D.(b-1)(b-a)>0解析由a,b>0且a≠1,b≠1,及log a b>1=log a a可得:当a>1时,b>a>1,当0<a<1时,0<b<a<1,代入验证只有D满足题意.答案 D3.(2016·太原模拟)若点A(m,n)在第一象限,且在直线x3+y4=1上,则mn的最大值是()A.3B.4C.7D.12解析 因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n ∈R +,且m3+n 4=1,所以m 3·n 4≤(m 3+n 42)2⎝ ⎛⎭⎪⎫当且仅当m 3=n 4=12,即m =32,n =2时,取“=”,所以m 3·n 4≤⎝ ⎛⎭⎪⎫122=14,即mn ≤3,所以mn 的最大值为3. 答案 A4.已知当x <0时,2x 2-mx +1>0恒成立,则m 的取值范围为( ) A.[22,+∞)B.(-∞,22]C.(-22,+∞)D.(-∞,-22)解析 由2x 2-mx +1>0,得mx <2x 2+1, 因为x <0,所以m >2x 2+1x =2x +1x .而2x +1x =-⎣⎢⎡⎦⎥⎤(-2x )+1(-x )≤ -2(-2x )×1(-x )=-2 2.当且仅当-2x =-1x ,即x =-22时取等号, 所以m >-2 2. 答案 C5.(2016·唐山模拟)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,x 2-2x ,x <0,若f (-a )+f (a )≤2f (1),则实数a的取值范围是( ) A.[0,1] B.[-1,0] C.[-1,1]D.[-1,0]解析 f (-a )+f (a )≤2f (1)⇔⎩⎨⎧a ≥0,(-a )2-2×(-a )+a 2+2a ≤2×3或 ⎩⎨⎧a <0,(-a )2+2×(-a )+a 2-2a ≤2×3即⎩⎨⎧a ≥0,a 2+2a -3≤0或⎩⎨⎧a <0,a 2-2a -3≤0, 解得0≤a ≤1,或-1≤a <0.故-1≤a ≤1. 答案 C 二、填空题6.设目标函数z =x +y ,其中实数x ,y 满足⎩⎨⎧x +2y ≥0,x -y ≤0,0≤y ≤k .若z 的最大值为12,则z的最小值为________.解析 作出不等式组所表示的可行域如图所示,平移直线x+y =0,显然当直线过点A (k ,k )时,目标函数z =x +y 取得最大值,且最大值为k +k =12,则k =6,直线过点B 时目标函数z =x +y 取得最小值,点B 为直线x +2y =0与y =6的交点,即B (-12,6),所以z min =-12+6=-6. 答案 -67.(2016·合肥二模)当a >0且a ≠1时,函数f (x )=log a (x -1)+1的图象恒过点A ,若点A 在直线mx -y +n =0上,则4m +2n 的最小值为________. 解析 函数f (x )的图象恒过点A (2,1),∴2m -1+n =0,即2m +n =1, ∴4m +2n ≥24m ·2n =222m +n =22,当且仅当2m =n =12时等号成立. 答案 2 28.(2016·全国Ⅰ卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N*目标函数z =2 100x +900y .作出可行域为图中阴影部分(包括边界)内的参数点,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元). 答案 216 000 三、解答题9.已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内的所有实数m ,不等式x 2+mx +4>2m +4x 恒成立,求x 的取值范围.解 易知f (t )∈⎣⎢⎡⎦⎥⎤12,3,由题意,令g (m )=(x -2)m +x 2-4x +4=(x -2)m +(x -2)2>0对∀m ∈⎣⎢⎡⎦⎥⎤12,3恒成立.所以只需⎩⎪⎨⎪⎧g ⎝ ⎛⎭⎪⎫12>0,g (3)>0即可,即⎩⎪⎨⎪⎧12(x -2)+(x -2)2>0,3(x -2)+(x -2)2>0⇒x >2或x <-1. 故x 的取值范围是(-∞,-1)∪(2,+∞). 10.已知函数f (x )=2xx 2+6. (1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围. 解 (1)f (x )>k ⇔kx 2-2x +6k <0.由已知{x |x <-3,或x >-2}是其解集,得kx 2-2x +6k =0的两根是-3,-2. 由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.(2)因为x >0,f (x )=2x x 2+6=2x +6x≤226=66,当且仅当x =6时取等号.由已知。
2017届高考数学二轮复习 小题综合限时练(四)理(限时:40分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m +n 等于( ) A.9 B.8 C.7D.6解析 ∵M ={x |x 2-4x <0}={x |0<x <4},N ={x |m <x <5},且M ∩N ={x |3<x <n },∴m =3,n =4,∴m +n =3+4=7.故选C.答案 C 2.复数1+52-i(i 是虚数单位)的模等于( ) A.10 B.10 C. 5D.5解析 ∵1+52-i =1+5(2+i )(2-i )(2+i )=1+2+i =3+i ,∴其模为10.故选A. 答案 A3.下列有关命题的说法正确的是( )A.命题“若x =y ,则sin x =sin y ”的逆否命题为真命题B.“x =-1”是“x 2-5x -6=0”的必要不充分条件C.命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1” D.命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1>0”解析 “若x =y ,则sin x =sin y ”为真命题,∴其逆否命题也为真命题,则A 正确;由x =-1,能够得到x 2-5x -6=0,反之,由x 2-5x -6=0,得到x =-1或x =6,∴“x =-1”是“x 2-5x -6=0”的充分不必要条件,则B 不正确;命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,则C 不正确;命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,则D 不正确.故选A. 答案 A4.某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩近似服从正态分布,即X ~N (100,a 2)(a >0),试卷满分150分,统计结果显示数学考试成绩不合格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为( ) A.400 B.500 C.600D.800解析 ∵P (X ≤90)=P (X ≥110)=110,∴P (90≤X ≤110)=1-15=45,∴P (100≤X ≤110)=25,∴1 000×25=400.故选A.答案 A5.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( ) A.47尺 B.1629尺 C.815尺 D.1631尺 解析 依题意知,每天的织布数组成等差数列,设公差为d ,则5×30+30×292d =390,解得d =1629.故选B.答案 B6.多面体MN -ABCD 的底面ABCD 为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则该多面体的体积是( )A.16+33 B.8+632 C.163D.203解析 将多面体分割成一个三棱柱和一个四棱锥,如图所示,∵正视图为等腰梯形,侧视图为等腰三角形,∴四棱锥底面BCFE 为正方形,S BCFE =2×2=4,四棱锥的高为2,∴V N -BCFE =13×4×2=83.可将三棱柱补成直三棱柱,则V ADM -EFN =12×2×2×2=4,∴多面体的体积为203.故选D.答案 D7.已知直线l :x +y +m =0与圆C :x 2+y 2-4x +2y +1=0相交于A 、B 两点,若△ABC 为等腰直角三角形,则m =( ) A.1 B.2 C.-5D.1或-3解析 △ABC 为等腰直角三角形,等价于圆心到直线的距离等于圆的半径的22.圆C 的标准方程是(x -2)2+(y +1)2=4,圆心到直线l 的距离d =|1+m |2,依题意得|1+m |2=2,解得m =1或-3.故选D. 答案 D8.阅读如图所示的程序框图,运行相应的程序,若输入某个正整数n 后,输出的S ∈(31,72),则n 的值为( )A.5B.6C.7D.8解析 由程序框图知,当S =1时,k =2;当S =3时,k =3;当S =7时,k =4;当S =15时,k =5;当S =31时,k =6;当S =63时,k =7.∴n 的值为6.故选B. 答案 B9.若函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( )A.5π12B.π4C.π3D.π6解析 由题意得T 2=π2,T =π,ω=2,又2x 0+π6=k π(k ∈Z ),x 0=k π2-π12(k ∈Z ),而x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴x 0=5π12.故选A. 答案 A10.已知向量a 、b 的模都是2,其夹角是60°,又OP →=3a +2b ,OQ →=a +3b ,则P 、Q 两点间的距离为( ) A.2 2 B. 3 C.2 3 D. 2解析 ∵a ·b =|a |·|b |·cos 60°=2×2×12=2,PQ →=OQ →-OP →=-2a +b ,∴|PQ →|2=4a2-4a ·b +b 2=12,∴|PQ →|=2 3.故选C. 答案 C11.设双曲线x 24-y 23=1的左、右焦点分别为F 1、F 2,过F 1的直线l 交双曲线左支于A 、B 两点,则|BF 2|+|AF 2|的最小值为( ) A.192B.11C.12D.16 解析 由双曲线定义可得|AF 2|-|AF 1|=2a =4,|BF 2|-|BF 1|=2a =4,两式相加可得|AF 2|+|BF 2|=|AB |+8,由于AB 为经过双曲线的左焦点与左支相交的弦,而|AB |min =2b2a=3,∴|AF 2|+|BF 2|=|AB |+8≥3+8=11.故选B. 答案 B12.设x ,y 满足⎩⎪⎨⎪⎧x -ay ≤2,x -y ≥-1,2x +y ≥4,时,则z =x +y 既有最大值也有最小值,则实数a 的取值范围是( ) A.a <1B.-12<a <1C.0≤a <1D.a <0解析 满足⎩⎪⎨⎪⎧x -y ≥-1,2x +y ≥4,的平面区域如图所示:而x -ay ≤2表示直线x -ay =2左侧的平面区域, ∵直线x -ay =2恒过(2,0)点,当a =0时,可行域是三角形,z =x +y 既有最大值也有最小值,满足题意;当直线x -ay =2的斜率1a 满足1a >1或1a<-2,即-12<a <0或0<a <1时,可行域是封闭的,z =x +y 既有最大值也有最小值, 综上所述,实数a 的取值范围是-12<a <1.答案 B二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在答题中的横线上.)13.曲线y =x 2和曲线y 2=x 围成的图形的面积是______.解析 作出如图的图象,联立⎩⎪⎨⎪⎧y 2=x ,y =x 2,解得⎩⎪⎨⎪⎧x =0,y =0, 或⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1), ∴所求面积为S =⎠⎛01(x -x 2)d x =⎝⎛⎪⎪⎪⎭⎪⎫23x 32-13x 310=13. 答案 1314.若x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,若目标函数z =ax +3y 仅在点(1,0)处取得最小值,则实数a 的取值范围为________.解析 画出关于x 、y 约束条件的平面区域如图所示,当a =0时,显然成立.当a >0时,直线ax +3y -z =0的斜率k =-a3>k AC =-1,∴0<a <3.当a <0时,k =-a3<k AB =2,∴-6<a <0.综上所得,实数a 的取值范围是(-6,3).答案 (-6,3)15.已知偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,若区间[-1,3]上,函数g (x )=f (x )-kx -k 有3个零点,则实数k 的取值范围是________. 解析 根据已知条件知函数f (x )为周期为2的周期函数;且x ∈[-1,1]时,f (x )=|x |;而函数g (x )的零点个数便是函数f (x )和函数y =kx +k 的交点个数.∴①若k >0,如图所示,当y =kx +k 经过点(1,1)时,k =12;当经过点(3,1)时,k =14.∴14<k <12.②若k <0,即函数y =kx +k 在y 轴上的截距小于0,显然此时该直线与f (x )的图象不可能有三个交点,即这种情况不存在.③若k =0,得到直线y =0,显然与f (x )图象只有两个交点.综上所得,实数k 的取值范围是⎝ ⎛⎭⎪⎫14,12.答案 ⎝ ⎛⎭⎪⎫14,12 16.已知数列{a n }满足a 1=-1,a 2>a 1,|a n +1-a n |=2n,若数列{a 2n -1}单调递减,数列{a 2n }单调递增,则数列{a n }的通项公式为a n =________.解析 由题意得a 1=-1,a 2=1,a 3=-3,a 4=5,a 5=-11,a 6=21,……,然后从数字的变化上找规律,得a n +1-a n =(-1)n +12n,则利用累加法即得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=-1+2-22+…+(-1)n 2n -1=(-1)[1-(-2)n ]1-(-2)=(-2)n-13.答案 (-2)n-13。
限时练(一)(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P ={x |x 2-2x ≥3},Q ={x |2<x <4},则P ∩Q =( ) A.[3,4) B.(2,3] C.(-1.2) D.(-1,3]答案 A2.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A.y =±14xB.y =±13xC.y =±12xD.y =±x答案 C3.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( )A.14a +12bB.12a +14b C.23a +13b D.12a +23b 解析 ∵AC →=a ,BD →=b ,∴AD →=AO →+OD →=12AC →+12BD →=12a +12b ,因为E 是OD 的中点,∴|DE ||EB |=13,∴|DF |=13|AB |,∴DF →=13AB →=13(OB →-OA →)=13×⎝ ⎛⎭⎪⎫-12BD →-⎝ ⎛⎭⎪⎫-12AC →=16AC →-16BD → =16a -16b , AF →=AD →+DF →=12a +12b +16a -16b =23a +13b .答案 C4.将函数y =cos 2x 的图象向左平移π4个单位,得到函数y =f (x )·cos x 的图象,则f (x )的表达式可以是( ) A.f (x )=-2sin x B.f (x )=2sin x C.f (x )=22sin 2x D.f (x )=22(sin 2x +cos 2x ) 解析 将函数y =cos 2x 的图象向左平移π4个单位,得到函数y =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 的图象,因为-sin 2x =-2sin x cos x ,所以f (x )=-2sin x .答案 A5.设{a n }是等差数列,下列结论中正确的是( ) A.若a 1+a 2>0,则a 2+a 3>0 B.若a 1+a 3<0,则a 1+a 2<0 C.若0<a 1<a 2,则a 2>a 1a 3 D.若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析 A ,B 选项易举反例,C 中若0<a 1<a 2,∴a 3>a 2>a 1>0,∵a 1+a 3>2a 1a 3,又2a 2=a 1+a 3,∴2a 2>2a 1a 3,即a 2>a 1a 3成立. 答案 C6.在直角坐标系中,P 点的坐标为⎝ ⎛⎭⎪⎫35,45,Q 是第三象限内一点,|OQ |=1且∠POQ =3π4,则Q 点的横坐标为( )A.-7210B.-325C.-7212D.-8213解析 设∠xOP =α,则cos α=35,sin α=45,x Q =cos ⎝ ⎛⎭⎪⎫α+3π4=35·⎝ ⎛⎭⎪⎫-22-45×22=-7210,选A. 答案 A7.某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2π D.23+2π 解析 这是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×⎝ ⎛⎭⎪⎫12×1×2×1=π+13,选A. 答案 A8.现定义e i θ=cos θ+isin θ,其中i 为虚数单位,e 为自然对数的底,θ∈R ,且实数指数幂的运算性质对e i θ都适用,a =C 05cos 5θ-C 25cos 3θsin 2θ+C 45cos θsin 4θ,b =C 15cos 4θsin θ-C 35cos 2θsin 3θ+C 55sin 5θ,那么复数a +b i 等于( ) A.cos 5θ+isin 5θ B.cos 5θ-isin 5θ C.sin 5θ+icos 5θD.sin 5θ-icos 5θ解析 (e i θ=cos θ+isin θ其实为欧拉公式)a +b i =C 05cos 5θ+C 15cos 4θ(isin θ)-C 25cos 3θsin 2θ-C 35cos 2θ(isin 3θ)+C 45cos θsin 4θ+C 55(isin 5θ) =C 05cos 5θ+C 15cos 4θ(isin θ)+C 25cos 3θ(i 2sin 2θ)+ C 35cos 2θ(i 3sin 3θ)+C 45cos θ(i 4sin 4θ)+C 55(i 5sin 5θ) =(cos θ+isin θ)5=(e i θ)5=e i ×5θ=cos 5θ+isin 5θ.答案 A二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________. 解析 抛物线y 2=2px (p >0)的准线方程是x =-p2,双曲线x 2-y 2=1的一个焦点F 1(-2,0),因为抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,所以-p2=-2,解得p =2 2. 答案 2 2 10.计算:log 222=________,2log 2 3+log 4 3=________.解析 log 222=log 22-12=-12,2log23+log43=232log2 3=2log 2332=27=3 3.答案 -123 311.已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________.解析 由a 2,a 3,a 7成等比数列,得a 23=a 2a 7,则2d 2=-3a 1d ,则d =-32a 1.又2a 1+a 2=1,所以a 1=23,d =-1.答案 23-112.函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,最小值是________. 解析 由题可得f (x )=22sin ⎝⎛⎭⎪⎫2x -π4+32 ,所以最小正周期T =π,最小值为3-22.答案 π3-2213.设函数f (x )=-ln(-x +1),g (x )=⎩⎪⎨⎪⎧x 2(x ≥0),f (x ) (x <0),则g (-2)=________;函数y=g (x )+1的零点是________.解析 由题意知g (-2)=f (-2)=-ln 3,当x ≥0时,x 2+1=0没有零点,当x <0时,由-ln(-x +1)+1=0,得x =1-e. 答案 -ln 3 1-e14.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≤2,3x -y -3≤0,2x +y -2≥0,则目标函数z =3x +y 的最大值为________.解析 作出可行域如图所示:作直线l 0:3x +y =0,再作一组平行于l 0的直线l :3x +y =z ,当直线l 经过点M 时,z =3x +y 取得最大值,由⎩⎪⎨⎪⎧3x -y -3=0,y =2,得⎩⎪⎨⎪⎧x =53,y =2,所以点M 的坐标为⎝ ⎛⎭⎪⎫53,2,所以z max =3×53+2=7.答案 715.已知平面四边形ABCD 为凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧),且AB =2,BC =4,CD =5,DA =3,则平面四边形ABCD 面积的最大值为________.解析 设AC =x ,在△ABC 中,由余弦定理有:x 2=22+42-2×2×4cos B =20-16cos B ,同理,在△ADC 中,由余弦定理有:x 2=32+52-2×3×5cos D =34-30cos D ,即15cos D -8cos B =7,①又平面四边形ABCD 面积为S =12×2×4sin B +12×3×5sin D =12(8sin B +15sin D ),即8sin B +15sin D =2S ,② ①②平方相加得64+225+240(sin B sin D -cos B cos D )=49+4S 2, -240cos(B +D )=4S 2-240, 当B +D =π时,S 取最大值230. 答案 230限时练(二) (限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={x |x 2-2x -3≤0},B ={x |log 2(x 2-x )>1},则A ∩B =( ) A.(2,3) B.(2,3] C.(-3,-2)D.[-3,-2)解析 ∵x 2-2x -3≤0,∴-1≤x ≤3,∴A =[-1,3].又∵log 2(x 2-x )>1,∴x 2-x -2>0,∴x <-1或x >2,∴B =(-∞,-1)∪(2,+∞).∴A ∩B =(2,3].故选B. 答案 B2.若复数z 满足(3-4i)z =5,则z 的虚部为( ) A.45 B.-45C.4D.-4解析 依题意得z =53-4i =5(3+4i )(3-4i )(3+4i )=35+45i ,因此复数z 的虚部为45.故选A. 答案 A3.在等比数列{a n }中,若a 4、a 8是方程x 2-3x +2=0的两根,则a 6的值是( ) A.± 2 B.- 2 C. 2D.±2解析 由题意可知a 4=1,a 8=2,或a 4=2,a 8=1. 当a 4=1,a 8=2时,设公比为q , 则a 8=a 4q 4=2,∴q 2=2, ∴a 6=a 4q 2=2;同理可求当a 4=2,a 8=1时,a 6= 2. 答案 C4.将函数f (x )=4sin 2x 的图象向右平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位长度后得到函数g (x )的图象,若对于满足|f (x 1)-g (x 2)|=8的x 1,x 2,有|x 1-x 2|min =π6,则φ=( )A.π6B.π4C.π3D.5π12解析 由题意知,g (x )=4sin(2x -2φ),-4≤g (x )≤4,又-4≤f (x )≤4,若x 1,x 2满足|f (x 1)-g (x 2)|=8,则x 1,x 2分别是函数f (x ),g (x )的最值点,不妨设f (x 1)=-4,g (x 2)=4,则x 1=3π4+k 1π(k 1∈Z ),x 2=⎝ ⎛⎭⎪⎫π4+φ+k 2π(k 2∈Z ),|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ+(k 1-k 2)π(k 1,k 2∈Z ),又|x 1-x 2|min =π6,0<φ<π2,所以π2-φ=π6,得φ=π3,故选C.答案 C5.如图,多面体ABCD -EFG 的底面ABCD 为正方形,FC =GD =2EA ,其俯视图如下,则其正视图和侧视图正确的是( )解析 注意BE ,BG 在平面CDGF 上的投影为实线,且由已知长度关系确定投影位置,排除A ,C 选项,观察B ,D 选项,侧视图是指光线从几何体的左面向右面正投影,则BG ,BF 的投影为虚线,故选D. 答案 D6.已知直线ax +by +c -1=0(bc >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是( ) A.9 B.8 C.4D.2解析 依题意得,圆心坐标是(0,1),于是有b +c =1,4b +1c =⎝ ⎛⎭⎪⎫4b +1c (b +c )=5+4c b +bc≥5+24c b ×b c =9,当且仅当⎩⎪⎨⎪⎧b +c =1(bc >0),4c b =b c ,即b =2c =23时取等号,因此4b +1c 的最小值是9.故选A.答案 A7.已知四面体P -ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,PB =AB =2,则球O 的表面积为( )A.7πB.8πC.9πD.10π解析 依题意记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2、1、2,于是有(2R )2=12+22+22=9,4πR 2=9π,∴球O 的表面积为9π.故选C. 答案 C8.设f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,4)上有三个零点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1e B.⎝⎛⎭⎪⎫ln 22,eC.⎝⎛⎭⎪⎫ln 22,1eD.⎝ ⎛⎭⎪⎫0,ln 22解析 原问题等价于方程|ln x |=ax 在区间(0,4)上有三个根,令h (x )=ln x ⇒h ′(x )=1x,由h (x )在(x 0,ln x 0)处切线y -ln x 0=1x 0(x -x 0)过原点得x 0=e ,即曲线h (x )过原点的切线斜率为1e ,而点(4,ln 4)与原点确定的直线的斜率为ln 22,所以实数a 的取值范围是⎝ ⎛⎭⎪⎫ln 22,1e . 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是________(用数字作答).解析 设4个公司分别为A 、B 、C 、D ,当甲、乙都在A 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在B 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在C 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在D 公司时,则选择另一公司不同的选法为A 13A 12.∴总数为4A 13A 12=24种. 答案 2410.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________. 解析 由⎩⎪⎨⎪⎧a 2=2a 1+1,a 2+a 1=4,解得a 1=1,a 2=3,当n ≥2时,由已知可得:a n +1=2S n +1,①a n =2S n -1+1,②①-②得a n +1-a n =2a n ,∴a n +1=3a n ,又a 2=3a 1, ∴{a n }是以a 1=1为首项,公比q =3的等比数列. ∴S 5=1×(1-35)1-3=121.答案 1 12111.已知cos ⎝ ⎛⎭⎪⎫θ+π4=-13,θ为锐角,则sin 2θ=________,sin ⎝ ⎛⎭⎪⎫2θ+π3=________. 解析 由cos ⎝ ⎛⎭⎪⎫θ+π4=-13可得22(cos θ-sin θ)=-13,则cos θ-sin θ=-23,两边平方可得1-sin 2θ=29,sin 2θ=79.又θ是锐角,cos θ<sin θ,则θ∈⎝ ⎛⎭⎪⎫π4,π2,2θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos 2θ=-1-sin 22θ=-429,所以sin ⎝ ⎛⎭⎪⎫2θ+π3=12sin 2θ+32cos 2θ=7-4618.答案 79 7-461812.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S -ABC 中,M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的体积为________,其外接球的表面积为________.解析 由“正三棱锥的对棱互相垂直”可得SB ⊥AC ,又SB ⊥AM ,AM 和AC 是平面SAC 上的两条相交直线,所以SB ⊥平面SAC ,则SB ⊥SA ,SB ⊥SC .所以正三棱锥S -ABC 的三个侧面都是等腰直角三角形.又AB =22,所以SA =SB =SC =2,故正三棱锥S -ABC 是棱长为2的正方体的一个角,其体积为16SA ·SB ·SC =43,其外接球的直径2R =23,外接球的表面积为4πR 2=12π.答案 4312π13.若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c,则称a ,b ,c 是调和的;若满足a+c =2b ,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z },集合P ={a ,b ,c }⊆M ,则“好集”P 中的元素最大值为________;“好集”P 的个数为________.解析 由集合P 中元素a ,b ,c 既是调和的,又是等差的,可得⎩⎪⎨⎪⎧1a +1b =2c ,a +c =2b ,则a =-2b ,c=4b ,故满足条件的“好集”P 为形如{-2b ,b ,4b }(b ≠0,b ∈Z )的形式,则-2 014≤4b ≤2 014,解得-503≤b ≤503(b ≠0,b ∈Z ),当b =503时,“好集”P 中的最大元素4b =2 012,且符合条件的b 可取1 006个,故“好集”P 的个数为1 006. 答案 2 012 1 00614.在△ABC 中,若AB =43,AC =4,B =30°,则△ABC 的面积是________.解析 由余弦定理AC 2=BA 2+BC 2-2·BA ·BC ·cos B 得42=(43)2+BC 2-2×43×BC ×cos 30°,解得BC =4或BC =8.当BC =4时,△ABC 的面积为12×AB ×BC ×sin B =12×43×4×12=43;当BC =8时,△ABC的面积为12×AB ×BC ×sin B =12×43×8×12=8 3.答案 43或8 315.已知F 1、F 2分别为椭圆x 24+y 2=1的左、右焦点,过椭圆的中心O 任作一直线与椭圆交于P 、Q 两点,当四边形PF 1QF 2的面积最大时,PF 1→·PF 2→的值为________.解析 易知点P 、Q 分别是椭圆的短轴端点时,四边形PF 1QF 2的面积最大.由于F 1(-3,0),F 2(3,0),不妨设P (0,1),∴PF 1→=(-3,-1),PF 2→=(3,-1),∴PF 1→·PF 2→=-2. 答案 -2限时练(三) (限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设i 是虚数单位,若复数z 与复数z 0=1-2i 在复平面上对应的点关于实轴对称,则z 0·z =( ) A.5 B.-3 C.1+4iD.1-4i解析 因为z 0=1-2i ,所以z =1+2i ,故z 0·z =5.故选A. 答案 A2.已知直线y =3x 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)有两个不同的交点,则双曲线C 的离心率的取值范围是( ) A.(1,3) B.(1,2) C.(3,+∞)D.(2,+∞)解析 直线y =3x 与C 有两个不同的公共点⇒b a>3⇒e >2.故选D. 答案 D3.设函数y =f (x )的图象与y =2x +a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a 等于( )A.-1B.1C.2D.4解析 设f (x )上任意一点为(x ,y )关于y =-x 的对称点为(-y ,-x ),将(-y , -x )代入y =2x +a,所以y =a -log 2(-x ),由f (-2)+f (-4)=1,得a -1+a -2=1,2a=4,a =2. 答案 C4.已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c .若a =2,cos A =13,则△ABC 面积的最大值为( ) A.2 B. 2 C.12D. 3解析 由a 2=b 2+c 2-2bc cos A 得4=b 2+c 2-23bc ≥2bc -23bc =43bc ,所以bc ≤3,S =12bc sin A =12bc ·223≤12×3×223= 2.故选B.答案 B5.一个空间几何体的三视图如图所示,则该几何体的体积为( )A.43π+833B.43π3+8 3 C.43π+833D.43π+8 3解析 由三视图可知该几何体是一个半圆锥和一个三棱锥组合而成的,其体积为:V =13Sh =2π+43×23=43π+833. 答案 A6.设函数f (x )=e x+1,g (x )=ln(x -1).若点P 、Q 分别是f (x )和g (x )图象上的点,则|PQ |的最小值为( ) A.22 B. 2C.322D.2 2解析 f (x )=e x+1与g (x )=ln(x -1)的图象关于直线y =x 对称,平移直线y =x 使其分别与这两个函数的图象相切.由f ′(x )=e x=1得,x =0.切点坐标为(0,2),其到直线y =x 的距离为2,故|PQ |的最小值为2 2.故选D. 答案 D7.已知F 为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点A 为双曲线虚轴的一个顶点,过F ,A的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若FA →=(2-1)AB →,则此双曲线的离心率是( ) A. 2 B. 3 C.2 2D. 5解析 过F ,A 的直线方程为y =b c (x +c )①,一条渐近线方程为y =b ax ②,联立①②, 解得交点B ⎝⎛⎭⎪⎫ac c -a ,bc c -a ,由FA →=(2-1)AB →,得c =(2-1)ac c -a,c =2a ,e = 2.答案 A8.已知函数f (x )=⎩⎨⎧1-|x |, (x ≤1),x 2-4x +3, (x >1).若f (f (m ))≥0,则实数m 的取值范围是( )A.[-2,2]B.[-2,2]∪[4,+∞)C.[-2,2+2]D.[-2,2+2]∪[4,+∞)解析 令f (m )=n ,则f (f (m ))≥0就是f (n )≥0.画出函数f (x )的图象可知,-1≤n ≤1,或n ≥3,即-1≤f (m )≤1或f (m )≥3. 由1-|x |=-1得x =-2.由x 2-4x +3=1,x =2+2,x =2-2(舍). 由x 2-4x +3=3得,x =4.再根据图象得到,m ∈[-2,2+2]∪[4,+∞).故选D. 答案 D二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.已知x ⎝⎛⎭⎪⎫x +a x 5展开式中的常数项为20,其中a >0,则a =________.解析 T r +1=C r5x ·x 5-r·⎝ ⎛⎭⎪⎫a x r =a r C r5x 6-32r .由⎩⎪⎨⎪⎧6-32r =0,a r C r 5=20,得⎩⎪⎨⎪⎧r =4,a 4=4,因为a >0,所以a = 2.答案210.已知双曲线x 25-y 24=1的左、右焦点分别为F 1,F 2,P 是双曲线右支上一点,则|PF 1|-|PF 2|=________;离心率e =________.解析 依题意,|PF 1|-|PF 2|=2a =25,离心率e =ca=1+b 2a 2=355.答案 2 535511.已知函数f (x )=⎩⎪⎨⎪⎧3x-1,x ≤1,f (x -1),x >1,则f (f (2))=________,值域为________.解析 依题意,f (2)=f (1)=2,f [f (2)]=f (2)=2;因为f (x )=f (x -1),所以函数f (x )具有周期性,故函数f (x )的值域为(-1,2]. 答案 2 (-1,2]12.将函数y =sin 2x 的图象向右平移φ个单位长度后所得图象的解析式为y =sin ⎝ ⎛⎭⎪⎫2x -π6,则φ=________⎝ ⎛⎭⎪⎫0<φ<π2,再将函数y =sin ⎝ ⎛⎭⎪⎫2x -π6图象上各点的横坐标伸长到原来的2倍(纵坐标不变)后得到的图象的解析式为________.解析 依题意,sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=sin ⎝ ⎛⎭⎪⎫2x -π6,故φ=π12.将y =sin ⎝⎛⎭⎪⎫2x -π6图象上各点的横坐标伸长到原来的2倍后得到y =sin ⎝⎛⎭⎪⎫x -π6的图象. 答案π12 y =sin ⎝⎛⎭⎪⎫x -π613.已知⎩⎨⎧⎭⎬⎫f (n )n 是等差数列,f (1)=2,f (2)=6,则f (n )=________,数列{a n }满足a n +1=f (a n ),a 1=1,数列⎩⎨⎧⎭⎬⎫11+a n 的前n 项和为S n ,则S 2015+1a 2016=________.解析 由题意可得f (1)1=2,f (2)2=3,又⎩⎨⎧⎭⎬⎫f (n )n 是等差数列,则公差为1,所以f (n )n =2+(n -1)=n +1,f (n )=n (n +1)=n 2+n ;a n +1=f (a n )=a n (a n +1),则1a n +1=1a n (a n +1)=1a n-1a n +1,所以1a n +1=1a n -1a n +1,S 2015=1a 1+1+1a 2+1+…+1a 2015+1=⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝⎛⎭⎪⎫1a 2015-1a 2016=1a 1-1a 2016,所以S 2015+1a 2016=1a 1=1.答案 n 2+n 114.设a 、b 是单位向量,其夹角为θ.若|t a +b |的最小值为12,其中t ∈R ,则θ=________.解析 因为t ∈R ,所以|t a +b |2=t 2+2t cos θ+1=(t +cos θ)2+1-cos 2θ≥1-cos 2θ=14.得cos θ=±32⇒θ=π6或5π6. 答案π6或5π615.已知数列{a n }的各项取倒数后按原来顺序构成等差数列,各项都是正数的数列{x n }满足x 1=3,x 1+x 2+x 3=39,xa nn =xa n +1n +1=xa n +2n +2,则x n =________.解析 设xa nn =xa n +1n +1=xa n +2n +2=k ,则a n =log x n k ⇒1a n =log k x n ,同理1a n +1=log k x n +1,1a n +2=log k x n +2,因为数列{a n }的各项取倒数后按原来顺序构成等差数列,所以2log k x n+1=log k x n +log k x n +2⇒x 2n +1=x n x n +2,所以数列{x n }是等比数列,把x 1=3代入x 1+x 2+x 3=39得公比q =3(负值舍去),所以x n =3×3n -1=3n.答案 3n限时练(四) (限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m +n 等于( ) A.9 B.8 C.7D.6解析 ∵M ={x |x 2-4x <0}={x |0<x <4},N ={x |m <x <5},且M ∩N ={x |3<x <n },∴m =3,n =4,∴m +n =3+4=7.故选C. 答案 C2.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( ) A.47尺 B.1629尺 C.815尺 D.1631尺解析 依题意知,每天的织布数组成等差数列,设公差为d ,则5×30+30×292d =390,解得d =1629.故选B.答案 B3.已知直线l :x +y +m =0与圆C :x 2+y 2-4x +2y +1=0相交于A 、B 两点,若△ABC 为等腰直角三角形,则m =( ) A.1 B.2 C.-5D.1或-3解析 △ABC 为等腰直角三角形,等价于圆心到直线的距离等于圆的半径的22.圆C 的标准方程是(x -2)2+(y +1)2=4,圆心到直线l 的距离d =|1+m |2,依题意得|1+m |2=2,解得m =1或-3.故选D.答案 D4.多面体MN -ABCD 的底面ABCD 为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则该多面体的体积是( )A.16+33B.8+632C.163D.203解析 将多面体分割成一个三棱柱和一个四棱锥,如图所示,∵正视图为等腰梯形,侧视图为等腰三角形,∴四棱锥底面BCFE 为正方形,S BCFE =2×2=4,四棱锥的高为2,∴V N -BCFE =13×4×2=83.可将三棱柱补成直三棱柱,则V ADM -EFN =12×2×2×2=4,∴多面体的体积为203.故选D.答案 D5.若函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( )A.5π12B.π4C.π3D.π6解析 由题意得T 2=π2,T =π,ω=2,又2x 0+π6=k π(k ∈Z ),x 0=k π2-π12(k ∈Z ),而x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴x 0=5π12.故选A.答案 A6.已知向量a 、b 的模都是2,其夹角是60°,又OP →=3a +2b ,OQ →=a +3b ,则P 、Q 两点间的距离为( ) A.2 2 B. 3 C.2 3D. 2解析 ∵a ·b =|a |·|b |·cos 60°=2×2×12=2,PQ →=OQ →-OP →=-2a +b ,∴|PQ →|2=4a 2-4a ·b +b 2=12,∴|PQ →|=2 3.故选C. 答案 C7.设双曲线x 24-y 23=1的左、右焦点分别为F 1、F 2,过F 1的直线l 交双曲线左支于A 、B 两点,则|BF 2|+|AF 2|的最小值为( ) A.192 B.11 C.12D.16解析 由双曲线定义可得|AF 2|-|AF 1|=2a =4,|BF 2|-|BF 1|=2a =4,两式相加可得|AF 2|+|BF 2|=|AB |+8,由于AB 为经过双曲线的左焦点与左支相交的弦,而|AB |min =2b2a=3,∴|AF 2|+|BF 2|=|AB |+8≥3+8=11.故选B. 答案 B8.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A.c ≤3 B.3<c ≤6 C.6<c ≤9D.c >9解析 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9]. 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.若x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,若目标函数z =ax +3y 仅在点(1,0)处取得最小值,则实数a 的取值范围为________.解析 画出关于x 、y 约束条件的平面区域如图所示,当a =0时,显然成立.当a >0时,直线ax +3y -z =0的斜率k =-a3>k AC =-1,∴0<a <3.当a <0时,k =-a3<k AB =2,∴-6<a <0.综上所得,实数a 的取值范围是(-6,3). 答案 (-6,3)10.已知{a n }为等差数列,若a 1+a 5+a 9=8π,则{a n }前9项的和S 9=________,cos(a 3+a 7)的值为________.解析 由{a n }为等差数列得a 1+a 5+a 9=3a 5=8π,解得a 5=8π3,所以{a n }前9项的和S 9=9(a 1+a 9)2=9a 5=9×8π3=24π.cos(a 3+a 7)=cos 2a 5=cos 16π3=cos 4π3=-12. 答案 24π -1211.函数f (x )=4sin x cos x +2cos 2x -1的最小正周期为________,最大值为________.解析 f (x )=2sin 2x +cos 2x =5sin(2x +φ),tan φ=12,所以最小正周期T =2π2=π,最大值为 5. 答案 π512.设函数f (x )=⎩⎪⎨⎪⎧|log 3(x +1)|,-1<x ≤0,tan ⎝ ⎛⎭⎪⎫π2x ,0<x <1,则f ⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫33-1=________,若f (a )<f ⎝ ⎛⎭⎪⎫12,则实数a 的取值范围是________.解析 由题意可得f ⎝⎛⎭⎪⎫33-1=⎪⎪⎪⎪⎪⎪log 333=12,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫33-1=f ⎝ ⎛⎭⎪⎫12=tan π4=1.当-1<a ≤0时,f (a )=|log 3(a +1)|<1,-1<log 3(a +1)<1,解得-23<a <2,所以-23<a ≤0;当0<a <1时,f (a )=tan ⎝⎛⎭⎪⎫π2a <1,0<π2a <π4,0<a <12,综上可得实数a 的取值范围是⎝⎛⎭⎪⎫-23,12.答案 1 ⎝ ⎛⎭⎪⎫-23,12 13.已知圆O :x 2+y 2=r 2与圆C :(x -2)2+y 2=r 2(r >0)在第一象限的一个公共点为P ,过点P 作与x 轴平行的直线分别交两圆于不同两点A ,B (异于P 点),且OA ⊥OB ,则直线OP 的斜率k =________,r =________.解析 两圆的方程相减可得点P 的横坐标为1.易知P 为AB 的中点,因为OA ⊥OB ,所以|OP |=|AP |=|PB |,所以△OAP 为等边三角形,同理可得△CBP 为等边三角形,所以∠OPC =60°.又|OP |=|OC |,所以△OCP 为等边三角形,所以∠POC =60°,所以直线OP 的斜率为 3.设P (1,y 1),则y 1=3,所以P (1,3),代入圆O ,解得r =2.答案3 214.已知偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,若区间[-1,3]上,函数g (x )=f (x )-kx -k 有3个零点,则实数k 的取值范围是________.解析 根据已知条件知函数f (x )为周期为2的周期函数;且x ∈[-1,1]时,f (x )=|x |;而函数g (x )的零点个数便是函数f (x )和函数y =kx +k 的交点个数.∴①若k >0,如图所示,当y =kx +k 经过点(1,1)时,k =12;当经过点(3,1)时,k =14.∴14<k <12.②若k <0,即函数y =kx+k 在y 轴上的截距小于0,显然此时该直线与f (x )的图象不可能有三个交点,即这种情况不存在.③若k =0,得到直线y =0,显然与f (x )图象只有两个交点.综上所得,实数k 的取值范围是⎝ ⎛⎭⎪⎫14,12.答案 ⎝ ⎛⎭⎪⎫14,12 15.已知数列{a n }满足a 1=-1,a 2>a 1,|a n +1-a n |=2n,若数列{a 2n -1}单调递减,数列{a 2n }单调递增,则数列{a n }的通项公式为a n =________.解析 由题意得a 1=-1,a 2=1,a 3=-3,a 4=5,a 5=-11,a 6=21,……,然后从数字的变化上找规律,得a n +1-a n =(-1)n +12n,则利用累加法即得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=-1+2-22+…+(-1)n 2n -1=(-1)[1-(-2)n ]1-(-2)=(-2)n-13.答案 (-2)n-13限时练(五) (限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数z =21+i+2i ,则z 的共轭复数是( ) A.-1-i B.1-i C.1+iD.-1+i解析 由已知z =21+i +2i =1+i ,则z 的共轭复数z =1-i ,选B. 答案 B2.已知函数y =f (x )是偶函数,当x >0时,f (x )=x 13,则在区间(-2,0)上,下列函数中与y =f (x )的单调性相同的是( )A.y =-x 2+1 B.y =|x +1|C.y =e |x |D.y =⎩⎪⎨⎪⎧2x -1,x ≥0,x 3+1,x <0解析 由已知得f (x )是在(-2,0)上的单调递减函数,所以答案为C. 答案 C3.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2在一个周期内的图象如图所示,则f ⎝ ⎛⎭⎪⎫π4=( )A.1B.12C.-1D.-12解析 由图知,A =2,且34T =5π6-π12=3π4,则周期T =π,所以ω=2.因为f ⎝ ⎛⎭⎪⎫π12=2,则2×π12+φ=π2,从而φ=π3.所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,故f ⎝ ⎛⎭⎪⎫π4=2sin5π6=1,选A. 答案 A4.过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,则CA →·CB →=( ) A.0 B. 5 C.5D.503解析 由圆C :x 2+y 2-4y -1=0得C (0,2),半径r = 5.∵过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,∴BA →·CB →=0,∴CA →·CB →=(CB →+BA →)·CB →=CB →2=5,所以选C.另:本题可以数形结合运用向量投影的方法求得结果.答案 C5.如图是某几何体的三视图,则该几何体的体积等于( ) A.2 B.1 C.23D.223解析 由三视图知:几何体是三棱柱削去一个同高的三棱锥,其中三棱柱的高为2,底面是直角边长为1的等腰直角三角形,三棱锥的底面是直角边长为1的等腰直角三角形,∴几何体的体积V =12×1×1×2-13×12×1×1×2=23.故选C.答案 C6.若实数x ,y 满足的约束条件⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y +1≥0,将一颗骰子投掷两次得到的点数分别为a ,b ,则z =2ax +by 在点(2,-1)处取得最大值的概率为( ) A.56 B.25 C.15D.16解析 约束条件为一个三角形ABC 及其内部,其中A (2,-1),B (-2,-1),C (0,1),要使函数z =2ax +by 在点(2,-1)处取得最大值,需满足-2ab≤-1⇒b ≤2a ,将一颗骰子投掷两次共有36个有序实数对(a ,b ),其中满足b ≤2a 有6+6+5+5+4+4=30对,所以所求概率为3036=56.选A.答案 A7.如图所示,已知△EAB 所在的平面与矩形ABCD 所在的平面互相垂直,EA =EB =3,AD =2,∠AEB =60°,则多面体E -ABCD 的外接球的表面积为( ) A.16π3B.8πC.16πD.64π解析 将四棱锥补形成三棱柱,设球心为O ,底面重心为G ,则△OGD为直角三角形,OG =1,DG =3,∴R 2=4,∴多面体E -ABCD 的外接球的表面积为4πR 2=16π.故选C. 答案 C8.已知函数f (x )=a -x 2⎝ ⎛⎭⎪⎫1e ≤x ≤e (其中e 为自然对数的底数)与函数g (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤1,1e 2+2B.⎣⎢⎡⎦⎥⎤1e 2+2,e 2-2C.[1,e 2-2]D.[e 2-2,+∞)解析 由已知得方程-(a -x 2)=2ln x ,即-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解,设h (x )=2ln x-x 2,求导得h ′(x )=2x -2x =2(1-x )(1+x )x ,因为1e ≤x ≤e ,所以h (x )在x =1处有唯一的极大值点,且为最大值点,则h (x )max =h (1)=-1,h ⎝ ⎛⎭⎪⎫1e =-2-1e 2,h (e)=2-e 2,且h (e)<h ⎝ ⎛⎭⎪⎫1e ,所以h (x )的最小值为h (e)=2-e 2.故方程-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解等价于2-e 2≤-a ≤-1,从而解得a 的取值范围为[1,e 2-2],故选C. 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.若二项式⎝ ⎛⎭⎪⎫x -1x n的展开式中恰好第5项的二项式系数最大,则展开式中含x 2项的系数是________(请用数字作答).解析 因为二项式⎝ ⎛⎭⎪⎫x -1x n的展开式中恰好第5项的二项式系数最大,所以展开式有9项,即n =8,展开式通项为T k +1=C k 8x8-k (-1)k x -k =(-1)k C k 8x 8-2k,令8-2k =2,得k =3;则展开式中含x 2项的系数是(-1)3C 38=-56. 答案 -5610.已知双曲线x 2-y 2b2=1(b >0)的离心率为5,则b =________,又以(2,1)为圆心,r 为半径的圆与该双曲线的两条渐近线组成的图形只有一个公共点,则半径r =________. 解析 因为e =c a=c =5,所以b =c 2-a 2=(5)2-12=2;因为以(2,1)为圆心的圆与双曲线的渐近线组成的图形只有一个公共点,所以该圆必与双曲线渐近线2x -y =0相切,所以r =|2×2-1|22+12=355. 答案 235511.已知等差数列{a n }的公差为-3,且a 3是a 1和a 4的等比中项,则通项a n =________,数列{a n }的前n 项和S n 的最大值为________.解析 由题意得a 23=a 1a 4,即(a 1-6)2=a 1(a 1-9),解得a 1=12,所以a n =12+(n -1)×(-3)=-3n +15;由-3n +15≥0得n ≤5,所以当n =4或5时S n 取得最大值,所以(S n )max =5×12+5×42×(-3)=30. 答案 -3n +15 30 12.设奇函数f (x )=⎩⎨⎧a cos x -3sin x +c ,x ≥0,cos x +b sin x -c ,x <0,则a +c 的值为________,不等式f (x )>f (-x )在x ∈[-π,π]上的解集为________.解析 因为f (x )为奇函数,所以f (0)=0,即a cos 0-3sin 0+c =0,所以a +c =0;由f ⎝ ⎛⎭⎪⎫π2+f ⎝ ⎛⎭⎪⎫-π2=0得-3+c -b -c =0,所以b =-3;由f (π)+f (-π)=0得-a +c -1-c =0,所以a =-1,所以c =1,所以当0≤x ≤π时,由f (x )>f (-x )=-f (x )得f (x )>0,即-cos x -3sin x +1>0,所以sin ⎝⎛⎭⎪⎫x +π6<12,所以5π6<x +π6≤7π6,即2π3<x ≤π.同理可求得-π≤x <0时,-2π3<x <0,所以原不等式f (x )>f (-x )的解集为⎝ ⎛⎭⎪⎫-2π3,0∪⎝ ⎛⎦⎥⎤2π3,π. 答案 0 ⎝ ⎛⎭⎪⎫-2π3,0∪⎝ ⎛⎦⎥⎤2π3,π13.已知实数x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≤x ,2x +y -9≤0,则y -x 的最大值是________;x -2x 2+y 2-4x +4的取值范围是________.解析 作出不等式组满足的平面区域,如图所示,由图知当目标函数z =y -x 经过原点时取得最大值0,即y -x 的最大值为0;当x =2时,x -2x 2+y 2-4x +4=0;当x >2时,x -2x 2+y 2-4x +4=x -2(x -2)2+y2=11+⎝⎛⎭⎪⎫y x -22,又yx -2表示平面区域内的点与点A (2,0)连线的斜率,由图知,k ∈[0,+∞),即y x -2∈[0,+∞),所以11+⎝⎛⎭⎪⎫y x -22∈(0,1],同理可求得当x <2时,-11+⎝ ⎛⎭⎪⎫y x -22∈[-1,0),所以x -2x 2+y 2-4x +4的取值范围是[-1,1].答案 0 [-1,1]14.已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线x 2a-y 2=1(a>0)的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a =______.解析 因为抛物线的准线为x =-p 2,则有1+p2=5,得p =8,所以m =4,又双曲线的左顶点坐标为(-a ,0),则有41+a =1a ,解得a =19.答案 1915.已知函数f (x )=⎩⎪⎨⎪⎧-|x 3-2x 2+x |,x <1,ln x ,x ≥1,若命题“存在t ∈R ,且t ≠0,使得f (t )≥kt ”是假命题,则实数k 的取值范围是________.解析 当x <1时,f (x )=-|x 3-2x 2+x |=-|x (x -1)2|=⎩⎪⎨⎪⎧x (x -1)2,x ≤0,-x (x -1)2,0<x <1,当x ≤0时,f ′(x )=3x 2-4x +1=(x -1)(3x -1)>0,f (x )是增函数;当0<x <1时,f ′(x )=-(x -1)(3x -1),所以f (x )在⎝ ⎛⎭⎪⎫0,13上是减函数,在⎝ ⎛⎭⎪⎫13,1上是增函数,作出函数y =f (x )在R 上的图象,如图所示.命题“存在t ∈R ,且t ≠0,使得f (t )≥kt ”是假命题,即对任意的t ∈R ,且t ≠0,f (t )<kt 恒成立,作出直线y =kx ,设直线y =kx与函数y =ln x (x ≥1)的图象相切于点(m ,ln m ),则由(ln x )′=1x,得k =1m ,即ln m =km ,解得m =e ,k =1e.设直线y =kx 与y =x (x -1)2(x ≤0)的图象相切于点(0,0),所以y ′=(x -1)(3x -1),则k =1,由图象可知,若f (t )<kt 恒成立,则实数k 的取值范围是⎝ ⎛⎦⎥⎤1e ,1.答案 ⎝ ⎛⎦⎥⎤1e ,1限时练(六) (限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若f (x )=sin(2x +θ),则“f (x )的图象关于x =π3对称”是“θ=-π6”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件解析 若f (x )的图象关于x =π3对称,则2π3+θ=π2+k π,k ∈Z ,即θ=-π6+k π,k∈Z ,当k =0时,θ=-π6;当k =1时,θ=5π6.若θ=-π6时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,2x-π6=π2+k π,k ∈Z ,∴x =π3+k π2,k ∈Z ,当k =0时,f (x )的图象关于x =π3对称.故选B. 答案 B2.若1a <1b<0,则下列四个不等式恒成立的是( )A.|a |>|b |B.a <bC.a 3<b 3D.a +b <ab解析 由1a <1b<0可得b <a <0,从而|a |<|b |,即A 、B 项不正确;b 3<a 3,即C 项不正确;a +b <0,ab >0,则a +b <ab ,即D 项正确.故选D.答案 D3.如图,AB 是⊙O 的直径,点C 、D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A.12a +b B.12a -b C.a +12bD.a -12b解析 连接CD 、OD ,∵点C 、D 是半圆弧AB 的两个三等分点,∴AC ︵=BD ︵=CD ︵,∴CD ∥AB ,∠CAD =∠DAB =13×90°=30°,∵OA =OD ,∴∠ADO =∠DAO =30°,由此可得∠CAD =∠DAO=30°,∴AC ∥DO ,∴四边形ACDO 为平行四边形,∴AD →=AO →+AC →=12AB →+AC →=12a +b .故选A.答案 A4.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =5b sin C ,且cos A = 5cos B cos C ,则tan A 的值为( ) A.5B.6C.-4D.-6解析 由正弦定理得sin A =5sin B sin C ①,又cos A =5cos B cos C ②,②-①得,cosA -sin A =5(cosB cosC -sin B sin C )=5cos(B +C )=-5cos A ,∴sin A =6cos A ,∴tan A =6.故选B .答案 B5.已知S n 表示数列{a n }的前n 项和,若对任意n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2 014=( ) A.1 006×2 013 B.1 006×2 014 C.1 007×2 013D.1 007×2 014解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,∴a 1=0,令n =2,则a 3=2a 2=2,∴a 2=1,于是a n +1-a n =1,∴数列{a n }是首项为0,公差为1的等差数列,∴S 2 014=2 014×2 0132=1 007×2 013.故选C. 答案 C6.北京某大学为第十八届四中全会招募了30名志愿者(编号分别是1,2,…,30号),现从中任意选取6人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一厅的选取种数是( ) A.25 B.32 C.60 D.100解析 要“确保6号、15号与24号入选并分配到同一厅”,则另外三人的编号或都小于6或都大于24,于是根据分类加法计数原理,得选取种数是(C 35+C 36)A 22=60. 答案 C7.椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A 、B 两点,过原点与线段AB 中点的直线的斜率为32,则ba=( )A.32 B.233 C.932D.2327解析 设交点分别为A (x 1,y 1)、B (x 2,y 2),AB 的中点为(x 中,y 中),代入椭圆方程得ax 21+by 21=1,ax 22+by 22=1,由两式相减整理得:b a ·y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-1,即b a ·y 1-y 2x 1-x 2·y 中x 中=-1,又y 中x 中=y 中-0x 中-0=32,可得b a ·(-1)·32=-1,即b a =233.故选B. 答案 B8.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P 是A 1D 1的中点,Q 是A 1B 1上任意一点,E 、F 是CD 上任意两点,且EF 长为定值,现有下列结论: ①异面直线PQ 与EF 所成的角为定值;②点P 到平面QEF 的距离为定值;③直线PQ 与平面PEF 所成的角为定值;④三棱锥P -QEF 的体积为定值. 其中正确结论的个数为( ) A.0 B.1 C.2D.3解析 当点Q 与A 1重合时,异面直线PQ 与EF 所成的角为π2;当点Q 与B 1重合时,异面直线PQ 与EF 所成的角不为π2,即①错误.当点Q 在A 1B 1上运动时,三棱锥P -QEF 的底面△QEF的面积以及三棱锥的高都不变,∴体积不变,即②正确.④也正确.当点Q 在A 1B 1上运动时,直线QP 与平面PEF 所成的角随点Q 的变化而变化,即③错误.故选C. 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.α,β是两个平面,m ,n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________(填写所有正确命题的编号).解析 当m ⊥n ,m ⊥α,n ∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④. 答案 ②③④10.以椭圆x 24+y 2=1的焦点为顶点,长轴顶点为焦点的双曲线的渐近线方程是________,离心率为________.解析 设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由题意得双曲线的顶点为(±3,0),焦点为(±2,0),所以a =3,c =2,所以b =1,所以双曲线的渐近线方程为y =±b a x =±33x ,离心率为e =c a =233.答案 y =±33x 23311.函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ)(ω>0,|φ|<π2的图象如图所示,则ω=________,φ=________.解析 由图象知函数f (x )的周期为π,所以ω=2πT=2,所以f (x )=2sin(2x +φ).把点(π,1)代入得2sin(2π+φ)=1,即sin φ=12.因为|φ|<π2,所以φ=π6.答案 2π612.某几何体的三视图如图所示(单位:cm),则该几何体的体积为________cm 3,表面积为________cm 2.解析 由三视图知该几何体为一个半球被割去14后剩下的部分,其球半径为1,所以该几何体的体积为12×34×43π×13=π2,表面积为12×34×4π×12+34×π×12+2×14×π×12=11π4.答案π2 11π413.已知x ,y ∈R 且满足不等式组⎩⎪⎨⎪⎧x ≥1,2x +y -5≤0,kx -y -k -1≤0,当k =1时,不等式组所表示的平面区域的面积为________,若目标函数z =3x +y 的最大值为7,则k 的值为________.解析 当k =1时,不等式组为⎩⎪⎨⎪⎧x ≥1,2x +y -5≤0,x -y -2≤0,作出不等式组满足的平面区域如图中△ABC 的面积,易求得A (1,3),B (1,-1),C ⎝ ⎛⎭⎪⎫73,13,所以S △ABC =12×4×43=83;由目标函数z =3x +y 的最大值为7知⎩⎪⎨⎪⎧3x +y =7,2x +y -5=0,解得⎩⎪⎨⎪⎧x =2,y =1,则点(2,1)在kx -y -k -1=0上,即2k-1-k -1=0,解得k =2.答案 83214.在实数集R 中定义一种运算“*”,对任意a 、b ∈R ,a *b 为唯一确定的实数,且具有性质:(1)对任意a ∈R ,a *0=a ;(2)对任意a 、b ∈R ,a *b =ab +(a *0)+(b *0). 关于函数f (x )=(e x)*1ex 的性质,有如下说法:①函数f (x )的最小值为3;②函数f (x )为偶函数;③函数f (x )的单调递增区间为 (-∞,0].其中所有正确说法的序号为________.。
星期六 (综合限时练) 2017年____月____日解答题综合练(设计意图:训练考生在规定时间内得高分,限时:80分钟) 1.(本小题满分12分)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =b cos C +33c sin B . (1)若a =2,b =7,求c ;(2)若3sin ⎝ ⎛⎭⎪⎫2A -π6-2sin 2⎝ ⎛⎭⎪⎫C -π12=0,求A . 解 (1)∵a =b cos C +33c sin B , ∴sin A =sin B cos C +33sin C sin B , ∴cos B sin C =33sin C sin B ,又sin C ≠0, ∴tan B =3,∴B =π3.∵b 2=a 2+c 2-2ac cos B ,∴c 2-2c -3=0, ∴c =3,c =-1(舍去).(2)∵3sin ⎝ ⎛⎭⎪⎫2A -π6-2sin 2⎝ ⎛⎭⎪⎫C -π12=3sin ⎝ ⎛⎭⎪⎫2A -π6-1+cos ⎝ ⎛⎭⎪⎫2C -π6 =3sin ⎝ ⎛⎭⎪⎫2A -π6+cos ⎝ ⎛⎭⎪⎫4π3-2A -π6-1=3sin ⎝ ⎛⎭⎪⎫2A -π6-cos ⎝ ⎛⎭⎪⎫2A -π6-1=2sin ⎝ ⎛⎭⎪⎫2A -π3-1. ∴由2sin ⎝ ⎛⎭⎪⎫2A -π3-1=0,及π6<A <π2,可得A =π4.2.(本小题满分12分)为了解从事微商的人的年龄分布情况,某调查机构对所辖市的A ,B 两个街区中随机抽取了50名微商的年龄进行了调查统计,结果如下表:已知从500.3.(1)求x ,y 的值,根据表中数计算两个街区从事微商年龄在30岁以下的概率; (2)为了解这50名微商的工作生活情况,决定按表中描述的六种情况进行分层抽样,从中选取10名作为一个样本进行跟踪采访,然后再从样本中年龄在25~30的人员中随机选取2人接受电视台专访,求接受专访的2人来自不同街区的概率.解 (1)依题意有10+y50=0.3,所以y =5, 所以x =50-5-10-5-10-5=15,A 街区微商中年龄在30岁以下的概率为5+1530=23, B 街区微商中年龄在30岁以下的概率为5+1020=34.(2)由分层抽样可知,从年龄在25~30的人员中选取的人数为1050×25=5人,其中A 街区3人,B 街区2人.设来自A 街区的3人记为A 1,A 2,A 3,来自B 街区的2人记为B 1,B 2,则从中选取2人的所有基本事件为(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2)共10种情况,而2人来自不同街区所包含的基本事件有6种,所以接受专访的2人来自不同街区的概率为P =610=35.3.(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1的侧棱AA 1⊥底面ABC ,∠ACB =90°,E 是棱CC 1的中点,F 是AB 的中点,AC =BC =1,AA 1=2. (1)求证:CF ∥平面AB 1E ;(2)求三棱锥C -AB 1E 在底面AB 1E 上的高. (1)证明 取AB 1的中点G ,连接EG ,FG ,∵F 、G 分别是AB 、AB 1的中点,∴FG∥BB1,FG=12BB1.∵E为侧棱CC1的中点,∴FG∥EC,FG=EC,∴四边形FGEC是平行四边形,∴CF∥EG.∵CF⊄平面AB1E,EG⊂平面AB1E,∴CF∥平面AB1E.(2)解∵三棱柱ABC-A1B1C1的侧棱AA1⊥底面ABC,∴BB1⊥平面ABC,又AC⊂平面ABC,∴AC⊥BB1.∵∠ACB=90°,∴AC⊥BC.∵BB1∩BC=B,∴AC⊥平面EB1C,∴AC⊥CB1,∴V A-EB1C =13S△EB1C·AC=13×⎝⎛⎭⎪⎫12×1×1×1=16,∵AE=EB1=2,AB1=6,∴S△AB1E =32,∵V C-AB1E =V A-EB1C,∴三棱锥C-AB1E在底面AB1E上的高为3V C-AB1ES△AB1E=33.4.(本小题满分12分)设A1(-22,0),A2(22,0),P是动点,且直线A1P与A2P的斜率之积等于-1 2.(1)求动点P的轨迹E的方程;(2)设轨迹E的左、右焦点分别为F1,F2,作两条互相垂直的直线MF1和MF2与轨迹E的交点分别为A、B和C、D,求证:1|AB|+1|CD|恒为定值.(1)解设点P的坐标为(x,y),则由题意得yx+22·yx-22=-12,化简得x28+y24=1且x≠±2 2.故动点P的轨迹E的方程为x28+y24=1且x≠±2 2.(2)证明设直线AB的方程为y=k(x+2),则直线CD的方程为y=-1k(x-2).由⎩⎪⎨⎪⎧y =k (x +2),x 28+y 24=1,消去y 得(2k 2+1)x 2+8k 2x +8k 2-8=0.由根与系数关系得x 1+x 2=-8k 22k 2+1,x 1x 2=8k 2-82k 2+1,所以|AB |=1+k 2·(x 1+x 2)2-4x 1·x 2=42(k 2+1)2k 2+1.同理可得|CD |=42(k 2+1)k 2+2.所以1|AB |+1|CD |=2k 2+142(k 2+1)+k 2+242(k 2+1)=328. 5.(本小题满分12分)已知函数f (x )=ln xx -a e x . (1)当a =1e 时,求f (x )的最大值;(2)若f (x )在[e ,+∞)上为减函数,求a 的取值范围.解 (1)当a =1e 时,函数f (x )=ln x x -e xe ,则f ′(x )=1-ln x x 2-e x e (x >0), 当0<x <1时,1-ln x x 2>1,e xe <1,所以f ′(x )>0;当x =1时,f ′(x )=0;当x >1时,1-ln x x 2<0,e xe >0,所以f ′(x )<0, 所以f (x )在(0,1)上为增函数,在(1,+∞)上为减函数, 所以最大值为f (1)=-1.(2)f (x )在[e ,+∞)上为减函数,即f ′(x )≤0在[e ,+∞)上恒成立,则f ′(x )=1-ln x x 2-a e x =1-ln x -ax 2e xx 2,①当a ≥0时,因为x ∈[e ,+∞),所以1-ln x ≤0,-ax 2e x ≤0,所以f ′(x )≤0,符合题意;②当a <0时,f ′(e)=-a e e >0,与f ′(x )≤0在[e ,+∞)上恒成立矛盾,不符合题意.综合可知,a 的取值范围是[0,+∞).6.请考生在以下三题中任选一题做答,如果多做,则按所做的第一题计分.A.(本小题满分10分)选修4-4:坐标系与参数方程已知直线C 1:⎩⎨⎧x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎨⎧x =cos θ,y =sin θ,(θ为参数).(1)当α=π3时,求C 1被C 2截得的线段的长;(2)过坐标原点O 作C 1的垂线,垂足为A ,当α变化时,求A 点轨迹的参数方程,并指出它是什么曲线.解 (1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1. 联立方程组⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点为(1,0)与⎝ ⎛⎭⎪⎫12,-32.所以C 1被C 2截得的线段的长为1.(2)将C 1的参数方程代入C 2的普通方程得t 2+2t cos α=0,∴A 点对应的参数t =t 1+t 22=-cos α,∴A 点坐标为(sin 2α,-cos αsin α). 故当α变化时,A 点轨迹的参数方程为:⎩⎨⎧x =sin 2α,y =-sin αcos α,(α为参数). 因此A 点轨迹的普通方程为⎝ ⎛⎭⎪⎫x -122+y 2=14.故A 点轨迹是以⎝ ⎛⎭⎪⎫12,0为圆心,半径为12的圆. B.(本小题满分10分)选修4-5:不等式选讲 已知x ,y ,z ∈(0,+∞),x +y +z =3. (1)求1x +1y +1z 的最小值; (2)证明:3≤x 2+y 2+z 2<9.(1)解 因为x +y +z ≥33xyz >0,1x +1y +1z ≥33xyz >0,所以(x +y +z )⎝ ⎛⎭⎪⎫1x +1y +1z ≥9,即1x +1y +1z ≥3.当且仅当x=y=z=1时,1x+1y+1z取得最小值3.(2)证明x2+y2+z2=x2+y2+z2+(x2+y2)+(y2+z2)+(z2+x2)3≥x2+y2+z2+2(xy+yz+zx)3=(x+y+z)23=3.又x2+y2+z2-9=x2+y2+z2-(x+y+z)2=-2(xy+yz+zx)<0,所以3≤x2+y2+z2<9.。
限时练(三)(建议用时:40分钟)1.设全集U={n|1≤n≤10,n∈N*},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.解析由题意,得U={1,2,3,4,5,6,7,8,9,10},故∁U A={4,6,7,9,10},所以(∁U A)∩B={7,9}.答案{7,9}2.不等式4x-2≤x-2的解集是________.解析①当x-2>0,即x>2时,不等式可化为(x-2)2≥4,所以x≥4;②当x-2<0,即x<2时,不等式可化为(x-2)2≤4,所以0≤x<2.答案[0,2)∪[4,+∞)3.已知直线l1:x+(a-2)y-2=0,l2:(a-2)x+ay-1=0,则“a=-1”是“l1⊥l2”的________条件.解析若a=-1,则l1:x-3y-2=0,l2:-3x-y-1=0,显然两条直线垂直;若l1⊥l2,则(a-2)+a(a-2)=0,所以a=-1或a=2,因此“a=-1”是“l1⊥l2”的充分不必要条件.答案充分不必要4.函数f(x)=(x-3)e x的单调增区间是________.解析因为f(x)=(x-3)e x,则f′(x)=e x(x-2),令f′(x)>0,得x>2,所以f(x)的单调增区间为(2,+∞).答案(2,+∞)5.在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=π6,a=1,b=3,则角B=________.解析由正弦定理得asin A=bsin B,得sin B=b sin Aa=32,又因为A=π6,且b>a,所以B∈⎝⎛⎭⎪⎫π6,5π6,所以B =π3或2π3.答案 π3或2π36.执行如图所示的流程图,如果输入的t ∈[-2,2],则输出的S 的取值范围为________.解析 由流程图可知S 是分段函数求值,且S =⎩⎨⎧2t 2-2,t ∈[-2,0),t -3,t ∈[0,2],其值域为(-2,6]∪[-3,-1]=[-3,6].答案 [-3,6]7.若命题“∀x ∈R ,ax 2-ax -2≤0”时真命题,则实数a 的取值范围是________.解析 当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎨⎧a <0,Δ=a 2+8a ≤0,得-8≤a <0.综上-8≤a ≤0.答案 [-8,0]8.从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为________.解析 由题意可知m =(a ,b )有(2,1),(2,3)(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3),(5,5),共12种情况.因为m ⊥n ,即m·n =0,所以a ×1+b ×(-1)=0,即a =b ,满足条件的有(3,3),(5,5),共2个.故所求的概率为16.答案 169.已知正四棱锥底面边长为42,体积为32,则此正四棱锥的侧棱长为________. 解析 设正四棱锥的高为h ,底面正方形的边长为a ,则a =42,V =13a 2h =32,解得h =3,所以此正四棱锥的侧棱长为h 2+⎝ ⎛⎭⎪⎫2a 22=5.答案 510.已知圆C 1:(x +1)2+(y -1)2=1,且圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为________.解析 C 1:(x +1)2+(y -1)2=1的圆心为(-1,1),所以它关于直线x -y -1=0对称的点为(2,-2),对称后半径不变,所以圆C 2的方程为(x -2)2+(y +2)2=1.答案 (x -2)2+(y +2)2=111.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,7个剩余分数的方差为________.89 7 7 4 0 1 0 x 9 1 解析 由题图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4,所以s 2=17×[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.答案 36712.设S n 是等比数列{a n }的前n 项和,a n >0,若S 6-2S 3=5,则S 9-S 6的最小值为________.解析 设等比数列{a n }的公比为q ,则由a n >0得q >0,S n >0.又S 6-2S 3=(a 4+a 5+a 6)-(a 1+a 2+a 3)=S 3q 3-S 3=5,则S 3=5q 3-1,由S 3>0,得q 3>1,则S 9-S 6=a 7+a 8+a 9=S 3q 6=5q 6q 3-1=51q 3-1q 6,令1q 3=t ,t ∈(0,1),则1q 3-1q 6=t -t 2=-⎝ ⎛⎭⎪⎫t -122+14∈⎝ ⎛⎦⎥⎤0,14,所以当t =12,即q 3=2时,1q 3-1q 6取得最大值14,此时S 9-S 6取得最小值20.答案 2013.已知变量x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________.解析 法一 由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B=-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B =z C>z A 即可,解得a =-1或a =2.法二 目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.答案 -1或214.设f (x )是定义在R 上的奇函数,且f (x )=2x+m 2x ,设g (x )=⎩⎨⎧f (x ),x >1,f (-x ),x ≤1,若函数y =g (x )-t 有且只有一个零点,则实数t 的取值范围是________.解析 由f (x )是定义在R 上的奇函数可得f (0)=1+m =0,解得m =-1,则f (x )=2x -12x ,f ′(x )=2x ln 2+ln 22x >0,则f (x )在R 上是递增函数.函数y =g (x )-t 有且只有一个零点即函数y =g (x ),y =t 的图象只有一个交点,作出函数y=g (x ),y =t 的图象如图所示,由图可知实数t 的取值范围是⎣⎢⎡⎦⎥⎤-32,32. 答案 ⎣⎢⎡⎦⎥⎤-32,32。
(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设i 是虚数单位,若复数z 与复数z 0=1-2i 在复平面上对应的点关于实轴对称,则z 0·z =( ) A.5 B.-3 C.1+4iD.1-4i解析 因为z 0=1-2i ,所以z =1+2i ,故z 0·z =5.故选A. 答案 A2.已知直线y =3x 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)有两个不同的交点,则双曲线C 的离心率的取值范围是( ) A.(1,3) B.(1,2) C.(3,+∞)D.(2,+∞)解析 直线y =3x 与C 有两个不同的公共点⇒ba >3⇒e >2.故选D.答案 D3.设函数y =f (x )的图象与y =2x +a 的图象关于直线y =-x 对称,且f (-2)+ f (-4)=1,则a 等于( ) A.-1 B.1 C.2D.4解析 设f (x )上任意一点为(x ,y )关于y =-x 的对称点为(-y ,-x ),将(-y ,-x )代入y =2x +a ,所以y =a -log 2(-x ),由f (-2)+f (-4)=1,得a -1+a -2=1,2a =4,a =2. 答案 C4.已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c .若a =2,cos A =13,则△ABC 面积的最大值为( ) A.2B. 2C.12D. 3解析 由a 2=b 2+c 2-2bc cos A 得4=b 2+c 2-23bc ≥2bc -23bc =43bc , 所以bc ≤3,S =12bc sin A =12bc ·223≤12×3×223= 2.故选B. 答案 B5.一个空间几何体的三视图如图所示,则该几何体的体积为( )A.43π+833B.43π3+8 3C.43π+833D.43π+8 3解析 由三视图可知该几何体是一个半圆锥和一个三棱锥组合而成的,其体积为:V =13Sh =2π+43×23=43π+833.答案 A6.设函数f (x )=e x +1,g (x )=ln(x -1).若点P 、Q 分别是f (x )和g (x )图象上的点,则|PQ |的最小值为( ) A.22 B. 2 C.322D.2 2解析 f (x )=e x +1与g (x )=ln(x -1)的图象关于直线y =x 对称,平移直线y =x使其分别与这两个函数的图象相切.由f ′(x )=e x =1得,x =0.切点坐标为(0,2),其到直线y =x 的距离为2,故|PQ |的最小值为2 2.故选D. 答案 D7.已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点A 为双曲线虚轴的一个顶点,过F ,A 的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若F A →=(2-1)AB →,则此双曲线的离心率是( ) A. 2 B. 3 C.2 2D. 5解析 过F ,A 的直线方程为y =b c (x +c )①,一条渐近线方程为y =ba x ②,联立①②,解得交点B ⎝ ⎛⎭⎪⎫ac c -a ,bc c -a , 由F A →=(2-1)AB→,得c =(2-1)ac c -a ,c =2a ,e = 2. 答案 A8.已知函数f (x )=⎩⎪⎨⎪⎧1-|x |, (x ≤1),x 2-4x +3, (x >1).若f (f (m ))≥0,则实数m 的取值范围是( ) A.[-2,2] B.[-2,2]∪[4,+∞) C.[-2,2+2]D.[-2,2+2]∪[4,+∞)解析 令f (m )=n ,则f (f (m ))≥0就是f (n )≥0.画出函数f (x )的图象可知,-1≤n ≤1,或n ≥3,即-1≤f (m )≤1或f (m )≥3. 由1-|x |=-1得x =-2.由x 2-4x +3=1,x =2+2,x =2-2(舍). 由x 2-4x +3=3得,x =4.再根据图象得到,m ∈[-2,2+2]∪[4,+∞).故选D. 答案 D二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.已知x ⎝ ⎛⎭⎪⎫x +a x 5展开式中的常数项为20,其中a >0,则a =________.解析T r +1=C r 5x ·x5-r ·⎝ ⎛⎭⎪⎫a x r =a r C r 5x 6-32r . 由⎩⎪⎨⎪⎧6-32r =0,a r C r 5=20,得⎩⎨⎧r =4,a 4=4,因为a >0,所以a = 2.答案 210.已知双曲线x 25-y 24=1的左、右焦点分别为F 1,F 2,P 是双曲线右支上一点,则|PF 1|-|PF 2|=________;离心率e =________. 解析 依题意,|PF 1|-|PF 2|=2a =25,离心率e =ca =1+b 2a 2=355.答案 25 35511.已知函数f (x )=⎩⎨⎧3x-1,x ≤1,f (x -1),x >1,则f (f (2))=________,值域为________.解析 依题意,f (2)=f (1)=2,f [f (2)]=f (2)=2;因为f (x )=f (x -1),所以函数f (x )具有周期性,故函数f (x )的值域为(-1,2]. 答案 2 (-1,2]12.将函数y =sin 2x 的图象向右平移φ个单位长度后所得图象的解析式为y =sin ⎝ ⎛⎭⎪⎫2x -π6,则φ=________⎝ ⎛⎭⎪⎫0<φ<π2,再将函数y =sin ⎝ ⎛⎭⎪⎫2x -π6图象上各点的横坐标伸长到原来的2倍(纵坐标不变)后得到的图象的解析式为________. 解析 依题意,sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=sin ⎝ ⎛⎭⎪⎫2x -π6,故φ=π12.将y =sin ⎝⎛⎭⎪⎫2x -π6图象上各点的横坐标伸长到原来的2倍后得到y =sin ⎝ ⎛⎭⎪⎫x -π6的图象.答案 π12 y =sin ⎝⎛⎭⎪⎫x -π613.已知⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫f (n )n 是等差数列,f (1)=2,f (2)=6,则f (n )=________,数列{a n }满足a n +1=f (a n ),a 1=1,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫11+a n 的前n 项和为S n ,则S 2015+1a2016=________.解析 由题意可得f (1)1=2,f (2)2=3,又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫f (n )n 是等差数列,则公差为1,所以f (n )n =2+(n -1)=n +1,f (n )=n (n +1)=n 2+n ;a n +1=f (a n )=a n (a n +1),则1a n +1=1a n (a n +1)=1a n -1a n +1,所以1a n +1=1a n-1a n +1,S 2015=1a 1+1+1a 2+1+…+1a 2015+1=⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a 2015-1a 2016=1a 1-1a 2016,所以S 2015+1a 2016=1a 1=1. 答案 n 2+n 114.设a 、b 是单位向量,其夹角为θ.若|t a +b |的最小值为12,其中t ∈R ,则θ=________.解析 因为t ∈R ,所以|t a +b |2=t 2+2t cos θ+1=(t +cos θ)2+1-cos 2θ≥1-cos 2θ=14.得cos θ=±32⇒θ=π6或5π6. 答案 π6或5π615.已知数列{a n }的各项取倒数后按原来顺序构成等差数列,各项都是正数的数列{x n }满足x 1=3,x 1+x 2+x 3=39,xa nn =xa n +1n +1=xa n +2n +2,则x n =________. 解析 设xa nn =xa n +1n +1=xa n +2n +2=k ,则a n =log x n k ⇒1a n =log k x n ,同理1a n +1=log k x n +1,1a n +2=log k x n +2,因为数列{a n }的各项取倒数后按原来顺序构成等差数列,所以2log k x n +1=log k x n +log k x n +2⇒x 2n +1=x n x n +2,所以数列{x n }是等比数列,把x 1=3代入x 1+x 2+x 3=39得公比q =3(负值舍去),所以x n =3×3n -1=3n .答案3n。
2017届高考数学二轮复习小题综合限时练(三)文
(限时:40分钟)
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.设i 是虚数单位,若复数z 与复数z 0=1-2i 在复平面上对应的点关于实轴对称,则z 0·z =()
A.5
B.-3
C.1+4i
D.1-4i
解析因为z 0=1-2i,所以z =1+2i,故z 0·z =5.故选A.答案
A
2.已知集合M ={y |y =4-x 2
},N ={x |y =ln(x 2-2x )},则()
A.M ⊂N
B.N ⊂M
C.M ∩N =∅
D.M ∪N ≠R
解析M =[0,2],N =(-∞,0)∪(2,+∞),所以M ∩N =∅.故选C.
答案
C
3.在-20到40之间插入8个数,使这10个数成等差数列,则这10个数的和为()
A.200
B.100
C.90
D.70
解析S =10×(-20+40)
2=100.故选B.
答案
B
4.我们知道,可以用模拟的方法估计圆周率π的近似值.如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n ,落到正方形内的豆子数为m ,则圆周率π的估算值是()A.
n m B.2n m C.3n m
.2m
n
解析设圆的半径为r ,则P =m n =(2r )2πr 2
,得π=2n
m
.故选B.答案
B
5.已知直线y =3x 与双曲线C :x 2a 2-y 2
b
2=1(a >0,b >0)有两个不同的交点,则双曲线C
的离心率的取值范围是()
A.(1,3)
B.(1,2)
C.(3,+∞)
D.(2,+∞)
解析
直线y =3x 与C 有两个不同的公共点⇒b
a
>3⇒e >2.故选D.
答案D
6.若x ,y -y ≤0,
+y ≤1,≥0,
则z =x +2y 的最大值为(
)
A.0
B.1
C.32
D.2
解析
可行域如图所示.目标函数化为y =-12x +1
2
z ,
当直线y =-12x +1
2z 过点A (0,1)时,z 取得最大值2.
答案
D
7.若函数f (x )=sin ωx (ωf f ω的一个可能值是()
A.1
2 B.35C.34
D.32
解析
由函数f (x )=sin ωx (ω上单调递增,得2π3≤π2ω⇒ω≤3
4
.
由f f ,得5π6>π2ω,ω>35,所以35<ω≤3
4.故选C.
答案
C
8.一个空间几何体的三视图如图所示,则该几何体的体积为(
)
A.
43π+83
3 B.43π3
+83
C.43π+833
D.43π+83
解析
由三视图可知该几何体是一个半圆锥和一个三棱锥组合而成的,其体积为:
V =13Sh =2π+43×23=43π+833.
答案
A
9.已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c .若a =2,cos A =1
3,则△ABC
面积的最大值为()A.2 B.2
C.12
D.3
解析
由a 2=b 2+c 2-2bc cos A 得4=b 2+c 2
-23bc ≥2bc -23bc =43
bc ,
所以bc ≤3,S =12bc sin A =12bc ·223≤12×3×22
3= 2.故选B.
答案
B
10.函数f (x x (-π≤x ≤π且x ≠0)的图象可能为()
解析
∵f (x )=(x -1
x
)cos x ,∴f (-x )=-f (x ),
∴f (x )为奇函数,排除A,B;当x →π时,f (x )<0,排除C.故选D.答案
D
11.已知F 为双曲线x 2a 2-y 2
b
2=1(a >0,b >0)的左焦点,点A 为双曲线虚轴的一个顶点,过F ,
A 的直线与双曲线的一条渐近线在y 轴右侧的交点为
B ,若FA →=(2-1)AB →
,则此双曲线的离心率是()
A.2
B.3
C.22
D.5
解析
过F ,A 的直线方程为y =b c (x +c )①,一条渐近线方程为y =b
a
x ②,联立①②,
解得交点由FA →=(2-1)AB →
,得c =(2-1)ac c -a
,c =2a ,e = 2.
答案
A
12.已知函数f (x x |,
(x ≤1),
2
-4x +3,(x >1).
若f (f (m ))≥0,则实数m 的取值范围是
(
)
A.[-2,2]
B.[-2,2]∪[4,+∞)
C.[-2,2+2]
D.[-2,2+2]∪[4,+∞)
解析
令f (m )=n ,则f (f (m ))≥0就是f (n )≥0.画出函数f (x )的图象可知,-1≤n ≤1,
或n ≥3,
即-1≤f (m )≤1或f (m )≥3.由1-|x |=-1得x =-2.
由x 2
-4x +3=1,x =2+2,x =2-2(舍).由x 2-4x +3=3得,x =4.
再根据图象得到,m ∈[-2,2+2]∪[4,+∞).故选D.答案
D
二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在答题中的横线上.)
13.如图,根据图中的数构成的规律,a 表示的数是________.
12234341212
4
5
48
a 485
……
解析数表的规律是每行从第二个数起一个数等于它肩上的两个数的乘积,所以a =
12×12=144.答案
144
14.实数x ,y -2x ≤-2,≥1,+y ≤4,
则x 2+y
2xy
解析x 2+y 2xy =x y +y x .令k =y x
,则k 表示可行域内的点与坐标原点连线的斜率,由图形可知
13≤k ≤1,根据函数y =1k +k 的单调性得2≤k ≤10
3.答案
2,
10
3
15.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →
的夹角为________.
解析
由AO →=12
(AB →+AC →),可得O 为BC 的中点,故BC 为圆O 的直径,所以AB →与AC →
的夹角
为90°.答案
90°
16.已知数列{a n }的各项取倒数后按原来顺序构成等差数列,各项都是正数的数列{x n }满足
x 1=3,x 1+x 2+x 3=39,
则x n =________.
解析
设
因为数列{a n }的各项取倒数后按原来顺序构成等差数列,所以2log k x n +1=log k x n +log k x n +
2
⇒x 2
n +1=x n x n +2,所以数列{x n }是等比数列,把x 1=3代入x 1+x 2+x 3=39得公比q =3(负值
舍去),所以x n =3×3n -1
=3n
.
答案
3
n。