高中数学课下能力提升(六)新人教A版必修3
- 格式:doc
- 大小:103.00 KB
- 文档页数:6
题组1 简单随机抽样的概念1在“世界读书日”前夕,为了了解某地 5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中, 5 000名居民的阅读时间的全体是( )A.总体 B.个体C.样本的容量 D.从总体中抽取的一个样本2.要检查一个工厂产品的合格率,从 1 000件产品中抽出50件进行检查,检查者在其中随机逐个抽取了50件,这种抽样方法可称为________.3.下面的抽样方法是简单随机抽样的是________.①从某城市的流动人口中随机抽取100人作调查;②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为 2 709的为三等奖;③在待检验的30件零件中随机逐个拿出5件进行检验.题组2 简单随机抽样的应用4.抽签法中确保样本代表性的关键是( )A.制签 B.搅拌均匀C.逐一抽取 D.抽取不放回5.用随机数表法进行抽样有以下几个步骤:①将总体中的个体分段;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为( )A.①②③④ B.①③④②C.③②①④ D.④③①②6.采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是________.7.上海某中学从40名学生中选1人作为上海男篮拉拉队的成员,采用下面两种选法:选法一将这40名学生从1~40进行分段,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签分段一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员.试问这两种选法是否都是抽签法?为什么?这两种选法有何异同?8.现有一批分段为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检测,如何用随机数法设计抽样方案?[能力提升综合练]1.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次被抽到的可能性最大B.与第几次抽样有关,第一次被抽到的可能性最小C.与第几次抽样无关,每一次被抽到的可能性相等D.与第几次抽样无关,与抽取几个样本有关2.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的分段方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是( )A.①② B.①③ C.②③ D.③3.下列抽样试验中,用抽签法方便的是( )A.从某工厂生产的 3 000件产品中抽取600件进行质量检验B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的 3 000件产品中抽取10件进行质量检验4.某班有34位同学,座位号记为01,02,…,34,用如图的随机数表选取5组数作为参加青年志愿者活动的五位同学的座位号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座位号是( )49 54 43 54 82 17 37 93 23 78 87 35 2096 43 84 26 34 91 64 57 24 55 06 88 7704 74 47 67 21 76 33 50 25 83 92 12 06A.23 B.09 C.02 D.165.某中学高一年级有 1 400人,高二年级有 1 320人,高三年级有 1 280人,从该中学学生中抽取一个容量为n的样本,每人被抽到的机会为0.02,则n=________.6.为了检验某种产品的质量,决定从 1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是________位.7.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.8.某学生在一次理科竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.选用合适的抽样方法确定这个学生所要回答的三门学科的题的序号(物理题的序号为1~15,化学题的序号为16~35,生物题的序号为36~47).答案[学业水平达标练]1. 解析:选A 5 000名居民的阅读时间的全体是总体,每名居民的阅读时间是个体,200是样本容量,故选 A.2. 解析:由简单随机抽样的特点可知,该抽样方法是简单随机抽样.答案:简单随机抽样3. 解析:①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.答案:③4. 解析:选B 逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取也不影响样本的代表性,制签也一样,故选 B.5. 解析:选 B 由随机数表法的步骤知选 B.6. 解析:从三个总体中任取两个即可组成样本,∴所有可能的样本为{1,3},{1,8},{3,8}.答案:{1,3},{1,8},{3,8}7. 解:选法一满足抽签法的特征,是抽签法;选法二不是抽签法.因为抽签法要求所有的号签分段互不相同,而选法二中39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为1 40.8. 解:第一步,将元件的分段调整为010,011,012,…,099,100, (600)第二步,在随机数表中任取一数作为开始,任选一方向作为读数方向,比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010~600中的跳过去不读,前面已经读过的数也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码对应的元件就是要抽取的对象.[能力提升综合练]1. 解析:选C 在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,故选 C.2. 解析:选C 根据随机数表的要求,只有分段时数字位数相同,才能达到随机等可能抽样.3. 解析:选 B A总体容量较大,样本容量也较大,不适宜用抽签法;B总体容量较小,样本容量也较小,可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.故选 B.4. 解析:选D 从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字中小于34的分段依次为21,32,09,16,其中第4个为16,故选 D.5. 解析:三个年级的总人数为 1 400+1 320+1 280=4 000,每人被抽到的机会均为0.02,∴n=4 000×0.02=80.答案:806. 解析:由于所分段码的位数和读数的位数要一致,因此所分段码的位数最少是四位.从0 000到1 000,或者是从0 001到1 001等.答案:四7. 解:第一步:先确定艺人:(1)将30名内地艺人从1到30分段,然后用相同的纸条做成30个号签,在每个号签上写上这些分段,然后放入一个不透明小筒中摇匀,从中依次抽出10个号签,则相应分段的艺人参加演出;(2)运用相同的方法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.8. 解:法一(抽签法):第一步,将试题的分段1~47分别写在纸条上.第二步,将纸条揉成团,制成号签.第三步,将物理、化学、生物题的号签分别放在三个不透明的袋子中,充分搅拌.第四步,从装有物理题的袋子中逐个抽取3个号签,从装有化学题的袋子中逐个抽取3个号签,从装有生物题的袋子中逐个抽取2个号签,并记录所得号签上的分段,这便是所要回答的问题的序号.法二:(随机数表法):第一步,将物理题的序号对应改成01,02,…,15,其余两科题的序号不变.第二步,在教材所附的随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第10行第11个数0,并向右开始读取.第三步,从数0开始向右读,每次读取两位,若得到的号码不在01~47中,则跳过,前面已经取出的也跳过.从01~15中选3个号码,从16~35中选3个号码,从36~47中选2个号码.依次可得到09,47,27,17,08,02,43,28.第四步,对应以上号码找出所要回答的问题的序号.物理题的序号为:2,8,9;化学题的序号为:17,27,28;生物题的序号为:43,47.。
6.3二项式定理6.3.1二项式定理基础过关练题组一二项式定理的正用与逆用1.(a+b)2n,n∈N*的展开式的项数是( )A.2nB.2n+1C.2n-1D.2(n+1)2.设S=(x-1)3+3(x-1)2+3(x-1)+1,则S等于( )A.(x-1)3B.(x-2)3C.x3D.(x+1)33.设A=37+C72×35+C74×33+C76×3,B=C71×36+C73×34+C75×32+1,则A-B的值为( )A.128B.129C.47D.04.用二项式定理展开(1+1x )4= .5.(2019海南海口实验中学高三上月考)3C n1+9C n2+27C n3+…+3n C n n= (n∈N*).题组二二项展开式的特定项、项的系数及二项式系数6.(2020河北石家庄高二下阶段测试)(3x3-√x )7的展开式中x7的系数是( )A.5 103B.21C.-945D.9457.(2020湖南岳阳高二上期末)若(x-√ax2)6的展开式的常数项为60,则实数a的值为( )A.4B.2C.8D.68.(2020四川绵阳中学高三4月线上学习评估)(2x+a)5(其中a≠0)的展开式中,x2的系数与x3的系数相同,则实数a的值为( )A.±12B.12C.-2D.29.(2020四川成都双流中学高三月考)若(1-√x)n(n∈N*)的展开式的第2、3、4项的二项式系数成等差数列,则sin(nπ-π3)=( )A.12B.12或-12C.√32D.√32或-√3210.(2020辽宁本溪高三下线上模拟)若(x6+x√x )n(n∈N*)的展开式中含有常数项,则n的最小值等于( ) A.3 B.4 C.5 D.611.(2020辽宁大连高三第一次模拟)(12x+2y)6的展开式中x2y4的系数为.12.(2020山东枣庄高三上期末)(√x+1x )6的展开式中的常数项等于,有理项共有项.13.已知(2x√x )n(n∈N*)的展开式的第2项与第3项的二项式系数之比是2∶5.(1)求n的值;(2)求展开式的常数项.题组三 赋值法求系数和14.(2020山东济宁高二下质量检测)若(x -12)n(n∈N *)的展开式的第3项的二项式系数是15,则展开式的所有项系数之和为( ) A.132B.164C.-164D.112815.(2020山东烟台栖霞一中高二下月考)设(1-3x)9=a 0+a 1x+a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|的值为( ) A.29 B.49 C.39 D.5916.(2020陕西宝鸡高考模拟检测)若(5x -3√x)n(n∈N *)的展开式的各项系数之和为32,则展开式中x 的系数为 .17.(2020山东枣庄滕州一中高二下月考)已知(1+mx)10=a 0+a 1x+a 2x 2+…+a 10x 10,其中m≠0,且a 6+14a 3=0. (1)求实数m 的值; (2)求a 2+a 4+a 6+a 8+a 10.能力提升练题组一 多项式展开式中的特定项及项的系数 1.(2020山东济宁高二下质量检测,)(1-2x )7x的展开式中x 2的系数为( )A.-84 B .84C.-280D.2802.(2020广东珠海高三教学质量检测,)(x+1)·(2x-1x )5的展开式的常数项为( )A.-40B.40C.-80D.803.(2020山东枣庄第三中学高二下月考,)在(1+x+1x2020)10的展开式中,x2的系数为( ) A.30 B.45 C.60 D.904.(2020陕西榆林二中高三月考,)若(√x+12x )8(ax-1)的展开式中含x12的项的系数为21,则实数a的值为( )A.3B.-3C.2D.-25.(2020辽宁沈阳二中高二下月考,)已知x(x-2)8=a0+a1(x-1)+a2(x-1)2+…+a9(x-1)9,则a6=( )A.-28B.-448C.112D.4486.(2019河北邯郸第一中学高三期中,)(x+2y)·(x-y)5的展开式中x3y3的系数为.7.(2020天津杨村第一中学高三上一模,)(a+x)(1+x)4的展开式中,若x的奇数次幂的项的系数之和为32,则a= .题组二赋值法求系数和8.(2020山东济南一中高二下第二次月考,)已知(1+x)(a-x)6=a0+a1x+…+a7x7,若a0+a1+…+a7=0,则a3=( )A.-5B.-20C.15D.359.(2020浙江杭州高级中学高三下模拟,)已知(x+2)5(2x-5)=a0+a1x+…+a6x6,则a0= ,a5= .10.(2020湖南长沙长郡中学高三月考,)设(x2+1)·(4x-2)8=a0+a1(2x-1)+a2(2x-1)2+…+a10(2x-1)10,则a1+a2+…+a10= .11.(2019浙江杭州高考模拟,)若(x-3)3(2x+1)5=a0+a1x+a2x2+…+a8x8,则a0= ,a0+a2+…+a8= .12.()在(2x-3y+1)5的展开式中,不含y的所有项的系数和为(用数值作答).13.()已知(1+2x)4=a0+a1x+a2x2+a3x3+a4x4,则a1-2a2+3a3-4a4= .14.()已知A n5=56C n7,且(1-2x)n=a0+a1x+a2x2+a3x3+…+a n x n.(1)求n的值;(2)求a12+a222+…+a n2n的值.题组三二项式定理的应用15.(2020湖南衡阳高二期末,)1.957的计算结果精确到个位的近似值为( )A.106B.107C.108D.10916.(2019江西九江高二期末,)1-90C101+902C102-903C103+…+9010C1010除以88的余数是( )A.2B.1C.86D.8717.(2020辽宁阜新高二调研,)设a∈Z,且0≤a≤13,若512 020+a能被13整除,则a=( )A.0B.1C.11D.1218.(2020山东青岛莱西一中高二下期中,)求302 020被7除的余数.答案全解全析6.3.1 二项式定理基础过关练1.B 根据二项式定理可知,展开式共有2n+1项.2.C S=(x-1)3+3(x-1)2+3(x-1)+1=C30(x-1)3+C31(x-1)2+C32(x-1)+C33=[(x-1)+1]3=x3.3.A A-B=C70×37-C71×36+C72×35-C73×34+C74×33-C75×32+C76×31-C77×30 =(3-1)7=27=128.4.答案 1+4x +6x2+4x3+1x4解析解法一:(1+1x )4=C40(1x)+C41(1x)1+C42(1x)2+C43(1x)3+C44(1x)4=1+4x+6x2+4x3+1x4.解法二:(1+1x )4=(1x)4(x+1)4=(1 x )4(C40x4+C41x3+C42x2+C43x+C44x0)=1+4x +6x2+4x3+1x4.5.答案4n-1解析3C n1+9C n2+27C n3+…+3n C n n=C n0+3C n1+9C n2+27C n3+…+3n C n n-1=(1+3)n-1=4n-1.6.D (3x3√x )7的展开式的通项是T r+1=C7r(3x3)7-r(√x )r=(-1)r37-r C7r x21-7r2,令21-7r2=7,解得r=4,所以展开式中x7的系数是(-1)437-4C74=945.故选D.7.A (x-√ax2)6的展开式的通项为T r+1=C6r x6-r(-√ax2)r=(-1)r a r2C6r x6-3r,令6-3r=0,解得r=2,则常数项为(-1)2a C62=60,解得a=4.故选A.8.D (2x+a)5的展开式的通项为T r+1=C5r(2x)5-r a r=25-r a r C5r x5-r,因为x 2的系数与x 3的系数相同,所以22a 3C 53=23a 2C 52,即4a 3=8a 2,又a≠0,所以a=2.故选D.9.C ∵(1-√x )n (n∈N *)的展开式的第2、3、4项的二项式系数成等差数列,∴2C n 2=C n 1+C n 3(n≥3),解得n=7,∴sin (nπ-π3)=sin (7π-π3)=sin 2π3=√32.故选C.10.C (x 6+x √x)n的展开式的通项为T r+1=C n r (x 6)n-r (x √x)r =C n r x 6n -6r -32r =C n r x 6n -152r,令6n-152r=0 ,得n=54r.又n∈N *,所以当r=4 时,n 取得最小值5. 故选C. 11.答案 60解析 (12x +2y)6的展开式的通项为T r+1=C 6r(12x)6-r(2y)r =22r-6C 6r x 6-r y r.令r=4,得T 5=60x 2y 4. 故x 2y 4的系数为60. 12.答案 15;4解析 (√x +1x )6的展开式的通项为T r+1=C 6r (√x )6-r (1x)r=C 6rx 6-3r 2.当6-3r 2=0时,r=2,此时常数项为C 62=15.当6-3r 2为整数时,对应的项为有理项,因为r∈N 且r≤6,所以r 可取0,2,4,6,故共有4项为有理项. 13.解析 (2x √x)n的展开式的通项为T r+1=C n r(2x)n-r (√x)r =(-1)r 2n-r C n r x n -32r .(1)由展开式的第2项与第3项的二项式系数之比是2∶5,可得C n 1∶C n 2=2∶5,解得n=6.(2)由(1)知T r+1=(-1)r26-rC 6r x 6-32r,令6-32r=0,解得r=4,所以展开式的常数项为(-1)4×26-4×C 64=60.14.B由题意知C n 2=n (n -1)2=15,解得n=6或n=-5(舍去),故(x -12)n =(x -12)6,令x=1,得所有项系数之和为(12)6=164.15.B 易得(1-3x)9的展开式的通项为T r+1=C 9r(-3)r x r ,∴a 0,a 2,a 4,a 6,a 8为正数,a 1,a 3,a 5,a 7,a 9为负数, ∴|a 0|+|a 1|+|a 2|+…+|a 9| =a 0-a 1+a 2-a 3+…+a 8-a 9,令x=-1,得(1+3)9=a 0-a 1+a 2-a 3+…+a 8-a 9=49, ∴|a 0|+|a 1|+…+|a 9|=49. 16.答案 2 025解析 依题意,令x=1,得(5-3)n=32,解得n=5,则该式为(5x-3√x)5,其展开式的通项为T r+1=C 5r (5x)5-r(-3x 12)r=55-r ·(-3)r·C 5r x 3r2-5,令32r-5=1,得r=4,所以x 的系数为55-4×(-3)4×C 54=2 025.故答案为2 025.17.解析 (1)(1+mx)10的展开式的通项为T r+1=C 10r (mx)r =C 10r m r x r ,所以a 3=C 103m 3,a 6=C 106m 6,依题意得C 106m 6+14C 103m 3=0,即210m 6+14×120m 3=0,整理得m 3(m 3+8)=0,因为m≠0,所以m 3=-8,所以m=-2.(2)由(1)得m=-2,所以(1-2x)10=a 0+a 1x+a 2x 2+…+a 10x 10. 令x=1,得a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+a 10=(1-2)10=1.① 令x=-1,得a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7+a 8-a 9+a 10=(1+2)10=310.② ①+②得2(a 0+a 2+a 4+a 6+a 8+a 10)=1+310,即a 0+a 2+a 4+a 6+a 8+a 10=1+3102.又a 0=C 100(-2)0=1,所以a 2+a 4+a 6+a 8+a 10=1+3102-1=310-12=29 524. 能力提升练1.C 易得(1-2x)7的展开式的通项为T k+1=(-2)kC 7k x k,则(1-2x )7x的展开式的通项为(-2)k C 7k x k-1,令k-1=2,得k=3,所以x 2的系数为(-2)3C 73=-280.故选C. 2.A (2x -1x)5的展开式的通项为T r+1=C 5r (2x)5-r (-1x)r =(-1)r 25-r C 5r x 5-2r,令5-2r=-1,得r=3, 令5-2r=0,得r=52(舍去),所以(x+1)(2x -1x)5的展开式的常数项为(-1)3×22×C 53=-40.故选A.3.B (1+x +1x2 020)10的展开式的通项为T r+1=C 10r(x +1x 2 020)r,r≤10,r∈N.(x +1x 2 020)r的展开式的通项为T k+1=C rk x r-2 021k ,k≤r,k∈N, 令r-2 021k=2,可得r=2+2 021k, 只有k=0,r=2满足题意,故x 2的系数为C 102×C 20=45,故选B.4.A (√x +12x )8的展开式的通项为T r+1=C 8r(√x )8-r (12x )r =(12)rC 8r x 8-3r2,令8-3r 2=-12,得r=3,此时(√x +12x )8(ax-1)的展开式中含x 12的项的系数为(12)3C 83a=7a,令8-3r 2=12,得r=73∉N,舍去,所以(√x +12x )8(ax-1)的展开式中含x 12的项的系数为7a,所以7a=21,得a=3.故选A.5.A 由x(x-2)8=[(x-1)+1][(x-1)-1]8知,当第一个因式取(x-1)时,第二个因式取C 83(x-1)5(-1)3,其系数为-56,当第一个因式取1时,第二个因式取C 82(x-1)6(-1)2,其系数为28,故a 6=-56+28=-28.故选A.6.答案 10解析 (x+2y)(x-y)5=(x+2y)(C 50x 5-C 51x 4y+C 52x 3y 2-C 53x 2y 3+C 54x 1y 4-C 55y 5),故它的展开式中x 3y 3的系数为-C 53+2C 52=10,故答案为10.7.答案 3解析 因为(1+x)4=1+4x+6x 2+4x 3+x 4,所以(a+x)(1+x)4的展开式中含x 的奇数次幂的项分别为4ax,4ax 3,x,6x 3,x 5,其系数之和为4a+4a+1+6+1=32,解得a=3.8.A 由题意,令x=1,可得a 0+a 1+…+a 7=(1+1)(a-1)6=2×(a -1)6=0,解得a=1,∴(1+x)(a -x)6=(1+x)(1-x)6=(1-x)6+x×(1-x)6,∴展开式中x 3的系数为C 63(-1)3+C 62(-1)2=-20+15=-5,故选A.9.答案 -160;15解析 令x=0,得25×(-5)=a 0,即a 0=-160.a 5为x 5的系数,由(x+2)5(2x-5)=2x(x+2)5-5(x+2)5可知,x 5的系数为C 51×21×2+C 50×(-5)=15,即a 5=15.10.答案 512解析 ∵(x 2+1)(4x-2)8=a 0+a 1(2x-1)+a 2(2x-1)2+…+a 10(2x-1)10,∴令x=1,得(1+1)×(4×1-2)8=a 0+a 1+a 2+…+a 10=29,令x=12,得(14+1)×(4×12-2)8=a 0=0,∴a1+a2+…+a10=29-0=512.故答案为512.11.答案-27;-940解析令x=0,得(-3)3=a0,所以a0=-27.令x=1,得(-2)3×35=a0+a1+a2+…+a8,①令x=-1,得(-4)3×(-1)5=a0-a1+a2-…+a8,②①+②得2(a0+a2+…+a8)=-1 880,∴a0+a2+…+a8=-940.12.答案243解析要求(2x-3y+1)5的展开式中不含y的项,只需令y=0,所以(2x-3y+1)5的展开式中不含y的所有项的系数和为(2x+1)5的展开式中各项的系数和,令x=1,得35=243.故答案为243.13.答案-8解析等式两边同时对x求导,可得8(1+2x)3=a1+2a2x+3a3x2+4a4x3,令x=-1,得a1-2a2+3a3-4a4=-8.14.解析(1)易知n≥7,n∈N.∵A n5=56C n7,∴n(n-1)(n-2)(n-3)(n-4)=56×n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6),7×6×5×4×3×2×1=1,整理可得(n-5)(n-6)90即n2-11n-60=0,解得n=15或n=-4(舍去).故n的值为15.(2)由(1)得n=15,∴(1-2x)n =(1-2x)15=a 0+a 1x+a 2x 2+a 3x 3+…+a 15x 15,令x=0,可得a 0=1,令x=12,可得(1-2×12)15=a 0+a 12+a 222+a 323+…+a 15215=0, ∴a 12+a222+…+a 15215=-1.15.B ∵1.957=(2-0.05)7=27-C 71×26×0.05+C 72×25×0.052-…-0.057≈107.21,∴1.957≈107.故选B.16.B 1-90C 101+902C 102-903C 103+…+9010C 1010=(1-90)10=(1+88)10=1+88C 101+882C 102+883C 103+…+8810C 1010=1+88(C 101+88C 102+882C 103+…+889C 1010),所以1-90C 101+902C 102-903C 103+…+9010C 1010除以88的余数是1,故选B.17.D 因为51=52-1,所以512 020=(52-1)2 020=C 2 0200522 020-C 2 0201522 019+…-C 2 0202 019521+1,又因为52能被13整除,所以只需1+a 能被13整除,因为a∈Z,0≤a≤13,所以a=12,故选D.18.解析 302 020=(28+2)2 020=282 020+C 2 0201×282 019×2+…+C 2 0202 019×28×22 019+22 020=28×(282 019+C 2 0201×282 018×2+…+C 2 0202 019×22 019)+22 020, 故只需求出22 020被7除的余数即可,因为22020=2×8673=2×(7+1)673=2×(7673+C 6731×7672+C 6732×7671+…+C 673672×7+1)=2×7×(7672+C 6731×7671+C 6732×7670+…+C 673672)+2,所以余数为2.。
6.2.4 组合数(分层作业)(夯实基础+能力提升)【夯实基础】一、单选题 1.(2022春·甘肃兰州·高二校考期中)在含有3件次品的50件产品中,任取2件,则恰好取到1件次品的不同方法数共有( )A .11347C CB .20347C C C .11349C CD .1120347347C C C C +【答案】A【分析】根据组合的基本概念求解.【详解】在50件产品中含有3件次品,所以有47件不是次品, 任取2件,则恰好取到1件次品的不同方法数共有11347C C .2.(2022春·浙江·高二校联考阶段练习)2356C +C =( )A .25B .30C .35D .403.(2022春·辽宁葫芦岛·高二兴城市高级中学校联考阶段练习)已知3434,则x =( )A .3或10B .3C .17D .3或17【答案】A【分析】根据组合数的性质求解即可【详解】因为363434C C x x -=,故36x x =-或3634x x -=+,即3x =或10x = 二、多选题4.(2022·高二课时练习)下列问题中,属于组合问题的是( ) A .10支战队以单循环进行比赛(每两队比赛一次),共进行多少次比赛 B .10支战队以单循环进行比赛,这次比赛的冠、亚军获得者有多少种可能 C .从10名员工中选出3名参加同一种的娱乐活动,有多少种选派方法 D .从10名员工中选出3名分别参加不同的娱乐活动,有多少种选派方法 【答案】AC【分析】区分一个具体问题是排列问题还是组合问题,关键是看它有无顺序.有顺序就是排列问题;无顺序就是组合问题,.【详解】A 是组合问题,因为每两个队进行一次比赛,并没有谁先谁后,没有顺序的区别.; B 是排列问题,因为甲队获得冠军、乙队获得亚军和甲队获得亚军、乙队获得冠军是不一样的,存在顺序区别;C 是组合问题,因为3名员工参加相同的活动,没有顺序区别;D 是排列问题,因为选的3名员工参加的活动不相同,存在顺序区别, 三、填空题5.(2023·高二课时练习)计算:0123444444C C C C C ++++=______.6.(2022秋·广东江门·高二台山市华侨中学校考期中)若n ,则______.【详解】解:2C C n n-=)530=,解得7.(2022秋·上海黄浦·高二上海市向明中学校考期末)若n n ,则正整数的值是______.8.(2022秋·河北唐山·高二校考期末)若1111C C =,则正整数x 的值是________.【答案】1或4【分析】解方程2x -1=x 或2x -1+x =11,即得解.【详解】解:∵211111C C x x-=,∴2x -1=x 或2x -1+x =11,解得x =1或x =4. 经检验,x =1或x =4满足题意.9.(2022秋·山东潍坊·高二统考阶段练习)若12C C 15m m +=,则m =_________.【答案】5【分析】利用组合数公式,列式求解作答.10.(2022秋·上海崇明·高二统考期末)已知x N ∈,则方程55的解是___________.【答案】1或2##2或1.【分析】根据组合数的性质列方程求解即可.【详解】因为2155C C x x -=,x N ∈,所以由组合数的性质得21x x =-或521x x -=-, 解得1x =或2x =,11.(2022秋·浙江·高二校联考期中)已知34C C m m =,则m =________.【答案】7【分析】根据组合数性质C C r n rn n -=分析即可. 【详解】因为C C r n rn n -=,故347m =+=.12.(2023·高二课时练习)设N x ∈,则123231C C x x x x ---++=______.【答案】4或7或11【分析】先由组合数的意义判断出2x =或3x =或4x =,分别代入求解.【详解】由组合数的意义可知:231123x x x x -≥-⎧⎨+≥-⎩,解得:24x ≤≤.又N x ∈,所以2x =或3x =或4x =.当2x =时,1231123113C C C C 4x x x x ---++=+=; 当3x =时,1232323134C C C C 347x x x x ---++=+=+=; 当4x =时,1233523155C C C C 10111x x x x ---++=+=+=.13.(2023·高二课时练习)若108C C n n =,则20C n的值为______.必须被选派的不同方案有______种. 【答案】35【分析】毕业生甲必须被选派,即从7人中选4人,计算得到答案.【详解】毕业生甲必须被选派的不同方案有47C 35=种.四、解答题15.(2021秋·广东广州·高二统考期末)平面内有A ,B ,C ,D ,E 共5个点. (1)以其中2个点为端点的线段共有多少条? (2)以其中2个点为端点的有向线段共有多少条?(1)288A 6A x x -<(2)567117C C 10C m m m -=17.(2023·高二课时练习)在1,2,3,…,30这30个数中,每次取两两不等的三个数,使它们的和为3的倍数,共有多少种不同的取法? 【答案】1360种【分析】将这30个数按除以3后的余数分为三类,分两种情况进行求解,再相加即可. 【详解】把这30个数按除以3后的余数分为三类:{}3,6,9,,30A =⋅⋅⋅,{}1,4,7,28B =⋅⋅⋅,{}2,5,8,,29C =⋅⋅⋅,每个集合各有10个元素.三个数的和为3的倍数的取法分两类:①在同一个集合中取三个数,有3103C 种取法;②在每个集合中各取一个数,有()3110C 种取法.由分类加法计数原理,共有()33110103C C 1360+=种不同的取法.18.(2023·高二课时练习)空间有10个点,其中任意4点不共面. (1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体? 【答案】(1)120个 (2)210个【分析】(1)(2)根据组合数的计算即可求解.【详解】(1)3个点确定一个平面,且任意4点不共面,所以从10个点中任选3个点即可构成一个平面,因此所有的平面个数为310C 120=(个);(2)任意4点不共面,所以从10个点中任选4个点即可构成一个四面体,因此所有的四面体个数为410C 210=(个);19.(2023·高二课时练习)有n 个人,每个人都以同样的概率被分配到N 个房间()n N ≤中的任意一间去,分别求下列事件的概率. (1)指定的n 间房中各有一人; (2)恰有n 间房,其中各有一人; (3)指定的某间房中恰有()m m n ≤人.一、单选题 1.(2022春·辽宁沈阳·高二沈阳二中校考阶段练习)沈阳二中24届篮球赛正如火如荼地进行中,全年级共20个班,每四个班一组,如1—4班为一组,5—8班为二组……进行单循环小组赛(没有并列),胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛,最后胜出的三个班级再进行单循环赛,按积分的高低(假设没有并列)决出最终的冠亚季军,请问此次篮球赛学校共举办了多少场比赛?( ) A .51 B .42 C .39 D .36【答案】D【分析】先进行单循环赛,6支球队按抽签的方式进行淘汰赛,最后3个班再进行单循环赛,分别求出所需比赛场次,即可得出答案. 【详解】先进行单循环赛,有245C =30场,胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛,6支球队打3场,决出最后胜出的三个班, 最后3个班再进行单循环赛,由23C =3场. 所以共打了30+3+3=36场.2.(2022秋·山东聊城·高二山东聊城一中校考期中)因为疫情防控的需要,某校高二年级4名男教师和3名女教师参与社区防控新冠肺炎疫情的志愿服务.根据岗位需求应派3人巡视商户,且至少一名男教师;另外4人去不同的4个小区测量出入人员体温,则这7名教师不同的安排方法有( )种. A .34 B .816 C .216 D .210【答案】B【分析】先采用间接法求解巡视商户的3人中至少一名男教师的安排方法种数,然后再求解另外4人去不同的4个小区测量出入人员体温的安排方法种数,综合即可得出结果. 【详解】从7人中任选3人,不同的选法有37C 种,而不选男教师的选法有33C 种, 则巡视商户的3人中至少一名男教师安排方法有3373C C 34-=种,另外4人去不同的4个小区测量出入人员体温的安排方法有44A 24=种.则这7名教师不同的安排方法有3424816⨯=种.3.(2022春·新疆巴音郭楞·高二新疆和静高级中学校考阶段练习)中国空间站的主体结构包括天和核心实验舱、问天实验舱和梦天实验舱,假设空间站要安排甲、乙等6名航天员开展实验,三舱中每个舱至少一人至多三人,则不同的安排方法有( )种 A .450 B .72 C .90 D .3604.(2023·高二单元测试)设[]x 表示不超过x 的最大整数,如[]22=,514⎡⎤=⎢⎥⎣⎦.对于给定的。
高二数学 第三章第3节几何概型 理 知识精讲人教新课标A 版必修3一、学习目标:(1)了解几何概型的概念及基本特点 (2)熟练掌握几何概型中概率的计算公式 (3)会进行简单的几何概率计算(4)能运用模拟的方法估计概率,掌握模拟估计面积的思想二、重点、难点:重点:掌握几何概型中概率的计算公式;并能进行简单的几何概率计算。
难点:将实际问题转化为几何概型,并能正确应用几何概型的概率计算公式解决问题。
三、考点分析:本部分内容是新增的内容,对几何概型的要求仅限于体会几何概型的意义,所以在练习时,侧重于一些简单的试题即可。
(1)区别古典概型与几何概型(2)理解随机模拟求几何概型的概率1、几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的可以几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则可以理解为恰好取到上述区域内的某个指定区域中的点。
这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型。
2、几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等。
3、几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率()d P A D的测度的测度。
说明:(1)D 的测度不为0;(2)其中“测度”的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的“测度”分别是长度,面积和体积。
(3)区域为“开区域”;(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。
4、模拟计算几何概型的步骤: (1)构造图形(作图);(2)模拟投点,计算落在阴影部分的点的频率m n; (3)利用()m d P A n D ≈=的测度的测度算出相应的量。
§3.1习题课课时目标 1.进一步理解随机事件的有关概念;理解频率与概率的关系及概率的意义.2.会解决简单的有关概率的实际问题.1.下面的事件:①掷一枚硬币,出现反面;②对顶角相等;③3+5>10,是随机事件的有() A.②B.③C.①D.②③2.下面的事件:①袋中有2个红球,4个白球,从中任取3个球,至少取到1个白球;②某人买彩票中奖;③实系数一次方程必有一实根;④明天会下雨.其中是必然事件的有()A.①B.④C.①③D.①④3.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175]之间的概率为0.5,那么该同学的身高超过175 cm的概率为()A.0.2 B.0.3 C.0.7 D.0.84.若P(A+B)=P(A)+P(B)=1,则事件A与B的关系是()A.互斥不对立B.对立不互斥C.对立且互斥D.以上均不对5.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只产品是正品(甲级品)的概率为________.6.某射击运动员进行双向飞蝶射击训练,七次训练的成绩记录如下:(1)(2)该射击运动员击中飞碟的概率约为多少?(保留3位小数)一、选择题1.下列说法正确的是( ) A .任何事件的概率总是在(0,1)之间 B .频率是客观存在的,与试验次数无关C .随着试验次数的增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定 2.下列事件中,随机事件是( ) A .向区间(0,1)内投点,点落在(0,1)区间 B .向区间(0,1)内投点,点落在(1,2)区间 C .向区间(0,2)内投点,点落在(0,1)区间 D .向区间(0,2)内投点,点落在(-1,0)区间 3.给出下列三个命题,其中正确的有( )①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品; ②做7次抛硬币的试验,结果3次出现正面向上,因此正面出现的概率是37; ③随机事件发生的频率就是这个随机事件发生的概率. A .0个 B .1个 C .2个 D .3个 4.如果事件A 、B 互斥,A 、B 分别为A 、B 的对立事件,则有( ) A .A +B 是必然事件 B .A +B 是必然事件 C .A 与B 一定互斥 D .A 与B 不互斥5.关于互斥事件的理解,错误的是( )A .若A 发生,则B 不发生;若B 发生,则A 不发生B .若A 发生,则B 不发生,若B 发生,则A 不发生,二者必具其一C .A 发生,B 不发生;B 发生,A 不发生;A 、B 都不发生D .若A 、B 又是对立事件,则A 、B 中有且只有一个发生6.考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( )A .1B .12C .13 D .07.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率mn 就是事件的概率;③频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值; ④频率是概率的近似值,概率是频率的稳定值. 其中正确的是________.8.某人在一次射击中,命中9环的概率为0.28,命中8环的概率为0.19,不够8环的概率为0.29,则这人在一次射击中命中9环或10环的概率为________.9.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P(A ∪B)的值是________.(结果用最简分数表示) 三、解答题10.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少?11.我国已经正式加入WTO ,包括汽车在内的进口商品将最多五年内把关税全部降到世贸组织所要求的水平,其中有21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年达到要求,其余的进口商品将在3年或3年内达到要求,求进口汽车在不超过4年的时间内关税达到要求的概率.能力提升12.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,求(1)甲获胜的概率;(2)甲不输的概率.13.下表为某班英语及数学成绩的分布,学生共有50人,成绩分1~5五个档次,例如表中所示英语成绩为4分、数学成绩为2分的学生为5人,将全班学生的姓名卡片混在一起,任取一张,该张卡片对应学生的英语成绩为x,数学成绩为y,设x,y为随机变量.(注:没有重名学生)(1)x=1的概率为多少?x≥3且y=3的概率为多少?(2)a+b等于多少?1.随机事件在一次试验中发生与否是随机的,但随机中含有规律性,概率是大次数地重复试验中频率的稳定值.2.概率可看作频率理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地作为这个事件的概率.3.复杂事件求概率时常用的两种转化方法:一是转化为彼此互斥的事件的概率;二是转化为求其对立事件发生的概率.答案:§3.1习题课双基演练1.C 2.C3.B [该同学身高超过175 cm (事件A)与该同学身高不超过175 cm 是对立事件,而不超过175 cm 的事件为小于160 cm (事件B)和[160,175](事件C)两事件的和事件,即 P(A)=1-P(A ) =1-[P(B)+P(C)] =1-(0.2+0.5) =0.3.]4.C [∵P(A +B)=1,∴A +B 为必然事件.又∵P(A +B)=P(A)+P(B),∴A 与B 为互斥事件,因此有A ∩B 为不可能事件.A ∪B 为必然事件,所以A 与B 也是对立事件.] 5.92%解析 记抽验的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而抽验产品是正品(甲级品)的概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%. 6.解 (1)计算n An 得各次击中飞碟的频率依次为0.810,0.792,0.820,0.820,0.793,0.794, 0.807.(2)由于这些频率非常接近0.810,在它附近摆动,所以运动员击中飞碟的概率约为0.810. 作业设计 1.C 2.C3.A [由频率和概率的定义及频率与概率的关系可知①②③都不正确.]4.B [A 、B 互斥,A 、B 可以不同时发生,即A ∩B =∅,所以A ∩B 的对立事件A ∩B =A ∪B 是必然事件,即A +B 是必然事件.]5.B [A 、B 互斥,A 、B 可以不同时发生,A 、B 也可以同时不发生,但只要一个发生,另一个一定不发生.对立事件是必定有一个发生的互斥事件,故只有B 错.]6.A [由正方体的对称性知其六个面的中心构成同底的两个四棱锥,且四棱锥的各个侧面是全等的三角形,底面四个顶点构成一个正方形,从这6个点中任选3个点构成的三角形可分为以下两类:第一类是选中相对面中心两点及被这两个平面所夹的四个面中的任意一个面的中心,构成的是等腰直角三角形,此时剩下的三个点也连成一个与其全等的三角形.第二类是所选三个点均为多面体的侧面三角形的三个点(即所选3个点所在的平面彼此相邻)此时构成的是正三角形,同时剩下的三个点也构成与其全等的三角形,故所求概率为1.] 7.①③④ 8.0.52解析 P =1-P(x ≤8)=1-P(x<8)-P(x =8) =1-0.29-0.19=0.52.9.726解析 一副扑克中有1张红桃K,13张黑桃,事件A 与事件B 为互斥事件,∴P(A ∪B)=P(A)+P(B)=152+1352=726.10.解 设事件A 、B 、C 、D 分别表示“任取一球,得到红球”,“任取一球,得到黑球”,“任取一球,得到黄球”,“任取一球,得到绿球”, 则由已知得P(A)=13, P(B ∪C)=P(B)+P(C)=512, P(C ∪D)=P(C)+P(D)=512,P(B ∪C ∪D)=1-P(A)=P(B)+P(C)+P(D) =1-13=23.解得P(B)=14,P(C)=16,P(D)=14.故得到黑球,得到黄球,得到绿球的概率分别为14,16,14.11.解 方法一 设“进口汽车恰好4年关税达到要求”为事件A ,“不到4年达到要求”为事件B ,则“进口汽车不超过4年的时间内关税达到要求”就是事件A +B ,显然A 与B 是互斥事件,所以P(A ∪B)=P(A)+P(B)=0.18+(1-0.21-0.18)=0.79.方法二 设“进口汽车在不超过4年的时间内关税达到要求”为事件M ,则N 为“进口汽车5年关税达到要求”,所以P(M)=1-P(N)=1-0.21=0.79.12.解 (1)“甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率为P =1-12-13=16. (2)方法一 设事件A 为“甲不输”,看作是“甲胜”“和棋”这两个互斥事件的并事件,所以P(A)=16+12=23.方法二 设事件A 为“甲不输”,看作是“乙胜”的对立事件.所以P(A)=1-13=23. 所以甲不输的概率是23.13.解 (1)P(x =1)=1+1+350=110, P(x ≥3,y =3)=850=425. (2)P(x =2)=1-P(x =1)-P(x ≥3)=1-550-35 50=1050=a+b+750,∴a+b=3.。
7.3.2离散型随机变量的方差(分层作业)(夯实基础+能力提升)【夯实基础】一、单选题 1.(2022春·新疆·高二克拉玛依市高级中学校考阶段练习)若随机变量X 的概率分布表如下:则()D X =( )A .0.5 B .0.42 C .0.24 D .0.16【答案】C【分析】根据分布列的数学期望和方差公式直接求解. 【详解】根据概率的性质可得10.40.6m =-=, 所以()00.410.60.6E X =⨯+⨯=,所以()()22()00.60.410.60.60.24D X =-⨯+-⨯=,2.(2022秋·浙江金华·高二浙江金华第一中学校考阶段练习)已知随机变量X 满足(23)7,(23)16E X D X +=+=,则下列选项正确的是( )A .713(),()22E X D X ==B .()2, ()4E X =D X =C .()2, ()8E X =D X = D .7(),()84E X D X ==【答案】B【分析】由数学期望与方差的性质求解【详解】(23)2()37E X E X +=+=,得()2E X =,(23)4()16D X D X +==,得 ()4D X =,3.(2022春·安徽滁州·高二统考期末)已知随机变量X 的分布列为:则随机变量X 的方差()D X 的最大值为( ) A .14B .12C .1D .2【答案】A4.(2022春·广西河池·高二统考期末)随机变量的概率分别为P k ck ==,1,2,3,4k =,其中c 是常数,则()D ξ的值为( ) A .45B .65C .1D .85【详解】()P k ξ=11210⨯+⨯()213=-⨯差()D X 是( )A .0B .1C .14D .12A .[][]32E E ηξ-=,[][]32D D ηξ-=B .[][]2E E ηξ=,[][]32D D ηξ-=C .[][]32E E ηξ-=,[][]94D D ηξ-=D .[][]32E E ηξ-=,[][]4D D ηξ=7.(2022春·山西吕梁·高二校联考期中)已知随机变量X 满足()4E X =-,()5D X =,下列说法正确的是( ) A .()15E X -=- B .()15E X -= C .()15D X -= D .()15D X -=-【答案】BC【分析】根据平均数和方差的知识求得正确答案. 【详解】依题意,()4E X =-,()5D X =, 所以()()()11145E X E X -=-=--=, ()()()2115D X D X -=-⨯=.8.(2022春·江苏苏州·高二统考期末)若随机变量X 服从两点分布,其中()()()10,,4P X E X D X ==分别为随机变量X 的均值和方差,则( ) A .()314P X == B .()14E X =C .()316D X =D .()414E X +=对于选项D :()()41414E X E X +=+=,故D 正确. 三、填空题9.(2022春·黑龙江哈尔滨·高二哈尔滨工业大学附属中学校校考期中)已知随机变量X 满足()2D X =,则()31D X -=__________. 【答案】18【分析】根据方差的性质求解即可. 【详解】解:因为()2D X =, 所以()()31918D X D X -==.10.(2022春·上海浦东新·高二上海南汇中学校考期末)已知一个随机变量X 的分布为101a b c -⎛⎫ ⎪⎝⎭,若b 是,a c 的等差中项,且1[]3E X =,则[]D X =______.性能更稳定的零件是______.()()()()2220.289.20.499.20.4109.20.56D η=⨯-+⨯-+⨯-=,因为()()D D ηξ<,所以乙更稳定.12.(2022春·四川眉山·高二统考期末)若样本数据1x ,2x ,…,10x 的标准差为4,则数据121x -,221x -,…,1021x -的标准差为___________.【答案】8【分析】利用方差的性质有(21)4()D X D X -=,即可求新数据的标准差. 【详解】由题设,2()416D X ==,故(21)4()64D X D X -==, 所以新数据的标准差为8.13.(2022春·山东枣庄·高二统考期末)已知离散型随机变量X 的取值为有限个,()72E X =,()3512D X =,则()2E X =______. 【答案】916##115614.(2023·全国·高二专题练习)某小组共10人参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布、期望与方差.所以期望为()0121151515E X =⨯+⨯+⨯=, 方差为()()()()222474801112115151515D X =-⨯+-⨯+-⨯=. 15.(2022·高二单元测试)甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ、η,已知甲、乙两名射手在每次射击中射中的环数大于6环,且甲射中10,9,8、7环的概率分别为0.5,3a ,a ,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2. (1)求ξ、η的分布; (2)比较甲、乙的射击技术.(2)由(1)得:()100.590.380.170.19.2E ξ=⨯+⨯+⨯+⨯=;()100.390.380.270.28.7E η=⨯+⨯+⨯+⨯=;()()()()()2222109.20.599.20.389.20.179.20.10.96D ξ=-⨯+-⨯+-⨯+-⨯=; ()()()()()2222108.70.398.70.388.70.278.70.2 1.21D η=-⨯+-⨯+-⨯+-⨯=.由于()()E E ξη>,()()D D ξη<,说明甲射击的环数的期望比乙高,且成绩比较稳定,所以甲比乙的射击技术好.16.(2022·高二课时练习)某网约车司机统计了自己一天中出车一次的总路程X (单位:km )的可能取值是20,22,24,26,28,30,它们出现的概率依次是0.1,0.2,0.3,0.1,t ,2t . (1)求X 的分布列,并求X 的均值和方差;(2)若网约车计费细则如下:起步价为5元,行驶路程不超过3km 时,收费5元,行驶路程超过3km 时,则按每超出1km (不足1km 也按1km 计程)收费3元计费.试计算此人一天中出车一次收入的均值和方差.∴200.1220.2240.3260.1280.1300.225E X =⨯+⨯+⨯+⨯+⨯+⨯=, ()()()()22222250.130.210.310.130.150.210.6D X =-⨯+-⨯+-⨯+⨯+⨯+⨯=.(2)设此人一天中出车一次的收入为Y 元,则()()335343,Y X X X X =-+=->∈N ,∴()()()34534325471E Y E X E X =-+=-=⨯-=,()()()234395.4D Y D X D X =-=⋅=.故此人一天中出车一次收入的均值为71元,方差为95.4.17.(2022春·贵州遵义·高二统考期末)不透明袋中装有质地,大小相同的4个红球,m 个白球,若从中不放回地取出2个球,在第一个取出的球是红球的前提下,第二个取出的球是白球的概率为58.(1)求白球的个数m ;(2)若有放回的取出两个求,记取出的红球个数为X ,求()E X ,()D X .。
20203目录[课时作业1] 算法的概念 (3)[课时作业2] 程序框图与算法的顺序结构、条件结构 (7)[课时作业3] 循环结构及应用 (14)[课时作业4] 输入语句、输出语句和赋值语句 (22)[课时作业5] 条件语句 (29)[课时作业6] 循环语句 (37)[课时作业7] 算法案例 (47)[课时作业8] 简单随机抽样 (52)[课时作业9] 系统抽样 (55)[课时作业10] 分层抽样 (59)[课时作业11] 用样本的频率分布估计总体分布 (65)[课时作业12] 用样本的数字特征估计总体的数字特征 (72)[课时作业13] 变量间的相关关系 (79)[课时作业14] 随机事件的概率 (86)[课时作业15] 概率的意义 (90)[课时作业16] 概率的基本性质 (95)[课时作业17] 古典概型 (101)[课时作业18] (整数值)随机数(random numbers)的产生 (106)[课时作业19] 几何概型 (110)[课时作业20] 均匀随机数的产生 (116)[课时作业1] 算法的概念[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分) 1.算法的有限性是指( ) A .算法必须包含输出B .算法中每个操作步骤都是可执行的C .算法的步骤必须有限D .以上说法均不正确解析:一个算法必须在有限步内结束称为算法的有穷性. 答案:C2.给出下面一个算法: 第一步,给出三个数x ,y ,z . 第二步,计算M =x +y +z . 第三步,计算N =13M .第四步,输出M ,N . 则上述算法是( ) A .求和 B .求余数C .求平均数D .先求和再求平均数解析:由算法过程知,M 为三数之和,N 为这三数的平均数. 答案:D3.已知一个算法: 第一步,m =a .第二步,如果b <m ,则m =b ,输出m ;否则执行第三步. 第三步,如果c <m ,则m =c ,输出m .如果a =3,b =6,c =2,那么执行这个算法的结果是( ) A .3 B .6 C .2 D .m解析:当a =3,b =6,c =2时,依据算法设计,执行后,m =a =3<b =6,c =2<3=m ,则c =2=m ,即输出m 的值为2.答案:C4.一个算法的步骤如下:第一步,输入x 的值; 第二步,计算x 的绝对值y ; 第三步,计算z =2y-y ; 第四步,输出z 的值.如果输入x 的值为-3,则输出z 的值为( ) A .4 B .5 C .6 D .8解析:根据算法的步骤计算: 第一步,输入x =-3. 第二步,计算x 的绝对值y =3. 第三步,计算z =2y -y =23-3=5. 第四步,输出z 的值为5. 答案:B5.对于解方程x 2-5x +6=0的下列步骤: ①设f (x )=x 2-5x +6;②计算判别式Δ=(-5)2-4×1×6=1>0; ③作f (x )的图象;④将a =1,b =-5,c =6代入求根公式x =-b ±Δ2a ,得x 1=2,x 2=3.其中可作为解方程的算法的有效步骤为( ) A .①② B.②③ C .②④ D.③④解析:解一元二次方程可分为两步:确定判别式和代入求根公式,故②④是有效的,①③不起作用.故选C.答案:C二、填空题(每小题5分,共15分) 6.给出下列算法: 第一步,输入x 的值.第二步,当x >4时,计算y =x +2;否则计算y =4-x . 第三步,输出y .当输入x =0时,输出y =________. 解析:∵x =0<4,∴y =4-x =2. 答案:27.已知A (-1,0),B (3,2),下面是求直线AB 的方程的一个算法,请将其补充完整:第一步,________.第二步,用点斜式写出直线AB 的方程y -0=12[x -(-1)].第三步,将第二步的方程化简,得到方程x -2y +1=0.解析:该算法功能为用点斜式方法求直线方程,第一步应为求直线的斜率,应为“计算直线AB 的斜率k =12”.答案:计算直线AB 的斜率k =128.下面给出了解决问题的算法:S 1,输入x .S 2,若x ≤1,则y =2x -3,否则y =x 2-3x +3. S 3,输出y .当输入的值为________时,输入值与输出值相等.解析:该算法的作用是计算并输出分段函数y =⎩⎪⎨⎪⎧x 2-3x +3,x >1,2x -3,x ≤1的函数值.因为输入值与输出值相等,所以当x >1时,x 2-3x +3=x ,解得x =3或x =1(舍去),当x ≤1时,2x -3=x ,解得x =3(舍去).答案:3三、解答题(每小题10分,共20分) 9.写出解方程x 2-2x -3=0的一个算法. 解析:算法一:第一步,移项,得x 2-2x =3.① 第二步,①式两边同时加1并配方,得(x -1)2=4.② 第三步,②式两边开方,得x -1=±2.③ 第四步,解③得x =3或x =-1.算法二:第一步,计算方程的判别式并判断其符号:Δ=(-2)2-4×(-3)=16>0. 第二步,将a =1,b =-2,c =-3代入求根公式x =-b ±b 2-4ac2a ,得x 1=3,x 2=-1.10.请设计一个判断直线l 1:y =k 1x +b 1(k 1≠0)与直线l 2:y =k 2x +b 2(k 2≠0)是否垂直的算法.解析:算法如下: 第一步,输入k 1,k 2的值. 第二步,计算u =k 1·k 2.第三步,若u =-1,则输出“垂直”;否则,输出“不垂直”.[能力提升](20分钟,40分)11.能设计算法求解下列各式中S 的值的是( ) ①S =12+14+18+ (12100)②S =12+14+18+…+12100+…;③S =12+14+18+…+12n (n 为确定的正整数).A .①② B.①③ C .②③ D.①②③解析:因为算法的步骤是有限的,所以②不能设计算法求解.易知①③能设计算法求解. 答案:B12.一个算法的步骤如下: 第一步,令i =0,S =2.第二步,如果i ≤15,则执行第三步;否则执行第六步. 第三步,计算S +i 并用结果代替S . 第四步,用i +2的值代替i . 第五步,转去执行第二步. 第六步,输出S .运行该算法,输出的结果S =________.解析:由题中算法可知S =2+2+4+6+8+10+12+14=58. 答案:5813.从古印度的汉诺塔传说中演变出一个汉诺塔游戏:如图有三根杆子A ,B ,C ,A 杆上有三个碟子(自上到下逐渐变大),每次移动一个碟子,要求小的只能叠在大的上面,最终把所有碟子从A 杆移到C 杆上.试设计一个算法,完成上述游戏.解析:第一步,将A 杆最上面的碟子移到C 杆上. 第二步,将A 杆最上面的碟子移到B 杆上. 第三步,将C 杆上的碟子移到B 杆上. 第四步,将A 杆上的碟子移到C 杆上. 第五步,将B 杆最上面的碟子移到A 杆上. 第六步,将B 杆上的碟子移到C 杆上.第七步,将A 杆上的碟子移到C 杆上.14.给出解方程ax 2+bx +c =0(a ,b ,c 为实数)的一个算法. 解析:算法步骤如下:第一步,当a =0,b =0,c =0时,解集为全体实数; 第二步,当a =0,b =0,c ≠0时,原方程无实数解; 第三步,当a =0,b ≠0时,原方程的解为x =-c b; 第四步,当a ≠0且b 2-4ac >0时,方程有两个不等实根 x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a;第五步,当a ≠0且b 2-4ac =0时,方程有两个相等实根x 1=x 2=-b2a ;第六步,当a ≠0且b 2-4ac <0时,方程无实根.[课时作业2] 程序框图与算法的顺序结构、条件结构[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.条件结构不同于顺序结构的特征是含有( ) A .处理框 B .判断框 C .输入、输出框 D .起止框解析:由于顺序结构中不含判断框,而条件结构中必须含有判断框,故选B. 答案:B2.给出以下四个问题:①输入一个数x ,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a ,b ,c 中的最大数;④求函数f (x )=⎩⎪⎨⎪⎧3x -1,x ≤0,x 2+1,x >0的函数值.其中需要用条件结构来描述算法的有( )A .1个B .2个C .3个D .4个解析:其中①③④都需要对条件作出判断,都需要用条件结构,②用顺序结构即可.故选C.答案:C3.运行如图所示的程序框图,输出的结果为11,则输入的x 的值为( )A.6 B.5C.4 D.3解析:依题意,令2x-1=11,解得x=6,即输入的x的值为6.答案:A4.已知M=ln 2,N=lg 10,执行如图所示的程序框图,则输出S的值为( )A.1 B.ln 10C.ln 5 D.ln 2解析:依题意,可得M<N,故输出的S=M=ln 2,故选D.答案:D5.某市的出租车收费办法如下:不超过2千米收7元(即起步价7元),超过2千米的里程每千米收2.6元,另每车次超过2千米收燃油附加费1元(不考虑其他因素).相应收费系统的程序框图如图所示,则①处应填( )A .y =7+2.6xB .y =8+2.6xC .y =7+2.6(x -2)D .y =8+2.6(x -2) 解析:当x >2时,2千米内的收费为7元, 2千米外的收费为(x -2)×2.6, 另外燃油附加费为1元,所以y =7+2.6(x -2)+1=8+2.6(x -2). 答案:D二、填空题(每小题5分,共15分) 6.如图,该程序框图的功能是________.解析:该程序框图表示的算法是先输入五个数,然后计算这五个数的和,再求这五个数的平均数,最后输出它们的和与平均数.答案:求五个数的和以及这五个数的平均数7.阅读如图所示的程序框图,若运行该程序框图后,输出y 的值为4,则输入的实数x 的值为________.解析:由程序框图,得y =⎩⎪⎨⎪⎧(x +2)2,x ≥02x,x <0,若y =4,则有⎩⎪⎨⎪⎧x ≥0(x +2)2=4或⎩⎪⎨⎪⎧x <02x=4,解得x =0.答案:08.已知函数y =⎩⎪⎨⎪⎧log 2x ,x ≥22-x ,x <2,如图表示的是给定x 的值,求其对应的函数值y 的程序框图,则①②处分别应填写________.解析:程序框图中的①处就是分段函数解析式的判断条件,故填写“x <2?”,②处就是当x ≥2时的函数解析式,故填写“y =log 2x ”.答案:x <2?,y =log 2x三、解答题(每小题10分,共20分)9.已知半径为r 的圆的周长公式为C =2πr ,当r =10时,写出计算圆的周长的一个算法,并画出程序框图.解析:算法如下: 第一步,令r =10. 第二步,计算C =2πr . 第三步,输出C . 程序框图如图所示:10.为了节约能源,培养市民节约用电的良好习惯,某省居民生活用电价格将实行三档累进递增的阶梯电价:第一档,月用电量不超过200千瓦时,每千瓦时0.498元;第二档,月用电量超过200千瓦时但不超过400千瓦时,超出的部分每千瓦时0.548元;第三档,月用电量超过400千瓦时,超出的部分每千瓦时0.798元.(1)写出电费y (元)关于月用电量z (千瓦时)的函数关系式; (2)请帮助该省政府设计一个计算电费的程序框图. 解析:(1)所求的函数关系式为y =⎩⎪⎨⎪⎧0.498x ,0≤x ≤2000.498×200+(x -200)×0.548,200<x ≤4000.498×200+200×0.548+(x -400)×0.798,x >400,即y =⎩⎪⎨⎪⎧0.498x ,0≤x ≤2000.548x -10,200<x ≤4000.798x -110,x >400.(2)程序框图为[能力提升](20分钟,40分)11.阅读如图程序框图,如果输出的值y 在区间⎣⎢⎡⎦⎥⎤14,1内,则输入的实数x 的取值范围是( )A .[-2,0)B .[-2,0]C .(0,2]D .[0,2]解析:由题意得:2x∈⎣⎢⎡⎦⎥⎤14,1且x ∈[-2,2],解得x ∈[-2,0].答案:B12.阅读如图所示的程序框图,写出它表示的函数是________.解析:由程序框图知,当x >3时,y =2x -8;当x ≤3时,y =x 2,故本题框图的功能是输入x 的值,求分段函数y =⎩⎪⎨⎪⎧2x -8(x >3)x 2(x ≤3)的函数值.答案:y =⎩⎪⎨⎪⎧2x -8(x >3)x 2(x ≤3)13.已知函数y =⎩⎪⎨⎪⎧2x -1,x <0,x 2+1,0≤x <1,x 3+2x ,x ≥1,写出求该函数的函数值的算法,并画出程序框图.解析:算法如下: 第一步,输入x .第二步,如果x <0,那么y =2x -1,然后执行第四步;否则,执行第三步. 第三步,如果x <1,那么y =x 2+1;否则,y =x 3+2x . 第四步,输出y . 程序框图如图所示.14.如图所示的程序框图,其作用是:输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,求这样的x 值有多少个?解析:由题可知算法的功能是求分段函数y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5的函数值,要满足题意,则需要⎩⎪⎨⎪⎧x ≤2,x 2=x (解得x =0或x =1)或⎩⎪⎨⎪⎧2<x ≤5,2x -3=x (x =3)或⎩⎪⎨⎪⎧x >5,1x=x ,(x=±1,舍去)∴满足条件的x 的值有3个.[课时作业3] 循环结构及应用[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列关于循环结构的说法正确的是( )A.循环结构中,判断框内的条件是唯一的B.判断框中的条件成立时,要结束循环向下执行C.循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D.循环结构就是无限循环的结构,执行程序时会永无止境地运行下去解析:由于判断框内的条件不唯一,故A错;由于当型循环结构中,判断框中的条件成立时执行循环体,故B错;由于循环结构不是无限循环的,故C正确,D错.答案:C2.如图所示程序框图的输出结果是( )A.3 B.4C.5 D.8解析:利用循环结构求解.当x=1,y=1时,满足x≤4,则x=2,y=2;当x=2,y=2时,满足x≤4,则x=2×2=4,y=2+1=3;当x=4,y=3时,满足x≤4,则x=2×4=8,y=3+1=4;当x=8,y=4时,不满足x≤4,则输出y=4.答案:B3.如图所示的程序框图输出的S是126,则①应为( )A.n≤5? B.n≤6?C.n≤7? D.n≤8?解析:2+22+23+24+25+26=126,所以应填“n≤6?”.答案:B4.执行程序框图如图,若输出y的值为2,则输入的x应该是( )A.2或 3 B.2或± 3C.2 D.2或- 3解析:由程序框图可得:当x<0时,y=x2-1,∴x2-1=2,即x2=3,∴x=- 3.当x≥0时,y=2x-2,∴2x-2=2,∴2x=4=22.∴x=2,综上所述,x=2或- 3.答案:D5.执行如图所示的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3 B.4C.5 D.6解析:执行第一次循环的情况是:a=2,b=4,a=6,s=6,n=1;执行第二次循环的情况是:a=-2,b=6,a=4,s=10,n=2,执行第三次循环的情况是:a=2,b=4,a =6,s=16,n=3,执行第四次循环的情况是:a=-2,b=6,a=4,s=20,n=4.根据走出循环体的判断条件可知执行完第四次走出循环体,输出n值,n值为4.答案:B二、填空题(每小题5分,共15分)6.执行如图所示的程序框图,若输入n的值为3,则输出的S的值为________.解析:第一次运算:S=2-1,i=1<3,i=2,第二次运算:S=3-1,i=2<3,i=3,第三次运算:S=1,i=3=n,所以S的值为1.答案:17.根据条件把图中的程序框图补充完整,求区间[1,1 000]内所有奇数的和,(1)处填________;(2)处填________.解析:求[1,1 000]内所有奇数和,初始值i =1,S =0,并且i <1 000,所以(1)应填S =S +i ,(2)应填i =i +2.答案:(1)S =S +i (2)i =i +28.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n 等于________.解析:当n =1时,a =152,b =4,满足进行循环的条件.n =2,a =454,b =8,满足进行循环的条件. n =3,a =1358,b =16,满足进行循环的条件. n =4,a =40516,b =32,不满足进行循环的条件. 故输出的n 值为4. 答案:4三、解答题(每小题10分,共20分)9.设计一个算法,求1×2×3…×100的值,并画出程序框图.解析:算法步骤如下: 第一步,S =1. 第二步,i =1. 第三步,S =S ×i . 第四步,i =i +1.第五步,判断i 是否大于100,若成立,则输出S ,结束算法;否则返回执行第三步. 程序框图如图.10.如图所示程序框图中,有这样一个执行框x i =f (x i -1),其中的函数关系式为f (x )=4x -2x +1,程序框图中的D 为函数f (x )的定义域. (1)若输入x 0=4965,请写出输出的所有x i ;(2)若输出的所有x i 都相等,试求输入的初始值x 0. 解析:(1)当x 0=4965时,x 1=4x 0-2x 0+1=1119,而x 1∈D ,∴输 出x 1,i =2,x 2=4x 1-2x 1+1=15,而x 2=15∈D ,∴输出x 2,i =3,x 3=4x 2-2x 2+1=-1,而-1∉D ,退出循环,故x i 的所有项为1119,15.(2)若输出的所有x i 都相等,则有x 1=x 2=…=x n =x 0,即x 0=f (x 0)=4x 0-2x 0+1,解得:x 0=1或x 0=2,所以输入的初始值x 0为1或2时输出的所有x i 都相等.[能力提升](20分钟,40分)11.考拉兹猜想又名3n +1猜想,是指对于每一个正整数,如果它是奇数,则乘3再加1;如果它是偶数,则除以2.如此循环,最终都能得到1.阅读如图所示的程序框图,运行相应程序,输出的结果i =( )A .4B .5C .6D .7解析:当a =10时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =5,i =2;当a =5时,不满足退出循环的条件,进入循环后,由于a 值满足“a 是奇数”,故a =16,i =3;当a =16时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =8,i =4;当a =8时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =4,i =5;当a =4时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =2,i =6;当a =2时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =1,i =7;当a=1时,满足退出循环的条件,故输出结果为7.故选D.答案:D12.下列四个程序框图都是为计算22+42+62+…+1002而设计的.正确的程序框图为________(填序号);图③输出的结果为________________(只需给出算式表达式);在错误的程序框图中,不能执行到底的为________(填序号).解析:将每一个程序框图所表示的算法“翻译”出来,即可判断.答案:④22+42+62+ (982)13.某高中男子体育小组的50米短跑成绩(单位:s)如下:6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5.设计一个算法,从这些成绩中搜索出小于 6.8 s 的成绩,并将这个算法用程序框图表示出来.解析:算法如下:第一步,输入a.第二步,若a<6.8成立,则输出a,否则执行第三步.第三步,若没有数据了,则算法结束,否则返回第一步.程序框图如图所示:14.设计一个算法,求1×22×33×…×100100的值,并画出程序框图(分别用直到型循环结构和当型循环结构表示).解析:算法步骤如下(直到型循环结构):第一步,S=1.第二步,i=1.第三步,S=S×i i.第四步,i=i+1.第五步,判断i>100是否成立.若成立,则输出S,结束算法;否则,返回第三步.该算法的程序框图如图所示:算法步骤如下(当型循环结构):第一步,S=1.第二步,i=1.第三步,判断i≤100是否成立.若成立,则执行第四步;否则,输出S,结束算法.第四步,S=S×i i.第五步,i=i+1.该算法的程序框图如图所示:[课时作业4] 输入语句、输出语句和赋值语句[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列语句正确的个数是( )①输入语句INPUT a+2;②赋值语句x=x-5;③输出语句PRINT M=2.A.0 B.1C.2 D.3解析:①中输入语句只能给变量赋值,不能给表达式a+2赋值,所以①错误;②中x =x-5表示变量x减去5后再将值赋给x,即完成x=x-5后,x比原来的值小5,所以②正确;③中不能输出赋值语句,所以③错误.答案:B2.下列程序运行的结果是( )A.1 B.2C.3 D.4解析:由赋值语句的功能知:M=1,M=1+1=2,M=2+2=4,输出M的值为4,故选D.答案:D3.输入a=5,b=12,c=13,经下列赋值语句运行后,a的值仍为5的是( )解析:对于选项A,先把b的值赋给a,a的值又赋给b,这样a,b的值均为12;对于选项B,先把c的值赋给a,这样a的值就是13,接下来是把b的值赋给c,这样c的值就是12,再又把a的值赋给b,所以a的值还是13;对于选项C,先把a的值赋给b,然后又把b的值赋给a,所以a的值没变,仍为5;对于选项D,先把b的值赋给c,这样c的值是12,再把a的值赋给b,于是b的值为5,然后又把c的值赋给a,所以a的值为12.于是可知选C.答案:C4.给出下列程序:若输出的A的值为120,则输入的A的值为( )A.1 B.5C.15 D.120解析:该程序的功能是计算A×2×3×4×5的值,则120=A×2×3×4×5,故A=1,即输入A的值为1.答案:A5.下列程序执行后,变量a,b的值分别为( )A.20,15 B.35,35C.5,5 D.-5,-5解析:a=15,b=20,把a+b赋给a,因此得出a=35,再把a-b赋给b,即b=35-20=15,再把a-b赋给a,此时a=35-15=20,因此最后输出的a,b的值分别为20,15.答案:A二、填空题(每小题5分,共15分)6.阅读如图所示的算法框图,则输出的结果是________.解析:y=2×2+1=5,b=3×5-2=13.答案:137.下面程序的功能是求所输入的两个正数的平方和,已知最后输出的结果是3.46,试据此将程序补充完整.解析:由于程序的功能是求所输入的两个数的平方和,且最后输出的结果是3.46,所以3.46=1.12+x22.所以,x22=2.25.又x2是正数,所以x2=1.5.答案:1.58.已知A(x1,y1),B(x2,y2)是平面上的两点,试根据平面几何中的中点坐标公式设计一个程序,要求输入A,B两点的坐标,输出它们连线中点的坐标.现已给出程序的一部分,请在横线处把程序补充完整:解析:应填入中点坐标公式.答案:(x1+x2)/2 (y1+y2)/2三、解答题(每小题10分,共20分)9.给出程序框图,写出相应的程序语句.解析:程序如下:10.阅读下面的程序,根据程序画出程序框图.解析:程序框图如图所示.[能力提升](20分钟,40分)11.给出下列程序:此程序的功能为( )A.求点到直线的距离B.求两点之间的距离C.求一个多项式函数的值D.求输入的值的平方和解析:输入的四个实数可作为两个点的坐标,程序中的a,b分别表示两个点的横、纵坐标之差,而m,n分别表示两点横、纵坐标之差的平方;s是横、纵坐标之差的平方和,d 是平方和的算术平方根,即两点之间的距离,最后输出此距离.答案:B12.阅读下列两个程序,回答问题.①②(1)上述两个程序的运行结果是①____________;②________;(2)上述两个程序中的第三行有什么区别:________________________________________________________________________ ________________________________________________________________________.解析:(1)①中运行x=3,y=4,x=4,故运行结果是4,4;同理,②中的运行结果是3,3;(2)程序①中的“x=y”是将y的值4赋给x,赋值后x的值变为4;程序②中的“y=x”是将x的值3赋给y,赋值后y的值变为3.答案:(1)①4,4②3,3(2)程序①中的“x=y”是将y的值4赋给x,赋值后x的值变为4;程序②中的“y=x”是将x的值3赋给y,赋值后y的值变为313.已知函数y=x2+3x+1,编写一个程序,使每输入一个x值,就得到相应的y值.解析:程序如下:14.某粮库3月4日存粮50 000 kg,3月5日调进粮食30 000 kg,3月6日调出全部存粮的一半,求每天的库存粮食数,画出程序框图,写出程序.解析:程序框图如图所示.程序:[课时作业5] 条件语句 [基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.当a=3时,下面的程序段输出的结果是( )A.9 B.3C.10 D.6解析:因为a=3<10,所以y=2×3=6.答案:D2.运行下面程序,当输入数值-2时,输出结果是( )A.7 B.-3C.0 D.-16解析:该算法是求分段函数y =⎩⎨⎧3x ,x >0,2x +1,x =0,-2x 2+4x ,x <0,当x =-2时的函数值,∴y =-16. 答案:D3.下列程序语句的算法功能是( )A .输出a ,b ,c 三个数中的最大数B .输出a ,b ,c 三个数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列解析:由程序语句可知,当比较a ,b 的大小后,选择较大的数赋给a ;当比较a ,c 的大小后,选择较大的数赋给a ,最后输出a ,所以此程序的作用是输出a ,b ,c 中最大的数.答案:A4.为了在运行下面的程序之后输出y =25,键盘输入x 应该是( )A .6B .5C .6或-6D .5或-5解析:程序对应的函数是y =⎩⎪⎨⎪⎧ (x +1)2,x <0,(x -1)2,x ≥0.由⎩⎪⎨⎪⎧ x <0,(x +1)2=25,或⎩⎪⎨⎪⎧ x ≥0,(x -1)2=25,得x =-6或x =6.答案:C5.已知程序如下:如果输出的结果为2,那么输入的自变量x 的取值范围是 ( )A .0B .(-∞,0]C .(0,+∞) D.R解析:由输出的结果为2,则执行了ELSE 后面的语句y =2,即x >0不成立,所以有x ≤0. 答案:B二、填空题(每小题5分,共15分)6.将下列程序补充完整.判断输入的任意数x 的奇偶性.解析:因为该程序为判断任意数x 的奇偶性且满足条件时执行“x 是偶数”,而m =x MOD 2表示m 除2的余数,故条件应用“m =0”.答案:m =07.如图,给出一个算法,已知输出值为3,则输入值为________.解析:本题的程序表示一个分段函数f(x)=⎩⎪⎨⎪⎧ x 2-3x -1,x≥0,log 2(x +5),x<0,∵输出值为3,∴⎩⎪⎨⎪⎧ x 2-3x -1=3,x≥0或⎩⎪⎨⎪⎧ log 2(x +5)=3,x<0,∴x=4,∴输入值x =4.答案:48.阅读下面程序(1)若输入a=-4,则输出结果为________;(2)若输入a=9,则输出结果为________.解析:分析可知,这是一个条件语句,当输入的值是-4时,输出结果为负数.当输入的值是9时,输出结果为9=3.答案:(1)负数(2)3三、解答题(每小题10分,共20分)9.编写求函数y=|x|的值的程序.解析:程序如下:10.给出如下程序(其中x满足:0<x<12).(1)该程序用函数关系式怎样表达?(2)画出这个程序的程序框图.解析:(1)函数关系式为y =⎩⎪⎨⎪⎧ 2x ,0<x ≤4,8,4<x ≤8,24-2x ,8<x <12.(2)程序框图如下:[能力提升](20分钟,40分)11.阅读下面的程序:程序运行的结果是( )A.3 B.3 4C.3 4 5 D.3 4 5 6解析:本题主要考查了条件语句的叠加,程序执行条件语句的叠加的过程中对于所有的条件都要进行判断,依次验证每一个条件,直到结束.在本题中共出现四次条件判断,每一个条件都成立,故输出结果为3 4 5 6.答案:D12.如下程序要使输出的y 值最小,则输入的x 的值为________.解析:本程序执行的功能是求函数y =⎩⎪⎨⎪⎧ (x -1)2(x ≥0),(x +1)2(x <0)的函数值.由函数的性质知,当x =1或x =-1时,y 取得最小值0.答案:-1或113.设计判断正整数m 是否是正整数n 的约数的一个算法,画出其程序框图,并写出相应的程序.解析:程序框图:程序为:14.到某银行办理跨行汇款,银行收取一定的手续费,汇款额不超过100元,收取1元手续费;超过100元但不超过5 000元,按汇款额的1%收取手续费;超过5 000元,一律收取50元手续费,画出描述汇款额为x 元,银行收取手续费y 元的程序框图,并写出相应的程序.解析:由题意,知y =⎩⎪⎨⎪⎧ 1,0<x ≤100,0.01x ,100<x ≤5 000,50,x >5 000.程序框图如图所示:程序如下:[课时作业6] 循环语句 [基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列程序运行后,输出的i的值等于( )A.9 B.8C.7 D.6解析:第一次:S=0+0=0,i=0+1=1;第二次:S=0+1=1,i=1+1=2;第三次:S=1+2=3,i=2+1=3;第四次:S=3+3=6,i=3+1=4;第五次:S=6+4=10,i=4+1=5;第六次:S=10+5=15,i=5+1=6;第七次:S=15+6=21,i=6+1=7,因此S=21>20,所以输出i=7.答案:C2.下列循环语句,循环终止时,i等于( )A.2 B.3C.4 D.5解析:当i<3时,执行循环体,因此,循环终止时i=3.答案:B3.如果以下程序运行后输出的结果是132,那么在程序中LOOP UNTIL后面的“条件”应为( )A.i>11 B.i>=11C.i<=11 D.i<11解析:该程序中使用了直到型循环语句,当条件不满足时执行循环体,满足时退出循环,由于输出的是132,132=12×11,故选D.答案:D4.下列程序执行后输出的结果是( )A.3 B.6C.10 D.15解析:由题意得,S=0+1+2+3+4+5=15.答案:D5.图中程序是计算2+3+4+5+6的值的程序.在WHILE后的①处和在s=s+i之后的②处所填写的语句可以是( )A.①i>1②i=i-1B.①i>1②i=i+1C.①i>=1 ②i=i+1D.①i>=1 ②i=i-1解析:程序框图是计算2+3+4+5+6的和,则第一个处理框应为i>1,i是减小1个,i=i-1,从而答案为:①i>1②i=i-1.答案:A二、填空题(每小题5分,共15分)6.阅读下面程序,输出S的值为________.解析:S=1,i=1;第一次:T=3,S=3,i=2;第二次:T=5,S=15,i=3;第三次:T =7,S =105,i =4,满足条件, 退出循环,输出S 的值为105. 答案:1057.下列程序表示的表达式是________(只写式子,不计算).解析:所给程序语句为WHILE 语句,是求12i +1的前九项和.所以表达式为13+15+…+117+119. 答案:13+15+…+117+1198.已知有如下两段程序:程序1运行的结果为________,程序2运行的结果为______.解析:程序1从计数变量i =21开始,不满足i ≤20,终止循环,累加变量sum =0,这个程序计算的结果是sum =0;程序2从计数变量i =21开始,进入循环,sum =0+21=21,i =i +1=21+1=22,i >20,循环终止,此时,累加变量sum =21,这个程序计算的结果是sum =21.答案:0 21三、解答题(每小题10分,共20分)9.编写程序,计算并输出表达式11+2+12+3+13+4+…+119+20的值.解析:利用UNTIL 语句编写程序如下 :10.分别用WHILE 语句和UNTIL 语句编写程序,求出使不等式12+22+32+…+n 2<1 000成立的n 的最大整数值.解析:方法一 利用WHILE 语句编写程序如下:方法二 利用UNTIL 语句编写程序如下:[能力提升](20分钟,40分)11.如下所示的程序,若最终输出的结果为6364,则在程序中横线处可填入的语句为( )A .i>=8B .i>=7C .i<7D .i<8解析:因为n =2,i =1,第1次循环:S =0+12=12,n =4,i =2;第2次循环:S =12+14=34,n =8,i =3;第3次循环:S =34+18=78,n =16,i =4;第4次循环:S =78+116=1516,n =32,i =5;第5次循环:S =1516+132=3132,n =64,i =6;第6次循环:S =3132+164=6364,n =128,i =7.此时输出的S =6364,故可填i >=7.答案:B12.下面是利用UNTIL 循环设计的计算1×3×5×…×99的一个算法程序.请将其补充完整,则横线处应分别填入①________②________.解析:补充如下:①S=S*i ②i>99答案:①S=S*i ②i>9913.高一(4)班共有60名同学参加数学竞赛,现已有这60名同学的竞赛分数,请设计一个将竞赛成绩优秀的同学的平均分输出的程序(规定89分以上为优秀).解析:程序如下:14.意大利数学家菲波那契在1202年出版的一本书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子?试画出解决此问题的程序框图,并编写相应的程序.解析:由题意可知,第一个月有一对小兔,第二个月有一对成年兔子,第三个月有两对兔子,从第三个月开始,每个月的兔子对数是前面两个月兔子对数的和.设第N个月有F 对兔子,第N-1个月有S对兔子,第N-2个月有Q对兔子,则F=S+Q.第N+1个月时,式中变量S的新值应变为第N个月兔子的对数(F的旧值),变量Q的新值应变为第N-1个月兔子的对数(S的旧值),这样,用S+Q求出变量F的新值就是第N+1个月兔子的对数,以此类推,可以得到一列数,这列数的第12项就是年底应有兔子的对数.我们可以先确定前两个月的兔子对数均为1,以此为基准,构造—个循环结构,让表示“第x个月”的i从3逐次增加1,一直变化到12,最后一次循环得到的F就是所求结果.程序框图如图所示.程序如下:。
人教版高中数学教案人教版高中数学必修3全册教案高中数学教案人教A版必修全套必修3教案,全套目录第一章算法初步 1com 程序框图与算法的基本逻辑结构 7 com 输入语句输出语句和赋值语句 29 com 条件语句 36com句 4413 算法案例 51第二章统计 7521 随机抽样 76com 简单随机抽样 76com 系统抽样 81com 分层抽样 8522 用样本估计总体 89com 用样本的频率分布估计总体分布 89 com 用样本的数字特征估计总体的数字特征 97 23 变量间的相关关系 107com 变量之间的相关关系 107com 两个变量的线性相关 107 第三章概率 11531 随机事件的概率 115 com 随机事件的概率 115 com 概率的意义 118com 概率的基本性质 121 com 古典概型 124com 整数值随机数random numbers的产生 128com 几何概型 132com 均匀随机数的产生 136第一章算法初步本章教材分析算法是数学及其应用的重要组成部分是计算科学的重要基础算法的应用是学习数学的一个重要方面学生学习算法的应用目的就是利用已有的数学知识分析问题和解决问题通过算法的学习对完善数学的思想激发应用数学的意识培养分析问题解决问题的能力增强进行实践的能力等都有很大的帮助本章主要内容算法与程序框图基本算法语句算法案例和小结教材从学生最熟悉的算法入手通过研究程序框图与算法案例使算法得到充分的应用同时也展现了古老算法和现代计算机技术的密切关系算法案例不仅展示了数学方法的严谨性科学性也为计算机的应用提供了广阔的空间让学生进一步受到数学思想方法的熏陶激发学生的学习热情在算法初步这一章中让学生近距离接近社会生活从生活中学习数学使数学在社会生活中得到应用和提高让学生体会到数学是有用的从而培养学生的学习兴趣数学建模也是高考考查重点本章还是数学思想方法的载体学生在学习中会经常用到算法思想转化思想从而提高自己数学能力因此应从三个方面把握本章1知识间的联系2数学思想方法3认知规律本章教学时间约需12课时具体分配如下仅供参考com 算法的概念约1课时 com 程序框图与算法的基本逻辑结构约4课时 com 输入语句输出语句和赋值语句约1课时 com 条件语句约1课时 com 循环语句约1课时13算法案例约3课时本章复习约1课时 11 算法与程序框图com 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念但没有一个精确化的定义教科书只对它作了如下描述在数学中算法通常是指按照一定规则解决某一类问题的明确有限的步骤为了让学生更好理解这一概念教科书先从分析一个具体的二元一次方程组的求解过程出发归纳出了二元一次方程组的求解步骤这些步骤就构成了解二元一次方程组的算法教学中应从学生非常熟悉的例子引出算法再通过例题加以巩固三维目标1正确理解算法的概念掌握算法的基本特点2通过例题教学使学生体会设计算法的基本思路3通过有趣的实例使学生了解算法这一概念的同时激发学生学习数学的兴趣重点难点教学重点算法的含义及应用教学难点写出解决一类问题的算法课时安排1课时教学过程导入新课思路1情境导入一个人带着三只狼和三只羚羊过河只有一条船同船可容纳一个人和两只动物没有人在的时候如果狼的数量不少于羚羊的数量狼就会吃羚羊该人如何将动物转移过河请同学们写出解决问题的步骤解决这一问题将要用到我们今天学习的内容算法思路2情境导入大家都看过赵本山与宋丹丹演的小品吧宋丹丹说了一个笑话把大象装进冰箱总共分几步答案分三步第一步把冰箱门打开第二步把大象装进去第三步把冰箱门关上上述步骤构成了把大象装进冰箱的算法今天我们开始学习算法的概念思路3直接导入算法不仅是数学及其应用的重要组成部分也是计算机科学的重要基础在现代社会里计算机已成为人们日常生活和工作中不可缺少的工具听音乐看电影玩游戏打字画卡通画处理数据计算机是怎样工作的呢要想弄清楚这个问题算法的学习是一个开始推进新课新知探究提出问题1解二元一次方程组有几种方法 2结合教材实例总结用加减消元法解二元一次方程组的步骤3结合教材实例总结用代入消元法解二元一次方程组的步骤4请写出解一般二元一次方程组的步骤 5根据上述实例谈谈你对算法的理解 6请同学们总结算法的特征7请思考我们学习算法的意义讨论结果1代入消元法和加减消元法2回顾二元一次方程组的求解过程我们可以归纳出以下步骤第一步??×2得5x 1?第二步解?得x第三步?-?×2得5y 3?第四步解?得y第五步得到方程组的解为3 用代入消元法解二元一次方程组我们可以归纳出以下步骤第一步由?得x 2y,1?第二步把?代入?得2 2y,1 y 1? 第三步解?得y ?第四步把?代入?得x 2×,1第五步得到方程组的解为4 对于一般的二元一次方程组其中a1b2,a2b1?0可以写出类似的求解步骤第一步?×b2-?×b1得a1b2,a2b1x b2c1,b1c2?第二步解?得x第三步?×a1-?×a2得a1b2,a2b1y a1c2,a2c1?第四步解?得y第五步得到方程组的解为5 算法的定义广义的算法是指完成某项工作的方法和步骤那么我们可以说洗衣机的使用说明书是操作洗衣机的算法菜谱是做菜的算法等等在数学中算法通常是指按照一定规则解决某一类问题的明确有限的步骤现在算法通常可以编成计算机程序让计算机执行并解决问题6 算法的特征?确定性算法的每一步都应当做到准确无误不重不漏不重是指不是可有可无的甚至无用的步骤不漏是指缺少哪一步都无法完成任务?逻辑性算法从开始的第一步直到最后一步之间做到环环相扣分工明确前一步是后一步的前提后一步是前一步的继续?有穷性算法要有明确的开始和结束当到达终止步骤时所要解决的问题必须有明确的结果也就是说必须在有限步内完成任务不能无限制地持续进行7 在解决某些问题时需要设计出一系列可操作或可计算的步骤来解决问题这些步骤称为解决这些问题的算法也就是说算法实际上就是解决问题的一种程序性方法算法一般是机械的有时需进行大量重复的计算它的优点是一种通法只要按部就班地去做总能得到结果因此算法是计算科学的重要基础应用示例思路1例1 1设计一个算法判断7是否为质数2设计一个算法判断35是否为质数算法分析1根据质数的定义可以这样判断依次用26除7如果它们中有一个能整除7则7不是质数否则7是质数算法如下1第一步用2除7得到余数1因为余数不为0所以2不能整除7 第二步用3除7得到余数1因为余数不为0所以3不能整除7第三步用4除7得到余数3因为余数不为0所以4不能整除7第四步用5除7得到余数2因为余数不为0所以5不能整除7第五步用6除7得到余数1因为余数不为0所以6不能整除7因此7是质数2类似地可写出判断35是否为质数的算法第一步用2除35得到余数1因为余数不为0所以2不能整除35第二步用3除35得到余数2因为余数不为0所以3不能整除35第三步用4除35得到余数3因为余数不为0所以4不能整除35第四步用5除35得到余数0因为余数为0所以5能整除35因此35不是质数点评上述算法有很大的局限性用上述算法判断35是否为质数还可以如果判断1997是否为质数就麻烦了因此我们需要寻找普适性的算法步骤变式训练请写出判断n n 2 是否为质数的算法分析对于任意的整数n n 2 若用i表示2 n-1 中的任意整数则判断n是否为质数的算法包含下面的重复操作用i除n得到余数r判断余数r是否为0若是则不是质数否则将i的值增加1再执行同样的操作这个操作一直要进行到i的值等于 n-1 为止算法如下第一步给定大于2的整数n第二步令i 2第三步用i除n得到余数r第四步判断r 0是否成立若是则n不是质数结束算法否则将i的值增加1仍用i表示第五步判断i,n-1是否成立若是则n是质数结束算法否则返回第三步例2 写出用二分法求方程x2-2 0 x 0 的近似解的算法分析令f x x2-2则方程x2-2 0 x 0 的解就是函数 f x 的零点二分法的基本思想是把函数 f x 的零点所在的区间〔ab〕满足f a ?f b 0一分为二得到〔am〕和〔mb〕根据f a ?f m 0是否成立取出零点所在的区间〔am〕或〔mb〕仍记为〔ab〕对所得的区间〔ab〕重复上述步骤直到包含零点的区间〔ab〕足够小则〔ab〕内的数可以作为方程的近似解解第一步令 f x x2-2给定精确度 d第二步确定区间〔ab〕满足f a ?f b 0第三步取区间中点m第四步若f a ?f m 0则含零点的区间为〔am〕否则含零点的区间为〔mb〕将新得到的含零点的区间仍记为〔ab〕第五步判断〔ab〕的长度是否小于d或f m是否等于0若是则m是方程的近似解否则返回第三步当d 0005时按照以上算法可以得到下表a b a-b 1 2 1 1 15 05 125 15 0251375 15 0125 1375 1437 5 0062 5 1406 251437 5 0031 25 1406 25 1421 875 0015 625 1414062 5 1421 875 0007 812 5 1414 062 5 1417 968 75 0003906 25 于是开区间1414 062 51417 968 75中的实数都是当精确度为0005时的原方程的近似解实际上上述步骤也是求的近似值的一个算法点评算法一般是机械的有时需要进行大量的重复计算只要按部就班地去做总能算出结果通常把算法过程称为数学机械化数学机械化的最大优点是它可以借助计算机来完成实际上处理任何问题都需要算法如中国象棋有中国象棋的棋谱走法胜负的评判准则而国际象棋有国际象棋的棋谱走法胜负的评判准则再比如申请出国有一系列的先后手续购买物品也有相关的手续思路 2 例1 一个人带着三只狼和三只羚羊过河只有一条船同船可容纳一个人和两只动物没有人在的时候如果狼的数量不少于羚羊的数量就会吃羚羊该人如何将动物转移过河请设计算法。
概率的意义一、教材内容分析本节为人教版必修3第三章3.1随机事件的概率中的第二小节3.1.2概率的意义,通过本节的学习,学生能正确理解概率。
本节在内容和结构上起着承上启下的作用,乘上:通过了解概率的意义,明白概率与第二章统计的联系;启下:通过了解概率的重要性,引出后两节概率的计算。
二、教学目标1.知概念识与技能:正确理解概率的意义;了解概率在实际问题中的应用,增强学习兴趣;进一步理解概率统计中随机性与规律性的关系。
2.过程与方法:通过对生活中实际问题的提出,学生掌握用概率的知识解释分析问题,着重培养学生观察、比较、概括、归纳等思维能力,并进一步培养将实际问题转化为数学问题的数学建模思想。
3.情感态度与价值观:鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,激发学生的学习兴趣。
三、学情分析学生已经学习了3.1随机事件的概率再加上初中对概率的了解,所以学生的认知起点较高,理解本节内容不难。
作为新授课,学生对于概率在实际问题中的应用具有较高的学习兴趣,但是用概率的知识解释问题的能力仍需进一步提高。
教师在本节讲授需要注意理论联系实际,同时注意培养学生的科学素养。
四、教学重难点重点:概率的正确理解及在实际中的应用难点:实际问题中体现随机性与规律性之间的联系,如何用概率解释这些具体问题。
五、教学策略1.教学方法:讲授法,讨论法,引导探究法2.教学手段:多媒体教学工具六、教学过程学生——完成探究并且回答原因不公平,各班被选到概率不相等,其中7班被选中概率最大..2决策中的概率思想问题:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为生产过程中发生小概率事件,我们有理由认为生产过程中出现了问题,应该立即停下生产进行检查。
3.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。
你认为下面两个解释中哪一个能代表气象局的观点?教师、学生——归纳总结. 归纳提升:七、板书设计八、教学反思本节是培养学生对数学产生兴趣的关键一节,教师要紧抓理解概率的意义和培养学生的学习兴趣这两个任务进行教学,通过生日在同一天的探讨,“生日悖论”的提出和在实际问题中的应用,提高学生学习数学的兴趣,通过孟德尔的豌豆试验培养学生科学探究的意识,树立学生严谨的科学观. 该节课十分有创意,在教材内容的基础上作了适当的必要的扩展,激发学生兴趣,教学目的明确,方法得当,引导自主探究、合作交流完成任务,整个课堂效率非常高。
课下能力提升(六)
[学业水平达标练]
题组1 条件语句与条件结构
1.下列关于条件语句的说法正确的是( )
A.条件语句中必须有ELSE和END IF
B.条件语句中可以没有END IF
C.条件语句中可以没有ELSE,但是必须有END IF D.条件语句中可以没有END IF,但是必须有ELSE 2.下列对条件语句的描述正确的是( )
A.ELSE后面的语句不可以是条件语句
B.两个条件语句可以共用一个END IF语句
C.条件语句可以没有ELSE后的语句
D.条件语句中IF—THEN和ELSE后的语句必须都有3.下列问题需要用条件语句来描述其算法的是( ) A.输入x,输出它的相反数
B.输入x,输出它的绝对值
C.求边长为1的正三角形的面积
D.求棱长为1的正四面体的体积
4.若a=11,下面的程序段输出的结果是________.
5.已知如图所示的程序,其运行结果是________.
题组2 条件结构的应用 6.已知程序:
若输出y 的值为6,则输入x 的值为________. 7.试设计程序,求函数y =|x -4|+1的函数值.
8.铁路托运行李,从甲地到乙地,按规定每张车票托运行李不超过50 kg 时,每千克0.13元,如超过50 kg ,超过的部分按每千克0.20元计算,如果行李重量为W (kg),运费为F (元),计算公式为:
F =⎩⎪⎨
⎪⎧
0.13×W W ≤50 ,50×0.13+ W -50 ×0.20 W >50 .
设计程序,输入行李的重量W ,输出运费F .
[能力提升综合练]
1.给出以下四个问题,①输入一个数x ,输出它的绝对值;②求函数
的函数值;③求面积为6的正方形的周长;④求三个数a ,b ,c
中的最大数,其中不需要用条件语句来描述其算法的有( )
A .1个
B .2个
C .3个
D .4个
2.(2016·临沂高一检测)下列程序的功能是:判断任意输入的数x 是否为正数,若是,
输出它的平方值;若不是,输出它的相反数.
则填入的条件应该是( )
A
.x >0 B .x <0 C .x >=0 D .x <=0
3.根据下列算法语句,当输入x 为60时,输出y 的值为( )
A .25
B .30
C .31
D .61
4.根据如图的程序提示依次输入4, 2, -5,则程序的运行结果是( ) INPUT “a=”;a INPUT “b=”;b INPUT “c=”;c max =a
IF b>max THEN max =b
END IF
IF c>max THEN max =c END IF
PRINT “max=”;max END
A .2
B .max =2
C .4
D .max =4 5.已知下列程序:
INPUT x
IF x <=-1 THEN y =-x -1ELSE
IF x >1
THEN y =-x^2+1
ELSE y =x -1 END IF END IF
PRINT “y=”;y END
如果输出的是y =0.75,则输入的x 是________. 6.(2016·滨州质检)读程序,完成下列题目: 程序如图:
(1)若执行程序时,没有执行语句y =x +1,则输入的x 的范围是________; (2)若执行结果为3,则执行的赋值语句是________,输入的x 的值是________. 7.儿童乘坐火车时,若身高不超过1.2 m ,则无需购票;若身高超过1.2 m 但不超过1.5 m ,应买半票;若超过1.5 m ,应买全票.试写出一个购票算法程序.
8.设计一个算法,求方程ax +b =0的解,并写出程序(注:本题程序中如果出现不等号,用“<>”表示).
答 案
[学业水平达标练]
1. 解析:选C 条件语句中必须有END IF ,但可以没有ELSE ,故选C.
2. 解析:选C 条件语句有两种格式:分别是IF —THEN 格式和IF —THEN —ELSE 格式.对于一个分支的条件语句可以没有ELSE 后的语句.
3. 解析:选B A ,C ,D 都不需要分类,所以不需要条件语句;而B 需要分类,故需用条件语句.
4. 解析:由于当a =11时,不满足条件a <10,所以执行y =a MOD 10,得到的结果是
y =1.注意“a MOD 10”是a 除以10的余数.
答案:1
5. 解析:因为33<99,所以t =33,a =99,b =33,a =99-33=6
6. 答案:a =66
6. 解析:由程序知,当x >0时,3x
2+3=6,解得x =2;
当x <0时,-3x 2+5=6,解得x =-2
3;显然x =0不成立.
答案:2或-2
3
7. 解:因为y =|x -4|+1=⎩⎪⎨
⎪⎧
x -3,x ≥4,
5-x ,x <4.
所以设计程序如下: INPUT “x=”;x IF x>=4 THEN y =x -3 ELSE y =5-x END IF PRINT y END
8. 解:程序如下.
[能力提升综合练]
1. 解析:选A ①②④都需要条件语句描述其算法,只有③不需用条件语句描述,故选A.
2. 解析:选D 因为条件真则执行y =-x ,条件假则执行y =x * x ,由程序功能知条件应为x <=0.
3. 解析:选C 由题意,得y =⎩
⎪⎨
⎪⎧
0.5x ,x ≤50,
25+0.6 x -50 ,x >50.当x =60时,y =25+
0.6×(60-50)=31,∴输出y 的值为31.
4. 解析:选D 本程序的功能是求输入的三个数中的最大数,运行程序得max =4.
5. 解析:由程序可知本题为根据输入的x ,求函数y =⎩⎪⎨⎪⎧
-x -1,x ≤-1,-x 2
+1,x >1,
x -1,-1<x ≤1的函数
值.我们可以分段令y =0.75,并验证,可求得x =-1.75.
答案:-1.75
6. 解析:(1)不执行y =x +1语句,说明不满足条件x ≥1,故有x <1. (2)当x <1时,y <2×1+1=3,只有x +1=3,x =2. 答案:(1) x <1 (2) y =x +1 2
7. 解:程序如下:
INPUT “身高h h>0 ”; h
IF h<=1.2 THEN PRINT “免费乘车”ELSE
IF h<=1.5 THEN PRINT “半票乘车” ELSE
PRINT “全票乘车” END IF END IF END
8. 解:算法:
第一步:判断a ≠0是否成立.若成立,输出结果“解为-b a
”;否则执行第二步. 第二步:判断b =0是否成立.若成立,输出结果“解集为R ”;若不成立,输出结果“方程无解”,结束算法.
程序为:
INPUT “a,b =”;a ,b IF a<>0 THEN
PRINT“x=”;-b/a ELSE
IF b =0 THEN PRINT “解集为R ” ELSE
PRINT “方程无解” END IF END IF END。