6.3 遥感图像预处理-辐射校正
- 格式:ppt
- 大小:4.12 MB
- 文档页数:21
第四章遥感图像的辐射纠正
教学目标:
1、本章要求学生了解引起遥感图像辐射畸变的原因,以及进行遥感图像辐射纠
正的必要性;
2、理解并掌握辐射定标的概念和进行辐射定标的方法,以及使用ENVI进行辐
射定标的方法;
3、理解并掌握大气对遥感图像的影响和进行大气纠正的方法,以及使用6s辐射
传输模块进行遥感图像大气纠正的方法;
教学内容:
1、遥感图像辐射纠正的概念
2、引起辐射畸变的因素
3、辐射定标的内容、原理和方法
4、使用ENVI进行遥感图像的辐射定标
5、大气纠正的原理和方法
6、使用6S辐射传输模型进行大气纠正
一、遥感图像辐射纠正的概念
利用传感器观测目标的反射或发射能量时,传感器所得到的测量值与目标的光谱反射率或光谱辐射亮度等物理量是不一致的,这是因为测量值中包含了太阳位置条件、薄雾等大气条件、或因传感器的性能不完备等条件所引起的失真。
为了正确评价目标的反射或发射特性必须消除这些失真。
消除依附在辐射亮度中的由于大气等因素引起的各种失真的过程叫做辐射纠正(Radiometric calibration)。
如上图所示,进入传感器的辐射能量包括三部分:太阳直射经地表反射直接进入传感器的部分、太阳直射经大气散射后漫入射到地表的能量再进入传感器的部分、。
遥感图像处理的基本步骤与技巧遥感技术是指利用航天器、飞机、卫星等高空平台获得的遥感图像进行信息提取和数据分析的过程。
随着科技的不断进步和应用范围的扩大,遥感图像处理已经成为许多领域中的重要工具。
本文将介绍遥感图像处理的基本步骤与技巧,以帮助读者更好地理解和应用这一技术。
一、图像预处理遥感图像预处理是遥感图像处理的第一步,旨在通过去除噪声、辐射校正和几何校正等处理,使图像质量更高,方便后续处理。
其中,去除噪声主要是采用滤波算法,如中值滤波、均值滤波等。
辐射校正主要用于将图像的辐射能量转换为表观反射率,以消除云、阴影等因素的影响。
几何校正是通过对图像进行几何变换,将其与地理坐标系统对齐,以便于后续的地理信息提取。
二、特征提取特征提取是遥感图像处理的核心环节,目的是从遥感图像中提取出具有代表性和区分度的特征信息。
常用的特征包括光谱特征、纹理特征、形状特征等。
光谱特征是指根据图像像素的光谱反射率或辐射能量,提取出不同波段的特征。
纹理特征是指从图像中提取出地物的纹理信息,包括纹理方向、纹理密度等。
形状特征是指从图像中提取出地物的形状信息,包括面积、周长等。
三、分类与识别分类与识别是遥感图像处理中的重要任务,目的是将地物按照其属性进行分类和识别。
常见的分类方法包括监督分类和无监督分类。
监督分类是指根据已知的样本类别信息,通过训练分类器将图像中的地物分到不同的类别中。
无监督分类是指根据图像像素之间的相似性将其分为一定数量的类别。
分类结果可以用于制作地图、监测资源变化等。
四、变化检测变化检测是遥感图像处理中的一项重要任务,主要应用于监测和分析地表物体的变化。
遥感图像在不同时间获取的变化信息可以帮助我们了解自然和人类活动对地表的影响。
常见的变化检测方法包括像素级变化检测和对象级变化检测。
像素级变化检测是指比较两幅图像对应像素之间的差异,以确定变化的位置和类型。
对象级变化检测是指先将图像分割成不同的对象,然后比较不同时间获取的对象之间的差异。
《遥感概论》课程笔记第一章:绪论1.1 遥感及其技术系统遥感(Remote Sensing)是指不直接接触对象物体,通过分析从远处感知到的电磁波信息来识别和探测地表及其上方环境的技术。
遥感技术系统是由多个组成部分构成的复杂体系,主要包括以下几部分:- 传感器(Sensor):用于探测和记录目标物体发射或反射的电磁波的设备。
- 遥感平台(Remote Sensing Platform):携带传感器的载体,如卫星、飞机、无人机等。
- 数据传输系统(Data Transmission System):将传感器收集的数据传回地面的设备。
- 数据处理与分析系统(Data Processing and Analysis System):对遥感数据进行处理、分析和解释的软件和硬件。
1.2 遥感门类及技术特点遥感技术根据不同的分类标准可以分为以下几类:- 按照电磁波波长:可见光遥感、红外遥感、微波遥感等。
- 按照传感器工作方式:主动遥感(如激光雷达)和被动遥感(如摄影相机)。
- 按照平台类型:卫星遥感、航空遥感、地面遥感等。
遥感技术的主要特点包括:- 大范围覆盖:遥感技术可以覆盖广阔的地表区域,对于大规模的地理现象监测具有优势。
- 高效快速:遥感平台可以快速穿越监测区域,获取数据的时间周期短。
- 多维信息:遥感可以提供关于地表及其上方环境的多种信息,如形状、纹理、温度等。
- 非侵入性:遥感技术不需要直接接触目标物体,因此对环境的影响较小。
1.3 遥感行业应用概况遥感技术在多个行业中有着广泛的应用,以下是一些主要的应用领域:- 农业领域:通过遥感技术监测作物生长状况、评估产量、监测病虫害、进行土地资源调查等。
- 环境保护:监测森林覆盖变化、湿地保护、沙漠化趋势、大气污染等环境问题。
- 灾害管理:利用遥感技术进行地震、洪水、飓风、火灾等自然灾害的预警、监测和评估。
- 城市规划:通过遥感图像分析城市扩张、交通布局、土地利用效率等,为城市规划提供依据。
遥感图像处理辐射校正方法近年来,随着航天技术、计算机技术、卫星定位技术和地理信息技术的发展,摄影测量与遥感已成为地球空间信息科学的基础技术,遥感集市在人类生活的诸多领域被广泛应用。
然而,在遥感成像时,由于各种因素的影响,遥感图像会存在一定的辐射量失真现象,这些失真影响了图像的质量和应用,必须对其做消除或减弱处理,遥感图像辐射校正与增强技术就是针对遥感图像这一缺陷而发展起来的。
在图像遥感中,由于系统误差、大气、太阳辐射等的存在,电磁辐射在太阳—地球表面—传感器之间传输的过程中受到各种各样的影响,使得遥感器所接受的目标反射辐射能量被衰减,不能准确地反映表面真实的辐射特性。
所谓辐射校正,主要是纠正由于传感器制造、传感器芯片热噪声、成像天气条件、地物所处的地形和太阳的照射条件等因素造成的辐射度量误差,尽可能消除因传感器自身条件、薄雾等大气条件、太阳位置和角度条件及某些不可避免的噪声而引起的传感器得到的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差异,尽可能恢复图像的本来面目,为遥感图像的识别、分类、解译等后续工作打下基础。
辐射校正的主要内容包括:系统辐射校正、大气辐射校正、太阳辐射校正和其他辐射校正。
遥感技术的应用是人类视觉在波谱范围上的扩展和从物体表面向内部的延伸。
人眼虽可看到很多东西,可区分约三千多种色彩,但那只是波长为0.38-0.8m 的可见光部分。
对于黑白图像,人眼能区分的灰度级只有二三十个,而在非可见光波段,需要将原始图像的灰度值转换到0-255 灰度区间才有利于人眼观察。
但是如果以256 个灰度级来描述一幅黑白遥感图像,获得的原始图像的灰度值很难均匀分布在0-255 之间,而是常常集中在某一段灰度范围之内,图像的反差小,对比度差,不利于人眼的分辨,对遥感图像进行增强处理能有效解决这个问题。
遥感图像辐射校正的疑难问题多且复杂,如散焦和运动模糊图像对图像的损伤较大,给图像复原造成了很大困难,特别是集散焦、运动、高噪声、低清晰度于一身的复合型模糊图像,其复原的难度使研究人员望而却步。