2014高三数学综合训练--复数的运算与几何意义
- 格式:doc
- 大小:121.50 KB
- 文档页数:3
详解复数的运算和几何意义复数是一种能够表示虚数单位 i 的数,它由实部和虚部组成,通常用 a+bi 的形式表示。
在现实生活中,复数的应用非常广泛,从电阻电容电感电路的计算到信号处理和量子计算,都少不了复数。
本文将详解复数的运算和几何意义。
一、基本概念首先,让我们来了解一些复数的基本概念。
实部和虚部是构成复数的两个基本元素,实部记为 Re(z),虚部记为 Im(z)。
在复平面上,实部沿着 x 轴正半轴方向,虚部沿着 y 轴正半轴方向,因此复数可以看做一个有序对 (a,b),a 是实部,b 是虚部。
复数的加减运算与实数的加减运算类似,只需将其实部和虚部分别相加减即可。
例如,设 z1=2+3i,z2=4+5i,则z1+z2=(2+4)+(3+5)i=6+8i,z1-z2=(2-4)+(3-5)i=-2-2i。
复数的乘法运算也是有许多规律的。
例如,设 z1=2+3i,z2=4+5i,则 z1*z2=(2*4-3*5)+(2*5+3*4)i=-7+22i。
从几何上讲,复数乘法的效果是将一个复数旋转了一个角度,并将其尺寸拉伸了一定的倍数。
具体来讲,设z1=r1(cos θ1+isin θ1),z2=r2(cosθ2+isin θ2),则z1*z2=r1r2(cos(θ1+θ2)+isin(θ1+θ2))。
二、复数的除法复数的除法运算比较复杂,它涉及到两个复数的逆元的求解。
我们可以将除法转化为乘法,即 z1/z2=z1*1/z2。
因此,只要求出z2 的逆元即可。
设 z2=a+bi,则 z2 的逆元为 1/z2=(a-bi)/(a^2+b^2)。
将其带入上式,则可得到z1/z2=r1/r2(cos(θ1-θ2)+isin(θ1-θ2))。
三、复数的共轭复数的共轭是指改变虚部的符号,即将 z=a+bi 的共轭记为z_bar=a-bi。
共轭的作用很广泛,它可以用来求模长、求逆元等。
例如,设 z=a+bi,则|z|^2=z*z_bar=(a+bi)(a-bi)=a^2+b^2,1/z=z_bar/|z|^2=(a-bi)/(a^2+b^2)。
复数的基本运算与几何意义解释复数是由实部和虚部构成的数,其表示形式为a + bi,其中a和b 分别为实部和虚部的实数部分,i为虚数单位,满足i^2 = -1。
复数的运算包括加法、减法、乘法和除法,下面将基本运算进行详细解释,并探讨其在几何中的意义。
一、加法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的和z = z1 + z2的实部等于两个复数实部的和,虚部等于两个复数虚部的和,即:z = z1 + z2 = (a1 + a2) + (b1 + b2)i几何意义:将复数z1和z2表示在复平面上,实部表示在实轴上,虚部表示在虚轴上。
加法运算就是将两个复数的向量相加,得到新的向量的终点,即通过终点相加的法则得到。
二、减法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的差z = z1 - z2的实部等于两个复数实部的差,虚部等于两个复数虚部的差,即:z = z1 - z2 = (a1 - a2) + (b1 - b2)i几何意义:将复数z1和z2表示在复平面上,减法运算就是将z2的向量从z1的向量终点出发得到新的向量的终点,即通过终点减去起点的法则得到。
三、乘法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的乘积z = z1 * z2的实部等于两个复数实部的乘积减去虚部的乘积,虚部等于两个复数实部的乘积加上虚部的乘积,即:z = z1 * z2 = (a1a2 - b1b2) + (a1b2 + b1a2)i几何意义:将复数z1和z2表示在复平面上,乘法运算就是将z1的向量的长度与z2的向量的长度相乘(模的乘积),同时将z1的向量的方向与z2的向量的方向相加(幅角的叠加),得到新的向量,即将两个向量的长度相乘,诱导出新的长度,将两个向量的角度相加,诱导出新的角度。
四、除法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的商z = z1 / z2为复数,可以通过以下步骤求解:1. 乘以共轭复数:将除数z2的虚部取相反数,即z2* = a2 - b2i;2. 乘以共轭复数得到分子:z1 * z2* = (a1 + b1i)(a2 - b2i);3. 化简分子:z1 * z2* = (a1a2 + b1b2) + (a1b2 - b1a2)i;4. 除以分母的模的平方:z = (a1a2 + b1b2)/(a2^2 + b2^2) + (a1b2 -b1a2)/(a2^2 + b2^2)i。
复数运算的几何意义解读复数是由实数和虚数构成的数学概念,具有实部和虚部两个部分。
在复平面中,复数可以表示为一个有序数对(a,b),其中a为实部,b为虚部。
复数运算的几何意义可以通过复平面的几何解释来理解。
首先,复数可以用来表示平面上的点。
复平面以实轴为x轴,以虚轴为y轴,每个复数可以对应平面上的一个点。
实部表示该点在x轴上的位置,虚部表示该点在y轴上的位置。
例如,复数z=3+4i表示平面上的一个点,该点在x轴上的位置是3,在y轴上的位置是4加法运算是复数运算中的一种基本操作。
两个复数相加得到的结果是一个新的复数,其实部等于两个复数的实部之和,虚部等于两个复数的虚部之和。
在几何上,两个复数的加法可以理解为将两个平面上的点进行向量相加,得到一个新的点。
减法运算也是复数运算中的一种基本操作。
两个复数相减得到的结果是一个新的复数,其实部等于第一个复数的实部减去第二个复数的实部,虚部等于第一个复数的虚部减去第二个复数的虚部。
在几何上,两个复数的减法可以理解为将第二个复数对应的点作为向量,进行与第一个复数对应的点的相反方向的向量相加。
乘法运算是复数运算中的另一种基本操作。
两个复数相乘得到的结果是一个新的复数,其实部等于两个复数的实部的乘积减去两个复数的虚部的乘积,虚部等于第一个复数的实部与第二个复数的虚部之积加上第一个复数的虚部与第二个复数的实部之积。
在几何上,两个复数的乘法可以理解为将两个平面上的点进行相乘得到一个新的点。
除法运算是复数运算中的一种特殊操作。
两个复数相除得到的结果是一个新的复数,其实部等于两个复数相乘的实部之和除以两个复数相乘的模的平方,虚部等于两个复数相乘的虚部之差除以两个复数相乘的模的平方。
在几何上,两个复数的除法可以理解为将第二个复数对应的点作为向量,进行与第一个复数对应的点的相反方向的向量相加。
复数的模是复数到原点的距离,可以用勾股定理计算。
复数的模平方等于复数实部的平方加上虚部的平方。
高中数学复数平面的几何意义说明在高中数学中,复数平面是一个重要的概念,它不仅在代数中有着广泛的应用,还具有独特的几何意义。
本文将通过具体的题目和例子来说明复数平面的几何意义,并介绍一些解题技巧,以帮助高中学生更好地理解和应用这一概念。
一、复数平面的基本概念复数平面是由实数轴和虚数轴组成的平面。
其中,实数轴表示实部,虚数轴表示虚部。
复数可以表示为a+bi的形式,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。
在复数平面中,每个复数对应平面上的一个点,该点的横坐标为实部,纵坐标为虚部。
二、复数平面的几何意义1. 向量的表示:复数可以看作是平面上的一个向量,向量的起点位于原点,终点位于复数对应的点。
向量的模表示复数的模,即复数到原点的距离;向量的幅角表示复数的辐角,即与实轴的夹角。
2. 几何运算:在复数平面中,复数的加法和减法对应向量的平移,复数的乘法对应向量的伸缩和旋转。
例如,两个复数相加时,可以将它们对应的向量首尾相连,得到一个新的向量,该向量的起点为第一个复数对应的点,终点为第二个复数对应的点。
三、复数平面的应用举例1. 求复数的模和辐角:对于复数z=a+bi,可以通过勾股定理计算其模 |z| =√(a²+b²),通过反三角函数计算其辐角 arg(z) = arctan(b/a)。
2. 复数的乘法和除法:复数的乘法对应向量的伸缩和旋转,模相乘,辐角相加;复数的除法对应向量的缩放和旋转,模相除,辐角相减。
例如,计算复数z₁=a₁+b₁i和复数z₂=a₂+b₂i的乘积z = z₁z₂时,可以将z₁和z₂对应的向量进行伸缩和旋转,得到z对应的向量,再转化为复数形式。
3. 复数的共轭和倒数:复数的共轭对应向量关于实轴的对称,实部不变,虚部取相反数;复数的倒数对应向量关于单位圆的对称。
例如,对于复数z=a+bi,其共轭为z* = a-bi,倒数为1/z = (a-bi)/(a²+b²)。
复数及其运算的几何意义目标:理解复数及其运算的几何意义,会正确运用几何意义解决问题;能根据复数Z 满足的条件求对应点的轨迹。
重点:几何意义的理解及应用,求复数轨迹。
教程:一、 基础知识:1、 复数的几何表示:2、 复数运算的几何意义:复数加、减法的几何意义即为向量的合成与分解(平行四边形法则,可简化为三角形法则);复数的乘法、乘方、除法的几何意义即为向量的旋转变换及伸缩变换;复数的开方的几何意义可概括为圆内接正多边形法则。
3、 几个重要结论:(1) 若021≠z z ,则⇔≠∈=⇔-=+0,,212121λλλR i z z z z z z 对应两个向量21OZ OZ ⊥;(2) 复数中中点坐标公式和重心公式:4、 复平面上的基本轨迹:设动点Z ,定点Z 1、Z 2分别复数z 、1z 、2z , r 1、r 2、a>0,Z 0为定点,对应复数为z 0(1) 复平面上两点Z 1、Z 2的距离公式:(2) 方程r z z =-0表示:(3) 式子r z z <-0表示:(4) 式子r 1<20r z z <-表示:(5) 方程a z z z z 221=-+-表示:(6) 方程a z z z z 221±=---表示:(7) 方程21z z z z -=-表示:(8) Re(z)=m 表示: Im(z)=n 表示:Im(z)=Re(z) 表示:Im(z)<0表示:(9) arg(z-z 0)=θ表示:5、求复数满足条件的轨迹的基本方法:二、 基本训练:1、 已知非零复数1z 、2z 分别对应于复平面上的A 、B ,且03222121=+-z z z z ,则∆AOB 是2、 设向量OZ 对应的复数是 -1+i,把OZ 按逆时针方向旋转1200,得到向量1OZ ,则向量1ZZ 对应的复数是:3、 在等腰直角∆ABC 中∠C =900,M 为AB 的中点,A 、B 对应的复数分别是2+5i 和-i ,则OM 对应的复数是 MA 对应的复数是 MC 对应的复数是4、 把复数1+3i 对应的复数绕原点逆时针方向旋转θ角,所得的向量对应复数-2i,则θ角的最小正值为5、 复平面内满足0432=-+z z 的复数z 对应的点的轨迹是6、 设M=}{622=-++z z z ,N =}{11=+z z ,则M 与N 的关系是( )(A ) M ⊃N (B )M ⊂N (C )M ∪N =M (D )M ∩N =φ三、 例题分析与解答:1、 已知z =2,arg(z+2)=3π,(1)求复数z ;(2)在复平面内,把复数z 3对应的向量绕原点O 按顺时针方向旋转3π,求所得向量对应的复数。
2014-2015学年某某省某某外国语学校高三(上)周练数学试卷(文科)(十)一.选择题1.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.下列说法正确的是()A.若a∈R,则“<1”是“a>1”的必要不充分条件B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件C.若命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题D.命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”3.设S n是等差数列a n的前n项和,若,则=()A.B.C.D.4.若△ABC为锐角三角形,则下列不等式中一定能成立的是()A.log cosC>0 B.log cosC>0C.log sinC>0 D.log sinC>05.把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.6.某几何体的三视图如图所示,则其侧面积为()A.B.C.D.7.对任意非零实数a,b,若a⊗b的运算规则如图的程序框图所示,则(3⊗2)⊗4的值是()A.0 B.C.D.98.设实数x,y满足约束条件,则u=的取值X围是()A.[,] B.[,] C.[,] D.[,]9.若函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,则的取值X围为()A.(4,+∞)B.(2+2,+∞)C.[4,+∞)D.[2+2,+∞)10.(5分)在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在y轴上且离心率小于的椭圆的概率为()A.B.C.D.11.已知函数f(x)=|x+a|(a∈R)在[﹣1,1]上的最大值为M(a),则函数g(x)=M(x)﹣|x2﹣1|的零点的个数为()A.1个B.2个C.3个D.4个12.过双曲线﹣=1(a>0,b>0)的一个焦点F引它到渐近线的垂线,垂足为M,延长FM交y轴于E,若=2,则该双曲线离心率为()A.B.C.D.313.已知P、M、N是单位圆上互不相同的三个点,且满足||=||,则的最小值是()A.﹣B.﹣C.﹣D.﹣114.设函数y=f(x)的定义域为D,若函数y=f(x)满足下列两个条件,则称y=f(x)在定义域D上是闭函数.①y=f(x)在D上是单调函数;②存在区间[a,b]⊆D,使f(x)在[a,b]上值域为[a,b].如果函数f(x)=为闭函数,则k的取值X围是()A.(﹣1,﹣] B.[,1﹚C.(﹣1,+∞)D.(﹣∞,1)二.填空题15.(5分)(2014某某二模)已知||=2,||=2,||=2,且++=,则++=.16.设,若当且仅当x=3,y=1时,z取得最大值,则k的取值X围为.17.(5分)(2014某某一模)已知点P是椭圆=1(x≠0,y≠0)上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且=0,则|的取值X围是.18.对于定义在区间D上的函数f(X),若存在闭区间[a,b]⊊D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列说法:①“平顶型”函数在定义域内有最大值;②函数f(x)=x﹣|x﹣2|为R上的“平顶型”函数;③函数f(x)=sinx﹣|sinx|为R上的“平顶型”函数;④当t≤时,函数,是区间[0,+∞)上的“平顶型”函数.其中正确的是.(填上你认为正确结论的序号)三.解答题19.(12分)(2014正定县校级三模)已知△ABC是半径为R的圆内接三角形,且2R(sin2A ﹣sin2C)=(a﹣b)sinB.(1)求角C;(2)试求△ABC面积的最大值.20.(12分)(2014某某二模)某公司研制出一种新型药品,为测试该药品的有效性,公司选定2000个药品样本分成三组,测试结果如表:分组A组B组C组药品有效670 a b药品无效80 50 c已知在全体样本中随机抽取1个,抽到B组药品有效的概率是0.35.(1)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?(2)已知b≥425,c≥68,求该药品通过测试的概率(说明:若药品有效的概率不小于90%,则认为测试通过).21.(12分)(2015某某模拟)已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)试探究在DE上是否存在点Q,使得AQ⊥BQ并说明理由.22.(12分)(2014春雁峰区校级月考)在平面直角坐标系xOy中,已知中心在坐标原点且关于坐标轴对称的椭圆C1的焦点在抛物线C2:y2=﹣4x的准线上,且椭圆C1的离心率为.(1)求椭圆C1的方程,(2)若直线l与椭圆C1相切于第一象限内,且直线l与两坐标轴分别相交与A,B两点,试探究当三角形AOB的面积最小值时,抛物线C2上是否存在点到直线l的距离为.23.(12分)(2014某某校级模拟)已知函数f(x)=lnx+x2﹣ax(a为常数).(1)若x=1是函数f(x)的一个极值点,求a的值;(2)当0<a≤2时,试判断f(x)的单调性;(3)若对任意的a∈(1,2),x0∈[1,2],使不等式f(x0)>mlna恒成立,某某数m的取值X围.2014-2015学年某某省某某外国语学校高三(上)周练数学试卷(文科)(十)参考答案与试题解析一.选择题1.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数==﹣i﹣1对应的点(﹣1,﹣1)位于第三象限,故选:C.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2.下列说法正确的是()A.若a∈R,则“<1”是“a>1”的必要不充分条件B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件C.若命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题D.命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”【分析】利用充要条件的定义,可判断A,B,判断原命题的真假,进而根据命题的否定与原命题真假性相反,可判断C,根据存在性(特称)命题的否定方法,可判断D.【解答】解:若“<1”成立,则“a>1”或“a<0”,故“<1”是“a>1”的不充分条件,若“a>1”成立,则“<1”成立,故“<1”是“a>1”的必要条件,综上所述,“<1”是“a>1”的必要不充分条件,故A正确;若“p∧q为真命题”,则“p,q均为真命题”,则“p∨q为真命题”成立,若“p∨q为真命题”则“p,q存在至少一个真命题”,则“p∧q为真命题”不一定成立,综上所述,“p∧q为真命题”是“p∨q为真命题”的充分不必要条件,故B错误;命题p:“∀x∈R,sinx+cosx=sin(x+)≤”为真命题,则¬p是假命题,故C 错误;命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3≥0”,故D错误;故选:A.【点评】本题以命题的真假判断为载体,考查了充要条件,命题的否定等知识点,是简单逻辑的简单综合应用,难度中档.3.设S n是等差数列a n的前n项和,若,则=()A.B.C.D.【分析】由题意可得 S3、S6﹣S3、S9﹣S6、S12﹣S9也成等差数列,由此可得 S6=S9+S3①,S12=3S9﹣3S6+S3②,再由可得 S12=S6③,利用①、②、③化简可得的值.【解答】解:∵S n是等差数列a n的前n项和,∴S3、S6﹣S3、S9﹣S6、S12﹣S9也成等差数列,∴S6﹣2S3=S9﹣2S6+S3,∴S6=S9+S3①.同理可得,S12﹣2S9+S6=S9﹣2S6+S3,即 S12=3S9﹣3S6+S3②.而由可得 S12=S6③.由①、②、③化简可得S3=S9,∴=,故选:C.【点评】本题主要考查等差数列的性质的应用,属于中档题.4.若△ABC为锐角三角形,则下列不等式中一定能成立的是()A.log cosC>0 B.log cosC>0C.log sinC>0 D.log sinC>0【分析】由锐角三角形ABC,可得1>cosC>0,0<A<,0<B<,,利用正弦函数的单调性可得sinB>sin(﹣A)=cosA>0,再利用对数函数的单调性即可得出.【解答】解:由锐角三角形ABC,可得1>cosC>0,0<A<,0<B<,,∴0<<B<,∴sinB>sin(﹣A)=cosA>0,∴1>>0,∴>0.故选:B.【点评】本题考查了锐角三角形的性质、锐角三角函数函数的单调性、对数函数的单调性等基础知识与基本技能方法,属于中档题.5.把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.【分析】先对函数进行图象变换,再根据正弦函数对称轴的求法,即令ωx+φ=即可得到答案.【解答】解:图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.【点评】本小题综合考查三角函数的图象变换和性质.图象变换是考生很容易搞错的问题,值得重视.一般地,y=Asin(ωx+φ)的图象有无数条对称轴,它在这些对称轴上一定取得最大值或最小值.6.某几何体的三视图如图所示,则其侧面积为()A.B.C.D.【分析】从三视图可以推知,几何体是四棱锥,底面是一个直角梯形,一条侧棱垂直底面,易求侧面积.【解答】解:几何体是四棱锥,底面是一个直角梯形,一条侧棱垂直底面.且底面直角梯形的上底为1,下底为2,高为1,四棱锥的高为1.四个侧面都是直角三角形,其中△PBC的高PB===故其侧面积是S=S△PAB+S△PBC+S△PCD+S△PAD==故选A【点评】本题考查三视图求面积、体积,考查空间想象能力,是中档题.7.对任意非零实数a,b,若a⊗b的运算规则如图的程序框图所示,则(3⊗2)⊗4的值是()A.0 B.C.D.9【分析】由框图知,a⊗b的运算规则是若a≤b成立,则输出,否则输出,由此运算规则即可求出(3⊗2)⊗4的值【解答】解:由图a⊗b的运算规则是若a≤b成立,则输出,否则输出,故3⊗2==2,(3⊗2)⊗4=2⊗4==故选C.【点评】本题考查选择结构,解题的关键是由框图得出运算规则,由此运算规则求值,此类题型是框图这一部分的主要题型,也是这几年对框图这一部分考查的主要方式.8.设实数x,y满足约束条件,则u=的取值X围是()A.[,] B.[,] C.[,] D.[,]【分析】作出不等式组对应的平面区域,利用数形结合将目标函数进行转化,利用直线的斜率结合分式函数的单调性即可得到结论.【解答】解:作出不等式组对应的平面区域如图:则对应的x>0,y>0,则u==,设k=,则u==,由图象可知当直线y=kx,经过点A(1,2)时,斜率k最大为k=2,经过点B(3,1)时,斜率k最小为k=,即.∴,,∴,即,即≤z≤,故选:C【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合是解决本题的关键,综合性较强,运算量较大.9.若函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,则的取值X围为()A.(4,+∞)B.(2+2,+∞)C.[4,+∞)D.[2+2,+∞)【分析】利用导数求解,由函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,可得f′(x)>0恒成立,找出a,b,c的关系,再利用基本不等式求最值.【解答】解:∵函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,∴f′(x)≥0在R上恒成立,即3ax2+2bx+c≥0恒成立,即△=4b2﹣12ac≤0 即b2≤3ac,∴==++2≥2+2≥4.故选C.【点评】考查利用导数即基本不等式的解决问题的能力,把问题转化为恒成立问题解决是本题的关键,应好好体会这种问题的转化思路.10.(5分)在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在y轴上且离心率小于的椭圆的概率为()A.B.C.D.【分析】根据椭圆的性质结合椭圆离心率,求出a,b满足的条件,求出对应的面积,结合几何概型的概率公式进行求解即可.【解答】解:∵在区间[1,5]和[2,4]分别取一个数,记为a,b,∴,若方程表示焦点在y轴上且离心率小于,则,由e=<得c<a,平方得c2<a2,即a2﹣b2<a2,即b2>a2,则b>a或b a(舍),即,作出不等式组对应的平面区域如图:则F(2,2),E(4,4),则梯形ADEF的面积S==4,矩形的面积S=4×2=8,则方程表示焦点在y轴上且离心率小于的椭圆的概率P=,故选:C.【点评】本题主要考查几何概型的概率的计算,根据椭圆的性质求出a,b的条件,求出对应的面积,利用数形结合是解决本题的关键.11.已知函数f(x)=|x+a|(a∈R)在[﹣1,1]上的最大值为M(a),则函数g(x)=M(x)﹣|x2﹣1|的零点的个数为()A.1个B.2个C.3个D.4个【分析】求出M(a)的解析式,根据函数g(x)=M(x)﹣|x2﹣1|的零点,即函数M(x)=与函数y=|x2﹣1|交点的横坐标,利用图象法解答.【解答】解:∵函数f(x)=|x+a|(a∈R)在[﹣1,1]上的最大值为M(a),∴M(a)=,函数g(x)=M(x)﹣|x2﹣1|的零点,即函数M(x)=与函数y=|x2﹣1|交点的横坐标,由图可得:函数M(x)=与函数y=|x2﹣1|有三个交点,故函数g(x)=M(x)﹣|x2﹣1|有3个零点,故选:C【点评】本题考查函数图象的作法,熟练作出函数的图象是解决问题的关键,属中档题.12.过双曲线﹣=1(a>0,b>0)的一个焦点F引它到渐近线的垂线,垂足为M,延长FM交y轴于E,若=2,则该双曲线离心率为()A.B.C.D.3【分析】先利用FM与渐近线垂直,写出直线FM的方程,从而求得点E的坐标,利用已知向量式,求得点M的坐标,最后由点M在渐近线上,代入得a、b、c间的等式,进而变换求出离心率【解答】解:设F(c,0),则c2=a2+b2∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x∴垂线FM的斜率为﹣∴直线FM的方程为y=﹣(x﹣c)令x=0,得点E的坐标(0,)设M(x,y),∵=2,∴(x﹣c,y)=2(﹣x,﹣y)∴x﹣c=﹣2x且y=﹣2y即x=,y=代入y=x得=,即2a2=b2,∴2a2=c2﹣a2,∴=3,∴该双曲线离心率为故选C【点评】本题考查了双曲线的几何性质,求双曲线离心率的方法,向量在解析几何中的应用13.已知P、M、N是单位圆上互不相同的三个点,且满足||=||,则的最小值是()A.﹣B.﹣C.﹣D.﹣1【分析】由题意可得,点P在MN的垂直平分线上,不妨设单位圆的圆心为O(0,0),点P (0,1),点M(x1,y1),则点N(﹣x1,y1),由得=,求出最小值.【解答】解:由题意可得,点P在MN的垂直平分线上,不妨设单位圆的圆心为O(0,0),点P(0,1),点M(x1,y1),则点N(﹣x1,y1),﹣1≤y1<1∴=(x1,y1﹣1),=(﹣x1,y1﹣1),.∴===2﹣,∴当y1=时的最小值是故选:B.【点评】本题主要考查两个向量的数量积公式,二次函数的性质,属于中档题.14.设函数y=f(x)的定义域为D,若函数y=f(x)满足下列两个条件,则称y=f(x)在定义域D上是闭函数.①y=f(x)在D上是单调函数;②存在区间[a,b]⊆D,使f(x)在[a,b]上值域为[a,b].如果函数f(x)=为闭函数,则k的取值X围是()A.(﹣1,﹣] B.[,1﹚C.(﹣1,+∞)D.(﹣∞,1)【分析】若函数f(x)=为闭函数,则存在区间[a,b],在区间[a,b]上,函数f(x)的值域为[a,b],即,故a,b是方程x2﹣(2k+2)x+k2﹣1=0(x,x≥k)的两个不相等的实数根,由此能求出k的取值X围.【解答】解:若函数f(x)=为闭函数,则存在区间[a,b],在区间[a,b]上,函数f(x)的值域为[a,b],即,∴a,b是方程x=的两个实数根,即a,b是方程x2﹣(2k+2)x+k2﹣1=0(x,x≥k)的两个不相等的实数根,当k时,,解得﹣1<k≤﹣.当k>﹣时,,无解.故k的取值X围是(﹣1,﹣].故选A.【点评】本题考查函数的单调性及新定义型函数的理解,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.二.填空题15.(5分)(2014某某二模)已知||=2,||=2,||=2,且++=,则++= ﹣12 .【分析】把++=两边平方,变形可得++=(),代入数据计算可得.【解答】解:∵++=,∴平方可得(++)2=2,∴+2(++)=0,∴++=()=(4+8+12)=﹣12故答案为:﹣12【点评】本题考查平面向量数量积的运算,由++=两边平方是解决问题的关键,属中档题.16.设,若当且仅当x=3,y=1时,z取得最大值,则k的取值X围为(﹣,1).【分析】作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出a的取值X围.【解答】解:作出不等式对应的平面区域如图:由z=kx﹣y得y=kx﹣z,要使目标函数z=kx﹣y仅在x=3,y=1时取得最大值,即此时直线y=kx﹣z的截距最小,则阴影部分区域在直线y=kx﹣z的上方,目标函数处在直线x+2y﹣5=0和x﹣y﹣2=0之间,而直线x+2y﹣5=0和x﹣y﹣2=0的斜率分别为﹣,和1,即目标函数的斜率k,满足﹣<k<1,故答案为:(﹣,1).【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.根据条件目标函数z=kx﹣y仅在点A(3,1)处取得最大值,确定直线的位置是解决本题的关键.17.(5分)(2014某某一模)已知点P是椭圆=1(x≠0,y≠0)上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且=0,则|的取值X围是.【分析】延长PF2、F1M,交与N点,连接OM,利用等腰三角形的性质、三角形中位线定理和椭圆的定义,证出|OM|=||PF1|﹣|PF2||.再利用圆锥曲线的统一定义,化简得||PF1|﹣|PF2||=|x0|,利用椭圆上点横坐标的X围结合已知数据即可算出|的取值X围.【解答】解:如图,延长PF2、F1M,交与N点,连接OM,∵PM是∠F1PF2平分线,且=0可得F1M⊥MP,∴|PN|=|PF1|,M为F1F2中点,∵O为F1F2中点,M为F1N中点∴|OM|=|F2N|=||PN|﹣|PF2||=||PF1|﹣|PF2||设P点坐标为(x0,y0)∵在椭圆=1中,离心率e==由圆锥曲线的统一定义,得|PF1|=a+ex0,|PF2|=a﹣ex0,∴||PF1|﹣|PF2||=|a+ex0﹣a+ex0|=|2ex0|=|x0|∵P点在椭圆=1上,∴|x0|∈[0,4],又∵x≠0,y≠0,可得|x0|∈(0,4),∴|OM|∈故答案为:【点评】本题求两点间的距离的取值X围,着重考查了椭圆的定义、等腰三角形的性质、三角形中位线定理和椭圆的简单几何性质等知识,属于中档题.18.对于定义在区间D上的函数f(X),若存在闭区间[a,b]⊊D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列说法:①“平顶型”函数在定义域内有最大值;②函数f(x)=x﹣|x﹣2|为R上的“平顶型”函数;③函数f(x)=sinx﹣|sinx|为R上的“平顶型”函数;④当t≤时,函数,是区间[0,+∞)上的“平顶型”函数.其中正确的是①④.(填上你认为正确结论的序号)【分析】根据题意,“平顶型”函数在定义域内某个子集区间内函数值为常数c,且这个常数是函数的最大值,但是定义并没有指出函数最小值的情况.由此定义再结合绝对值的性质和正弦函数的图象与性质,对于四个选项逐个加以判断,即得正确答案.【解答】解:对于①,根据题意,“平顶型”函数在定义域内某个子集区间内函数值为常数c,且这个常数是函数的最大值,故①正确.对于②,函数f(x)=x﹣|x﹣2|=的最大值为2,但不存在闭区间[a,b]⊊D和常数c,使得对任意x1∈[a,b],都有f(x1)=2,且对任意x2∈D,当x2∉[a,b]时,f(x2)<2恒成立,故②不符合“平顶型”函数的定义.对于③,函数f(x)=sinx﹣|sinx|=,但是不存在区间[a,b],对任意x1∈[a,b],都有f(x1)=2,所以f(x)不是“平顶型”函数,故③不正确.对于④当t≤时,函数,,当且仅当x∈[0,1]时,函数取得最大值为2,当x∉[0,1]且x∈[0,+∞)时,f(x)=<2,符合“平顶型”函数的定义,故④正确.故答案为:①④.【点评】本题以命题真假的判断为载体,着重考查了函数的最值及其几何意义、带绝对值的函数和正弦函数的定义域值域等知识点,属于中档题.三.解答题19.(12分)(2014正定县校级三模)已知△ABC是半径为R的圆内接三角形,且2R(sin2A ﹣sin2C)=(a﹣b)sinB.(1)求角C;(2)试求△ABC面积的最大值.【分析】(1)根据正弦定理,已知等式中的角转换成边,可得a、b、c的平方关系,再利用余弦定理求得cosC的值,可得角C的大小;(2)根据正弦定理算出c=R,再由余弦定理c2=a2+b2﹣2abcosC的式子,结合基本不等式找到边ab的X围,利用正弦定理的面积公式加以计算,即可求出△ABC面积的最大值.【解答】解:(1)∵2R(sin2A﹣sin2C)=(a﹣b)sinB,∴根据正弦定理,得a2﹣c2=(a﹣b)b=ab﹣b2,可得a2+b2﹣c2=ab∴cosC===,∵角C为三角形的内角,∴角C的大小为(2)由(1)得c=2Rsin=R由余弦定理c2=a2+b2﹣2abcosC,可得2R2=a2+b2﹣ab≥2ab﹣ab=(2﹣)ab,当且仅当a=b时等号成立∴ab≤=()R2∴S△ABC=absinC≤()R2=R2即△ABC面积的最大值为R2【点评】本题给出三角形的外接圆半径为R,在已知角的关系式情况下,求三角形面积最大值.着重考查了三角形的外接圆、正余弦定理和基本不等式求最值等知识,属于中档题.20.(12分)(2014某某二模)某公司研制出一种新型药品,为测试该药品的有效性,公司选定2000个药品样本分成三组,测试结果如表:分组A组B组C组药品有效670 a b药品无效80 50 c已知在全体样本中随机抽取1个,抽到B组药品有效的概率是0.35.(1)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?(2)已知b≥425,c≥68,求该药品通过测试的概率(说明:若药品有效的概率不小于90%,则认为测试通过).【分析】(1)利用抽样的性质先求出a,再根据样本总个数得出b+c=500,从而根据分层抽样的特点确定应在C组抽取样本多少个;(2)列举(b,c)的所有可能性,找出满足b≥425,c≥68,情况,利用古典概型概率公式计算即可.【解答】解:(1)∵,∴a=700∵b+c=2000﹣670﹣80﹣700﹣50=500∴应在C组抽取样本个数是个.(2)∵b+c=500,b≥425,c≥68,∴(b,c)的可能性是(425,75),(426,74),(427,73),(428,72),(429,71),(430,70),(431,69),(432,68)若测试通过,则670+700+b≥2000×90%=1800∴b≥430∴(b,c)的可能有(430,70),(431,69),(432,68)∴通过测试的概率为.【点评】本题考查分层抽样的性质,古典概型概率公式的应用,属于中档题.21.(12分)(2015某某模拟)已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)试探究在DE上是否存在点Q,使得AQ⊥BQ并说明理由.【分析】(1)由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=1,则体积可以求得.(2)求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.(3)假设存在这样的点Q,使得AQ⊥BQ.解法一:通过假设的推断、计算可知以O为圆心、以BC为直径的圆与DE相切.解法二:在含有直线与平面垂直垂直的条件的棱柱、棱锥、棱台中,也可以建立空间直角坐标系,设定参量求解.这种解法的好处就是:1、解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.2、即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.设满足题设的点Q存在,其坐标为(0,m,n),点Q在ED上,∴存在λ∈R(λ>0),使得=λ,解得λ=4,∴满足题设的点Q存在,其坐标为(0,,).【解答】解:(1)由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=1,∴S梯形BCED=×(4+1)×4=10∴V=S梯形BCED AC=×10×4=.即该几何体的体积V为.(3分)(2)解法1:过点B作BF∥ED交EC于F,连接AF,则∠FBA或其补角即为异面直线DE与AB所成的角.(5分)在△BAF中,∵AB=4,BF=AF==5.∴cos∠ABF==.即异面直线DE与AB所成的角的余弦值为.(7分)解法2:以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.则A(4,0,0),B(0,4,0),D(0,4,1),E(0,0,4)∴=(0,﹣4,3),=(﹣4,4,0),∴cos<,>=﹣∴异面直线DE与AB所成的角的余弦值为.(3)解法1:在DE上存在点Q,使得AQ⊥BQ.(8分)取BC中点O,过点O作OQ⊥DE于点Q,则点Q满足题设.(10分)连接EO、OD,在Rt△ECO和Rt△OBD中∵∴Rt△ECO∽Rt△OBD∴∠EOC=∠OBD∵∠EOC+∠CEO=90°∴∠EOC+∠DOB=90°∴∠EOB=90°.(11分)∵OE==2,OD==∴OQ===2∴以O为圆心、以BC为直径的圆与DE相切.切点为Q∴BQ⊥CQ∵AC⊥面BCED,BQ⊂面CEDB∴BQ⊥AC∴BQ⊥面ACQ(13分)∵AQ⊂面ACQ∴BQ⊥AQ.(14分)解法2:以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.设满足题设的点Q存在,其坐标为(0,m,n),则=(﹣4,m,n),=(0,m﹣4,n)=(0,m,n﹣4),=(0,4﹣m,1﹣n)∵AQ⊥BQ∴m(m﹣4)+n2=0①∵点Q在ED上,∴存在λ∈R(λ>0)使得=λ∴(0,m,n﹣4)=λ(0,4,m,1﹣n)⇒m=,n=②②代入①得(﹣4)()2=0⇒λ2﹣8λ+16=0,解得λ=4∴满足题设的点Q存在,其坐标为(0,,).【点评】本小题主要考查空间线面关系、面面关系、二面角的度量、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.22.(12分)(2014春雁峰区校级月考)在平面直角坐标系xOy中,已知中心在坐标原点且关于坐标轴对称的椭圆C1的焦点在抛物线C2:y2=﹣4x的准线上,且椭圆C1的离心率为.(1)求椭圆C1的方程,(2)若直线l与椭圆C1相切于第一象限内,且直线l与两坐标轴分别相交与A,B两点,试探究当三角形AOB的面积最小值时,抛物线C2上是否存在点到直线l的距离为.【分析】(1)由题意设椭圆C1的方程,(a>b>0),且,由此能求出椭圆C1的方程.(2)设直线l的方程为y=kx+m(k<0,m>0)由,得(3+4k2)x2+8kmx+4m2﹣12=0,由此利用根的判别式、韦达定理、点到直线距离公式、弦长公式能推导出抛物线C2上不存在点到直线l的距离为.【解答】解:(1)∵椭圆C1的焦点在抛物线C2:y2=﹣4x的准线上,且椭圆C1的离心率为.∴椭圆焦点在x轴上,设椭圆C1的方程:,(a>b>0),且,解得a=2,b=,∴椭圆C1的方程为.(2)∵直线l与椭圆C1相切于第一象限内,∴直线l的斜率存在且小于零,设直线l的方程为y=kx+m(k<0,m>0)由,得(3+4k2)x2+8kmx+4m2﹣12=0,由题可知,△=0,∴m2=4k2+3,当即时上式等号成立,此时,直线l为设点D为抛物线C2上任意一点,则点D到直线l的距离为,利用二次函数的性质知,∴抛物线C2上不存在点到直线l的距离为.【点评】本题考查椭圆方程的求法,考查当三角形面积最小时满足条件的点是否存在的判断与求法,解题时要认真审题,注意根的判别式、韦达定理、点到直线距离公式、弦长公式的合理运用.23.(12分)(2014某某校级模拟)已知函数f(x)=lnx+x2﹣ax(a为常数).(1)若x=1是函数f(x)的一个极值点,求a的值;(2)当0<a≤2时,试判断f(x)的单调性;(3)若对任意的a∈(1,2),x0∈[1,2],使不等式f(x0)>mlna恒成立,某某数m的取值X围.【分析】(1)求导数,利用极值的定义,即可求a的值;(2)当0<a≤2时,判断导数的符号,即可判断f(x)的单调性;(3)问题等价于:对任意的a∈(1,2),不等式1﹣a>mlna恒成立.即恒成立.【解答】解:.(1)由已知得:f'(1)=0,∴1+2﹣a=0,∴a=3.…(3分)(2)当0<a≤2时,f′(x)=因为0<a≤2,所以,而x>0,即,故f(x)在(0,+∞)上是增函数.…(8分)(3)当a∈(1,2)时,由(2)知,f(x)在[1,2]上的最小值为f(1)=1﹣a,故问题等价于:对任意的a∈(1,2),不等式1﹣a>mlna恒成立.即恒成立记,(1<a<2),则,…(10分)令M(a)=﹣alna﹣1+a,则M'(a)=﹣lna<0所以M(a),所以M(a)<M(1)=0…(12分)故g'(a)<0,所以在a∈(1,2)上单调递减,所以即实数m的取值X围为(﹣∞,﹣log2e].…(14分)【点评】本题考查导数知识的综合运用,考查函数的极值,考查函数的单调性,考查恒成立问题,正确分离参数是关键.。
复数的几何意义以及运算公式知识就是力量,在于平时不断的积累,想要了解复数的小伙伴赶紧来看看吧!下面由小编为你精心准备了“复数的几何意义以及运算公式”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!复数的几何意义是什么1、复数的几何意义是:复数集与平面直角坐标系中的点集之间可以建立一一对应的关系。
2、我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a 称为实部,b称为虚部,i称为虚数单位。
3、当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
4、复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数的运算公式(1)加法运算设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。
(2)乘法运算设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。
两个复数的积仍然是一个复数。
(3)除法运算复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi (x,y∈R)叫复数a+bi除以复数c+di的商。
运算方法:可以把除法换算成乘法做,将分子分母同时乘上分母的共轭复数,再用乘法运算。
拓展阅读:复数与向量的关系是什么向量是复数的一种表示方式,而且只能是二维向量,即平面向量。
复数仅仅限制在二维平面上。
复数和复平面上以原点为起点的向量一一对应。
1、向量:在数学与物理中,既有大小又有方向的量叫做向量,亦称矢量,在数学中与之相对应的是数量,在物理中与之相对应的是标量。
高三数学 复数的运算,在复数集中解方程,复数运算的几何意义 知识精讲(一)复数的运算(1)复数的代数形式:()z a bi a b R =+∈,;(2)复数的加法与减法:()()()()a bi c di a c b d i +±+=±+±; (3)复数的乘法与除法:()()()()a bi c di ac bd ad bc i ++=-++;a bi c di ac bd c d bc adc d i ++=+++-+2222; (4)z z z z z z z z z m n m n m n mn n n n⋅==⋅=⋅+,,()()1212; (5)i 的周期性ii i i i i n Z n n n n 414243411++-+==-=-=∈,,,(); (6)ω的性质及应用:若n 为虚数,且ω31=,则称ω为1的虚立方根, 1的立方根为112321232,,-+--i i 且有性质:102++=ωω。
ωωωωω3211===-,,(7)常用计算结果:①()()a bi a bi a b +-=+22; ②()122±=±i i ;③11+-=ii i ; ④122±⎛⎝⎫⎭⎪=±i i 。
(二)在复数集中解方程(1)形如()f z z z ,,||=0型的复数方程解法,通常设()z x yi x y R =+∈,,利用复数相等的充要条件,将复数问题实数化。
(2)一元二次方程ax bx c 20++=,若a 、b 、c 中至少有一个虚数,则 ①求根公式仍适用; ②韦达定理仍适用;③判别式判别根的情况无效; ④虚根成对出现性质无效。
(3)解形如ax b n+=0的二项方程()a b C ,∈(三)复数运算的几何意义(1)复数加、减法的几何意义(平行四边形和三角形法则) (2)复数乘法的几何意义(逆时针和顺时针旋转) (3)复数除法的几何意义 (4)复数开方的几何意义注意:有关模与辐角(主值)的变化。
复数的运算与几何意义
题型预测
从近几年的高考试题看,复数部分考查的难度在下降,题量也在减少,考查的内容主要集中在三个方面:一、复数的运算.包括代数形式及三角形式的计算,复数模、辐角及其主值的计算.二、以复数运算和某些概念的几何意义为核心而形成的数形结合的题目.三、复数与方程的题目.估计今后几年高考试题仍将侧重于复数的概念、运算、复数与三角、复数与几何、复数与不等式等综合型试题.
范例选讲
例1 若复平面内单位圆上三点所对应的复数321,,z z z ,满足312
2
z z z =且032=-+i iz z ,求复数321,,z z z .
讲解:当已知复数的模时,往往可以利用复数的三角形式解题.
解1: 设ααsin cos 1i z +=,ββsin cos 2i z +=,γγsin cos 3i z +=,则由
032=-+i iz z 可得:
⎩
⎨
⎧=-+=+01cos sin 0
sin cos γβγβ 利用1sin cos 2
2=+ββ,可解得:⎪⎪⎩
⎪⎪⎨⎧
±==23sin 21cos γγ,
所以,2
313i
z ±=
. 当2
313i
z +=时,()2
3132i
z i z +=
--=,132
21==z z z ;
当2313i z -=时,()2
3132i
z i z +-=--=,13221==z z z .
若能注意到本题的特点:则可充分利用模的性质,得到下面的解2. 解2:由题可知321,,z z z 都等于1,又由032=-+i iz z 得:()132--=z i z ,
所以,1123==-z z ,
所以,3z 所对应的点的轨迹为圆122=+y x 与圆()1122
=+-y x 的交点.
解之得:2
313i
z ±=
. 以下同解1.略.
用复数的代数形式去解本题也未尝不可.
解3:设fi e z di c z bi a z +=+=+=321,,,其中R f e d c b a ∈,,,,,,则由题可得:
⎪⎪⎪⎪
⎪⎩
⎪⎪⎪⎪⎪⎨⎧=-+=-+=-=-=+=+=+)7(01)6(0
)5(2)4()3(1)2(1
)1(12
2222
222e d f c be af cd bf
ae d c f e d c b a 解这个6元方程组,需要较高的技巧,如果能够注意到(2)、(3)、(6)、
(7)只与f e d c ,,,相关,则可将此四个方程联立,解得:2
1
=
e ,所以,23±=
f .
下略.
点评:复数的代数形式、三角形式、模的性质是解决复数问题的3大支柱.
例2 设复数21,z z 满足:()014
12
222121=++-z a z z z ,()0>a ,它们在复平
面内分别对应于不同的点A 、点B ,O 为坐标原点,若4
12
2a z -=,求使得△
AOB 有最大面积时的a 的值,并求出最大面积.
讲解:由于AOB z z AOB OB OA S AOB ∠⋅⋅=∠⋅⋅=∆sin 21
sin 2121,所以,首先
应结合题目条件,考虑1z 与2z 的关系.
首先,02≠z ,所以,()
01412
212
21=++⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛a z z z z ,解这个关于2
1z z 的方程,得:
2
121ai
z z ±=.
所以,2
1212
21a ai z z +=±=,a AOB ±=∠tan , 所以,2
1sin a
a AOB +=∠.
所以,AOB z z AOB OB OA S AOB ∠⋅⋅=∠⋅⋅=
∆sin 2
1
sin 2121 222
1412
121a a
a a +⋅⎪⎪⎭⎫ ⎝
⎛-⋅+⋅=
()
2
2
44a a -=
()(
)2
2
2242442⋅--=
a a a
()(
)3
2
2
2
34422161
⎪⎪
⎭
⎫
⎝⎛-+-+⋅≤
a a a 9
3
=
.
等号当且仅当2242a a -=,即3
3
2=
a 时取得.此时,△AOB 取得最大面积,为
9
3. 点评: 正确理解复数运算的几何意义是数形结合和实现问题转化的关键.。