《振动力学》习题集(含问题详解)
- 格式:doc
- 大小:1.21 MB
- 文档页数:33
1.8 图示为一周期性方波。
(1)将它展成傅里叶级数;(2)比较(1)的级数与例1.1中的级数,你观察到方波相位前移1/4周期时有什么效应? 解:一个周期内函数P(t)可以表示为()P P t P ⎧=⎨-⎩ 由于区间[0,T]内()P t 关于2T堆成,一周内面积为0,故0a =0。
()2cos t Tn t ta x n tdt T ω+=⎰320223022cos cos cos p n tdt n tdt n tdt πππωωωππωωωωωωπ⎡⎤=-+⎢⎥⎣⎦⎰⎰⎰322203022sin sin sin p n n n n n n πππωωωππωωωωωωπωωω⎡⎤⎢⎥=-+⎢⎥⎣⎦040Pn π⎧⎪=⎨⎪⎩ ()2sin t Tn t tb x n tdt T ω+=⎰320223022sin sin sin p n tdt n tdt n tdt πππωωωππωωωωωωπ⎡⎤=-+⎢⎥⎣⎦⎰⎰⎰322203022cos cos cos p n n n n n n πππωωωππωωωωωωπωωω⎡⎤⎢⎥=-+-⎢⎥⎣⎦= 0 ∴图示方波的傅里叶级数展开式为:()11,3,41sin()cos 2nt n n n P P a n t n t nπωωπ===+=∑∑ 0411(cos cos 3cos 5)35P t t t ωωωπ=+++ 比较例1.1,可以得到:相位前移1/4周期后,傅里叶级数的每一项函数由奇函数变为偶函数,但各分量的幅值不变。
320,22322t t t πππωωωππωω<<<<<<n n 为奇数为偶数2.8 求图所示的系统的固有频率,其中钢丝绳的刚度为k 1.滑轮质量忽略不计。
解:对于系统,钢绳等效为弹性系数为k 1的弹簧。
则每个弹簧的变形分别为:11mg k λ=224mg k λ= 334mgk λ=总变形12312344mg mg mgk k k λλλλ=++=++系统等效刚度为: 12323131244e k k k mgk k k k k k k λ==++系统的固有频率为:n ω==2.27 一个有阻尼的弹簧质量系统,质量是10Kg ,弹簧静伸长时1cm ,自由振动20个循环后,振幅从0.64cm 减至0.16cm ,求阻尼系数c 。
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
《振动力学》——习题第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。
试求2W 下降的最大距离和两物体碰撞后的运动规律。
解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。
试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角2a=h 2F =mg由动量矩定理:ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。
试求其摆动的固有频率。
图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
图T 2-9 答案图T 2-9解:(1)保持水平位置:m kk n 21+=ω(2)微幅转动:mglllF2112+=mgl1l2xx2xx'mglll2121+=k2k1ml1l2()()()()()()()()()mgk k l l k l k l mgk k l l k l l k l l l k l mg k k l l k l k l l l l k l l mg l mgk l l l k l l l l l l k l l mg l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+=故:()22212121221k l k l k k l l k e++=mk en =ω 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。
例:一等截面简支梁质量不计,长度I =3m , El = 58800 N m 2。
有一质量m=90kg的物块从梁的中点上方 h =10mm 处落下,且物块与梁接触后不分开,试计算接触后系统自 由振动的固有频率及振幅。
解:("梁中点受竖直向下单位力作用的挠度即为柔度系数.碣,因此固有(2 )重物落下与梁接触时开始振动,初始条件为动形状,所得结果误差很小。
如果对结构的弹性曲线假设任一适当形状, 可以期望得到接近振动真实周期的近似值,如果选的形状精确,就会得到精确的周期。
插P10匚求考虑梁的质量时,系统的固有频率I 3频率为:•,n48E「\ ml 348 58800= 34.1s 」 90 33女--■"■■si=mgl 348EI390 9.8 3 j38.44 10 m = -8.44 mm48 58800 振幅为V o梁中点的最大位移为 y 。
2" =2h:st2 -'n=*8.442 2 10 8.44 = 15.5mms = A q =15.5 8.44 = 23.9mm瑞利法(Rayleigh 系统形态的某些假设, ):等效质量的计算方法。
应用这种方法时,必须做有关振动过程中 称之为形状函数或振型。
所假设的振型与真实振型存在差异, 相当于对系统附加了某些约束, 增加了系统的刚度,固有频率略高于精确值。
以静变形曲线作为振 例 1.4.1如图示,悬臂梁(棱柱形)自由端处带有重量 mg 设梁的密度为解:无重悬臂梁端有荷载mg时的静力挠曲线方程为:y W^QIx'—x3) (0zxG)6EI由此可得B端挠度y m二曲3EI33 y2 y233=M “如二仏m厂空「I为梁作用在B点的等效质量140 2 2 140对于这种情况,振动的周期与端点处承受下列质量的无质量悬臂梁相同33M = m m = m I14033 -••• B 端总重为:Mg = (m mjg = (m l)g33即使在订不太小的情况下,等效质量空订也可以应用140将结果用于m二0的极端情况(悬臂段的集中质量为零),mg可有: st33140::l(上3EI)g所得的振动周期则为: =2■:=2二33订4—g■, 140 3EIg2 二丫3.567: EIy詁⑴勺lx2-x32l3m—y/VI o3X-2dx21解:("能量法,动能:一旳2如中)2礼)*22 l1取静平衡位置为零势能点:"如2{磴x )22• )x 21 I 3= ~(k 1 2k2)2h同一情况的精确解为:N *3.515丫 EI(此处参看Timoshenko,工程中的振动问题,P 2 89,式(m )近似解的误差约为1.5%, 「::「,故.-.n ',即近似解的周期小于精确解 的周期,固有频率大于精确解的固有频率。
《振动力学》——习题第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。
试求2W 下降的最大距离和两物体碰撞后的运动规律。
解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x tx t x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=&xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。
试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理:ah a mg a mg Fa M ml I MI 822cos sin 12122-=-≈⋅-====αθαθ&&其中12cossin ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ&& g h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。
试求其摆动的固有频率。
图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
请打双面习题与综合训练 第一章2-1 一单层房屋结构可简化为题2-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。
求该房屋作水平方向振动时的固有频率。
解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。
等效弹簧系数为k则 mg k δ=其中δ为两根杆的静形变量,由材料力学易知δ=324mgh EJ =则 k =324EJ h设静平衡位置水平向右为正方向,则有 "m x kx =-所以固有频率3n 24mh EJ p =2-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题2-2图所示。
试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理: ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12c o s s i n ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222=== 2-3 求题2-3图中系统的固有频率,悬臂梁端点的刚度分别是1k 和3k ,悬臂梁的质量忽略不计。
解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。
k 1ˊ与k 3并联,设总刚度为k 2ˊ。
k 2ˊ与k 4串联,设总刚度为k 。
即为21211k k k k k +=',212132k k kkk k++=',4241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++=)(42412132314214324212k k k k k k k k k k m k k k k k k k k k p ++++++=2-4 求题2-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。
振动力学(试题) 2008一、填空(每空2分)1、设周期振动信号的周期为T,则其傅里叶级数的展开的基频为____2、单自由度粘性阻尼系统的阻尼因子ζ与阻尼系数的关系为___3、单自由度粘性阻尼系统在简谐力0sinp tω作用下系统响应的稳态振动的幅值为___4、粘性阻尼一周期内所消耗的能量与频率成___比。
5、无阻尼多自由度系统的主振型正交关系为______6、写出多自由度系统再频率域的输入与输出之间的关系_____7、写出瑞利商的表达式______8、多自由度系统中共存在r个主固有频率,其相应的主振型___正交。
9、无阻尼多自由度系统,利用里兹法计算出的主振型关于M、K是否正交?___(答是或否)10、写出如图T-1所示梁的左端边界条件__________图T-1二、(20分)系统如图T-2所示,杆AB 为刚性、均质,长度为L ,总质量为m ,弹簧刚度为k ,阻尼系数为c 。
求系统的固有频率及阻尼因子。
三、系统如图T-3所示。
求系统的固有频率与主振型。
图T-23图T-3四、五、(20分)简支梁如图T-5所示,弹性模量为E ,质量密度为 ,横截面积为A ,截面惯性矩为J 。
求梁在中央受集中弯矩M 下的响应。
(假设梁的初始状态为零)图T-5答案一、填空(每空2分)1、周期振动信号的周期为T ,则其傅里叶级数的展开的基频为2/T π2、单自由度粘性阻尼系统的阻尼因子ζ与阻尼系数的关系为ζ=3、单自由度粘性阻尼系统在简谐力0sin p t ω作用下系统响应的稳态振动的幅值为0p B k =4、粘性阻尼一周期内所消耗的能量与频率成_正_比。
5、无阻尼多自由度系统的主振型正交关系为 加权(M,K )正交:0()()T T i j pi i j M M i j ϕϕ≠⎧=⎨=⎩0()()T Ti j pi i j K K i j ϕϕ≠⎧=⎨=⎩ 6、写出多自由度系统在频率域的输入与输出之间的关系()()()x H P ωωω=其中21()()H K M i C ωωω-=-+7、写出瑞利商的表达式 ()T T X KXR X X MX=8、多自由度系统中共存在r 个重固有频率,其相应的主振型_?加权(M,K )正交。
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
《振动力学》习题集(含答案)质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图所示。
求系统的固有频率。
图解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图所示。
求系统的固有频率。
图解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn = 和U T =可得:()mkR a R mR a R k n 343422+=+=ω转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图所示。
求系统的固有频率。
图解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn = 和U T =可得:()()3232132k k J k k k k k n +++=ω在图所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
请打双面习题与综合训练 第一章2-1 一单层房屋结构可简化为题2-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。
求该房屋作水平方向振动时的固有频率。
解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。
等效弹簧系数为k则其中为两根杆的静形变量,由材料力学易知=则 =设静平衡位置水平向右为正方向,则有所以固有频率2-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题2-2图所示。
试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θθ=h α2F =mg由动量矩定理: 其中2-3 求题2-3图中系统的固有频率,悬臂梁端点的刚度分别是和,悬臂梁的质量忽略不计。
解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。
k 1ˊ与k 3并联,设总刚度为k 2ˊ。
k 2ˊ与k 4串联,设总刚度为k 。
即为,,2-4 求题2-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。
其中、和是mg k δ=δδ324mgh EJ =k 324EJ h "m x kx =-3n 24mh EJ p =2aah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ12cossin ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθg h a l ga h l p T n 3π23π2π222===1k 3k 21211k k k k k+='212132k k kk k k ++='4241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++=)(42412132314214324212k k k k k k k k k k m k k k k k k k k k p ++++++=1J 2J 3J θF sin α2θαFhmgθF三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
振动力学考题集[]1、四个振动系统中,自由度为无限大的是()。
A. 单摆;B. 质量-弹簧;C. 匀质弹性杆;D. 无质量弹性梁;2、两个分别为c1、c2的阻尼原件,并连后其等效阻尼是()。
A. c1+c2;B. c1c2/(c1+c2);C. c1-c2;D. c2-c1;3、()的振动系统存在为0的固有频率。
A. 有未约束自由度;B. 自由度大于0;C. 自由度大于1;D. 自由度无限多;4、多自由度振动系统中,质量矩阵元素的量纲应该是()。
A. 相同的,且都是质量;B. 相同的,且都是转动惯量;C. 相同的,且都是密度;D. 可以是不同的;5、等幅简谐激励的单自由度弹簧-小阻尼-质量振动系统,激励频率()固有频率时,稳态位移响应幅值最大。
A. 等于;B. 稍大于;C. 稍小于;D. 为0;6、自由度为n的振动系统,且没有重合的固有频率,其固有频率的数目(A )。
A. 为n;B. 为1;C. 大于n;D. 小于n;7、无阻尼振动系统两个不同的振型u(r)和u(s),u(r)T Mu(s)的值一定()。
A. 大于0;B. 等于0;C. 小于0;D. 不能确定;8、无阻尼振动系统的某振型u(r),u(r)T Ku(r)的值一定()。
A. 大于0;B. 等于0;C. 小于0;D. 不能确定;9、如果简谐激励力作用在无约束振动系统的某集中质量上,当激励频率为无限大时,该集中质量的稳态位移响应一定()。
A. 大于0;B. 等于0;C. 为无穷大;D. 为一常数值;10、相邻固有频率之间的间隔呈近似无限等差数列的振动系统是()。
A. 杆的纵向振动;B. 弦的横向振动;C. 一般无限多自由度系统;D. 梁的横向振动;11、两个刚度分别为k1、k2串连的弹簧,其等效刚度是()。
A. k1+k2;B. k1k2/(k1+k2);C. k1-k2;D. k2-k1;12、无阻尼振动系统两个不同的振型u(r)和u(s),u(r)T Ku(s)的值一定()。
《振动力学》习题集(含答案)————————————————————————————————作者:————————————————————————————————日期:《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T &&+=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T &&&+=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω=&和U T =可得: ()()lm m gm m n 113223++=ωml m 1 x1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ&&&mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn =&和U T =可得: ()mkR a R mR a R k n 343422+=+=ωkk A Ca R θ1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ&J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn =&和U T =可得: ()()3232132k k J k k k k k n +++=ωkk 2 kJ1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
求固有频率。
图E1.4答案图E1.4解:对m 进行受力分析可得:33x k mg =,即33k mgx =如图可得:()()22221111 ,k b a mga k F x k b a mgb k F x +==+==()()mg k k b a k b k a b a x x a x x x x 212221212110++=+-+='+=()mg k mg k k k b a k b k a x x x 0321222123011=⎥⎦⎤⎢⎣⎡+++=+=则等效弹簧刚度为:()()2123223123212k k b a k k b k k a k k k b a k e ++++= 则固有频率为:()()()[]222132212321bk a k k b a k k m b a k k k m k e n ++++==ωmg ba a F +=2x x 21.7 质量1m 在倾角为α的光滑斜面上从高h 处滑下无反弹碰撞质量2m ,如图E1.7所示。
确定系统由此产生的自由振动。
图E1.7答案图E1.7解:对1m 由能量守恒可得(其中1v 的方向为沿斜面向下):211121v m gh m =,即gh v 21=对整个系统由动量守恒可得:()02111v m m v m +=,即gh m m m v 22110+=令2m 引起的静变形为2x ,则有:22sin kx g m =α,即kg m x αsin 22=令1m +2m 引起的静变形为12x ,同理有:()kg m m x αsin 2112+=得:kg m x x x αsin 12120=-=则系统的自由振动可表示为:t xt x x n nn ωωωsin cos 00 +=其中系统的固有频率为:21m m kn +=ω注意到0v 与x 方向相反,得系统的自由振动为:t v t x x n nn ωωωsin cos 00-=1.9 质量为m 、长为l 的均质杆和弹簧k 及阻尼器c 构成振动系统,如图E1.9所示。
以杆偏角θ为广义坐标,建立系统的动力学方程,给出存在自由振动的条件。
若在弹簧原长处立即释手,问杆的最大振幅是多少?发生在何时?最大角速度是多少?发生在何时?是否在过静平衡位置时?图E1.9答案图E1.9解:利用动量矩定理得:l l c a a k I ⋅-⋅-=θθθ, 231ml I =033222=++θθθka cl ml , 223mlka n =ωn ml cl ξω2322=, 32 1123mkl a c m c n <⇒<⋅=ωξa a k l mg ⋅=⋅02θ, 202ka mgl=θ1.12 面积为S 、质量为m 的薄板连接于弹簧下端,在粘性流体中振动,如图E1.12所示。
作用于薄板的阻尼力为Sv F d 2μ=,2S 为薄板总面积,v 为速度。
若测得薄板无阻尼自由振动的周期为0T ,在粘性流体中自由振动的周期为d T 。
求系数μ。
l c图E1.12解:平面在液体中上下振动时:02=++kx x S xm μ2T m k n πω==, dn d T πξωω212=-=n n m S m S ωμξξωμ=⇒= 22, kS 222μξ=kS k 2221μξ-=-2020220222T T T ST mk S k T T d dd -=⇒-=πμμππ2.1 图E2.2所示系统中,已知m ,c ,1k ,2k ,0F 和ω。
求系统动力学方程和稳态响应。
图E2.1答案图E2.1(a) 答案图E2.1(b)解:等价于分别为1x 和2x 的响应之和。
先考虑1x ,此时右端固结,系统等价为图(a ),受力为图(b ),故:()()x c x k x c c x k k xm 112121+=++++ t A c A k kx x c xm 1111111cos sin ωωω+=++(1)21c c c +=,21k k k +=,mk k n 21+=ω (1)的解可参照释义(2.56),为:()()()()()()()22211111222111121cos 21sin s s t kA c s s t kA k t Y ξθωωξθω+--++--=(2)其中:n s ωω1=,21112ss tg -=-ξθ ()()()212122122122112121k k c c k k k k c s ++++=⎪⎪⎭⎫⎝⎛++=+ωωξ()()()()()21212212212122112122121222 121k k c c m k kk k c c k k m s s +++-+=⎥⎦⎤⎢⎣⎡+++⎪⎪⎭⎫ ⎝⎛+-=+-ωωωωξ故(2)为:()()()()()()()()211212212212121212112122122121111111111sin cos sin θθωωωωωωθωωθω+-++-++=++-+-+-=t c c m k kc k A c c m k k t A ct A k t xk 2x2 (11x k - )11x x-1()()m k k c c tg k k m k k c tg s s tg 2121121121212111211112ωωωωξθ-++=+-+=-=--- 11112k c tg ωθ-=考虑到()t x 2的影响,则叠加后的()t x 为:()()()()⎪⎪⎭⎫ ⎝⎛+-++-++-++=--=∑i i i i i i i i i i i i i k c tg m k k c c tg t c c m k k c k A t x ωωωωωωω12212112122212221222sin2.1 一弹簧质量系统沿光滑斜面作自由振动,如图T 2-1所示。
已知,︒=30α,m = 1 kg ,k = 49 N/cm ,开始运动时弹簧无伸长,速度为零,求系统的运动规律。
图 T 2-1答案图 T 2-1解:0sin kx mg =α,1.049218.91sin 0=⨯⨯==kmg x αcm70110492=⨯==-m k n ωrad/st t x x n 70cos 1.0cos 0-==ωcm2.2 如图T 2-2所示,重物1W 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2W 从高度为h 处自由下落到1W 上而无弹跳。
求2W 下降的最大距离和两物体碰撞后的运动规律。
图 T 2-2答案图 T 2-2解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=W 2W 12.4 在图E2.4所示系统中,已知m ,1k ,2k ,0F 和ω,初始时物块静止且两弹簧均为原长。
求物块运动规律。
图E2.4答案图E2.4解:取坐标轴1x 和2x ,对连接点A 列平衡方程:()0sin 012211=+-+-t F x x k x k ω即:()t F x k x k k ωsin 022121+=+(1)对m 列运动微分方程:()1222x x k xm --=即:12222x k x k xm =+ (2)由(1),(2)消去1x 得:t k k kF x k k k k xm ωsin 2120221212+=++(3)故:()21212k k m k k n +=ω由(3)得:()()()⎪⎪⎭⎫ ⎝⎛--+=t t k k m k F t x n n n ωωωωωωsin sin 22212022.5在图E2.3所示系统中,已知m ,c ,k ,0F 和ω,且t =0时,0x x =,0v x= ,求x k)1x x k - 2xm (2k2系统响应。
验证系统响应为对初值的响应和零初值下对激励力响应的叠加。
图E2.3解:()()()θωωωξω-++=-t A t D t C e t x d d t cos sin cos 0()()2220211s s kF A ξ+-⋅=,2112sstg-=-ξθ ()θθcos cos 000A x C A C x x -=⇒+==()()()()θωωωωωωωωξωξωξω--+-++-=--t A t D t C et D t C e t x d d d d td d t sin cos sin sin cos 000()ddd A Cv D A D C v xωθωωξωθωωξωsin sin 00000-+=⇒++-==求出C ,D 后,代入上面第一个方程即可得。