计算智能大作业
- 格式:docx
- 大小:197.30 KB
- 文档页数:5
(计算智能大作业)应用蚁群算法求解TSP问题目录蚁群算法求解TSP问题 (3)摘要: (3)关键词: (3)一、引言 (3)二、蚁群算法原理 (4)三、蚁群算法解决TSP问题 (7)四、解决n个城市的TSP问题的算法步骤 (9)五、程序实现 (11)六、蚁群算法优缺点分析及展望 (18)七、总结 (18)采用蚁群算法解决TSP问题摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。
本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。
关键词:蚁群算法;TSP问题;matlab。
一、引言TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。
TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。
TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。
目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。
本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。
20世纪90年代,意大利学者M.Dorigo等人在新型算法研究的过程中,通过模拟自然界蚂蚁的觅食过程:即通过信息素(pheromone)的相互交流从而找到由蚁巢至食物的最短路径,提出了一种基于信息正反馈原理的新型模拟进化算法——蚁群算法(Ant Colony algorithm)。
云计算大作业总结尊敬的老师、亲爱的同学:在这次云计算大作业的学习过程中,我深刻体会到了云计算技术的强大和应用的广泛性。
通过实际的项目实践,我不仅提升了自己的技术水平,也对云计算在解决实际问题中的作用有了更深刻的理解。
以下是我对这次大作业的总结:一、项目背景及选题意义:我们选择了一个具有实际应用价值的项目,即搭建一个基于云计算的在线教育平台。
这个选题不仅符合当前数字化时代的趋势,而且具有较强的实用性。
在这一过程中,我们深刻认识到云计算技术的重要性,它为在线教育提供了高效、灵活、可扩展的解决方案。
二、项目实施过程:需求分析:我们首先对在线教育平台的需求进行了详细的分析,明确了系统的功能模块和性能要求。
技术选型:针对在线教育平台的需求,我们选择了适用于云计算的技术栈,包括云存储、云数据库、容器化技术等。
系统架构设计:我们设计了系统的整体架构,明确了各个模块的职责和交互关系。
同时,考虑到平台的可扩展性,我们采用了微服务架构。
云服务配置:利用云计算平台提供的服务,我们进行了相应的配置和部署,确保系统在云环境中稳定运行。
功能实现:我们按照需求逐步实现了在线教育平台的各个功能,包括用户注册登录、课程管理、视频播放等。
三、遇到的挑战及解决方案:性能优化:在初期测试中发现系统性能不尽如人意,经过分析我们采取了一系列优化措施,包括数据库索引优化、缓存机制的使用等。
安全性考虑:在设计阶段,我们特别注重了系统的安全性,采用了一些安全机制,同时也利用云平台的安全服务提高系统的整体安全性。
成本控制:由于云计算资源是按需付费的,我们需要合理规划资源的使用,以降低成本。
通过对资源的监控和调整,我们有效地控制了项目的运营成本。
四、心得与收获:团队协作:在整个项目中,团队协作起到了至关重要的作用。
通过分工合作,我们在有限时间内完成了一个可用的在线教育平台。
技术实践:这次大作业为我们提供了一个实践的机会,让我们学以致用,将课堂所学的理论知识运用到实际项目中。
大工23春《人工智能》大作业题目及要求引言概述:人工智能(Artificial Intelligence,简称AI)是一门关注于使机器能够模仿人类智能行为的科学与技术。
在大工23春的《人工智能》课程中,学生们将面临一项重要的大作业。
本文将介绍大工23春《人工智能》大作业的题目和要求。
正文内容:1. 题目一:机器学习算法的实现与应用1.1 算法选择:学生需选择并实现一个机器学习算法,如决策树、支持向量机、神经网络等。
1.2 数据集准备:学生需准备一个合适的数据集,用于训练和测试所选择的机器学习算法。
1.3 算法实现:学生需要编写代码,实现所选择的机器学习算法,并对数据集进行训练和测试。
2. 题目二:自然语言处理应用开发2.1 文本处理:学生需要选择一个自然语言处理任务,如文本分类、情感分析等,并准备相应的文本数据集。
2.2 特征提取:学生需要设计并实现合适的特征提取方法,将文本数据转化为机器学习算法可以处理的形式。
2.3 模型训练与应用:学生需要选择并实现一个适当的机器学习算法,对提取的特征进行训练,并应用于所选择的自然语言处理任务。
3. 题目三:计算机视觉应用开发3.1 图像处理:学生需要选择一个计算机视觉任务,如图像分类、目标检测等,并准备相应的图像数据集。
3.2 特征提取:学生需要设计并实现合适的特征提取方法,将图像数据转化为机器学习算法可以处理的形式。
3.3 模型训练与应用:学生需要选择并实现一个适当的机器学习算法,对提取的特征进行训练,并应用于所选择的计算机视觉任务。
4. 题目四:强化学习算法的实现与应用4.1 算法选择:学生需选择并实现一个强化学习算法,如Q-learning、Deep Q Network等。
4.2 环境建模:学生需要设计一个适当的环境,用于训练所选择的强化学习算法。
4.3 算法实现:学生需要编写代码,实现所选择的强化学习算法,并对环境进行训练和测试。
5. 题目五:深度学习模型的实现与应用5.1 模型选择:学生需选择并实现一个深度学习模型,如卷积神经网络、循环神经网络等。
人工智能大作业题目嘿,同学们!咱们今天来聊聊这个听起来超级酷的“人工智能”。
要说这人工智能啊,那可真是个神奇的东西。
就拿我前几天的一次经历来说吧。
我去商场逛街,看到有个智能机器人在给顾客指引方向,回答各种问题,那叫一个溜!它不仅能清楚地告诉你各个店铺的位置,还能根据你的需求推荐合适的商品。
我当时就在想,这人工智能发展得也太快了,说不定哪天它就能完全替代人类的某些工作啦。
咱们先从小学的教材说起。
在小学阶段,人工智能的内容更多是通过一些有趣的故事和简单的示例来引入的。
比如说,会讲一个小朋友和智能小助手一起完成任务的故事,让小朋友们初步感受人工智能的神奇。
就像有个故事里,小明同学做作业的时候遇到了难题,他的智能学习伙伴一下子就给出了详细的解题步骤和思路,帮助小明轻松解决了问题。
到了初中,教材里的人工智能内容就逐渐深入啦。
会开始介绍一些基本的原理和概念,像什么是机器学习、什么是图像识别。
记得有一次,我看到一群初中生在讨论他们做的一个关于智能垃圾分类的小项目。
他们可积极了,有的在研究如何让机器通过图像准确识别不同的垃圾类别,有的在想办法提高分类的效率。
看着他们那认真的劲儿,我就知道,这人工智能的种子已经在他们心里生根发芽了。
高中的教材那可就更有深度了。
不仅要深入理解人工智能的算法和模型,还要能够运用所学知识去解决一些实际的问题。
比如说,会让同学们去设计一个简单的智能交通系统,优化城市的交通流量。
我听说有个高中班级,为了完成这个作业,分成了好几个小组。
有的去收集交通数据,有的负责建立模型,还有的负责测试和优化。
最后他们呈现出来的成果还真让人眼前一亮,连老师都忍不住竖起大拇指呢!其实啊,人工智能不仅仅是在教材里的知识,它已经渗透到我们生活的方方面面啦。
比如说,我们用的智能手机里的语音助手,能够听懂我们的话,帮我们完成各种操作;还有家里的智能家电,能根据我们的习惯自动调节工作模式。
这一切都离不开人工智能的功劳。
题目:遗传算法在图像处理中的应用研究课程: 计算智能姓名:学号:专业:模式识别与智能系统遗传算法在图像处理中的应用摘要遗传算法是一种基于生物自然选择与遗传机理的随机搜索与优化方法。
近年来,由于遗传算法求解复杂优化问题的巨大潜力,广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法受到了国内外学者的广泛关注,尤其是在计算机科学人工智能领域中。
本文介绍了遗传算法基本理论,描述了它的主要特点和基本性质;重点综述遗传算法在图像处理中的主要应用,特别是在图像分割、图像压缩、图像增强等方面的作用;深入研究目前遗传算法在图像处理领域中存在的问题,并结合自己的研究方向,对这些问题提出了一些深刻的见解,展望了今后遗传算法在图像处理应用的发展方向。
关键词:遗传算法,数字图像处理1.背景介绍遗传算法(Genetic Algorithm,GA)是一种自适应启发式群体型概率性迭代式的全局收敛搜索算法,其基本思想来源于生物进化论和群体遗传学,体现了适者生存、优胜劣汰的进化原则。
使用遗传算法求解科学研究工作和工程技术中各种组合搜索和优化计算问题这一基本思想早在20世纪60年代初期就由美国Michigan大学的Holland教授提出,其数学框架也于20世纪60年代中期形成。
由于GA的整体搜索策略和优化计算不依赖于梯度信息,所以它的应用范围非常广泛,尤其适合于处理传统方法难以解决的高度复杂的非线性问题。
它在自适应控制、组合优化、模式识别、机器学习、规划策略、信息处理和人工生命等领域的应用中越来越展示出优越性。
图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。
又称影像处理。
图像处理一般指数字图像处理。
数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。
人工智能关于八数码问题摘要:八数码问题是人工智能中一个很典型的智力问题。
本文以状态空间搜索的观点讨论了八数码问题,给出了八数码问题的C++算法与实现的思想,分析了A 算法的可采纳性等及系统的特点。
关键词九宫重排,状态空间,启发式搜索,A 算法1引言九宫重排问题是人工智能当中有名的难题之一。
问题是在3×3方格盘上,放有八个数码,剩下一个位置为空,每一空格其上下左右的数码可移至空格。
问题给定初始位置和目标位置,要求通过一系列的数码移动,将初始状态转化为目标状态。
状态转换的规则:空格四周的数移向空格,我们可以看作是空格移动,它最多可以有4个方向的移动,即上、下、左、右。
九宫重排问题的求解方法,就是从给定的初始状态出发,不断地空格上下左右的数码移至空格,将一个状态转化成其它状态,直到产生目标状态。
一、问题描述1.1 待解决问题的解释八数码游戏(八数码问题)描述为:在3×3组成的九宫格棋盘上,摆有八个将牌,每一个将牌都刻有1-8八个数码中的某一个数码。
棋盘中留有一个空格,允许其周围的某一个将牌向空格移动,这样通过移动将牌就可以不断改变将牌的布局。
这种游戏求解的问题是:给定一种初始的将牌布局或结构(称初始状态)和一个目标的布局(称目标状态),问如何移动将牌,实现从初始状态到目标状态的转变。
1.2 问题的搜索形式描述(4要素)初始状态:8个数字将牌和空格在九宫格棋盘上的所有格局组成了问题的状态空间。
其中,状态空间中的任一种状态都可以作为初始状态。
后继函数:通过移动空格(上、下、左、右)和周围的任一棋子一次,到达新的合法状态。
目标测试:比较当前状态和目标状态的格局是否一致。
路径消耗:每一步的耗散值为1,因此整个路径的耗散值是从起始状态到目标状态的棋子移动的总步数。
二、 A*算法介绍2.1 搜索算法一般介绍不管哪种搜索,都统一用这样的形式表示:搜索的对象是一个图,它面向一个问题,不一定有明确的存储形式,但它里面的一个结点都有可能是一个解(可行解),搜索的目的有两个方面,或者求可行解,或者从可行解集中求最优解。
大作业1、引言
1.1 背景
1.2 目的
1.3 范围
1.4 定义
2、文献综述
2.1 关于的研究历史
2.2 相关研究成果与应用领域
3、问题陈述
3.1 问题描述
3.2 研究的动机和意义
3.3 研究的目标和假设
4、方法ology
4.1 数据收集
4.2 数据处理与清洗
4.3 特征选择与提取
4.4 算法选择与实现
4.5 模型训练与优化
5、实验结果与分析
5.1 数据集描述
5.2 实验设置
5.3 结果分析与讨论
5.4 实验效果评估
6、结论与展望
6.1 主要研究结果总结 6.2 讨论与不足之处
6.3 对未来工作的展望附件:
附件1:数据集来源信息附件2:代码仓库
附件3:实验结果数据表格法律名词及注释:
1、:指通过模拟和模仿人类智能的方法和技术,使计算机系统能够自动执行任务、学习、适应和改进。
2、数据处理与清洗:指对原始数据进行筛选、过滤、去除噪声以及修复缺失值等操作,以提高数据的质量和可用性。
3、特征选择与提取:指从原始数据中选择最相关或最具代表性的特征,或通过计算、变换等方法提取出更具信息量的特征。
4、算法选择与实现:指根据问题的特点和要求,选择合适的算法,并通过编程实现。
5、模型训练与优化:指使用训练数据对选定的算法模型进行训练,并通过调整参数、改进算法等方式优化模型性能。
清华计算机大作业资料清华大学计算机科学与技术系的大作业,是计算机专业学生在学习期间完成的一项重要任务。
这些大作业旨在培养学生的问题解决能力、编程能力和团队合作精神。
以下将介绍清华计算机大作业的一些资料。
一、作业题目和要求每年的大作业都有不同的题目和要求,旨在让学生综合运用所学知识解决实际问题。
这些题目通常与计算机领域的前沿技术和热点问题相关,涵盖了人工智能、大数据、网络安全、软件工程等多个领域。
学生需要根据题目要求,设计并实现一个完整的项目,包括需求分析、系统设计、编码实现和测试验证等环节。
二、项目选择和分组学生通常可以根据自己的兴趣和专业方向选择合适的项目进行研究与开发。
在选择完项目后,需要组建一个小组共同完成作业。
小组成员之间要合理分工,充分发挥各自的优势,确保项目的顺利进行。
三、项目实施过程在项目实施过程中,学生需要根据题目要求,进行详细的需求分析和系统设计。
然后,根据设计方案,进行编码实现,并进行适当的调试和测试。
在整个过程中,学生需要解决各种技术难题和困难,提高自己的编程能力和解决问题的能力。
四、项目评估和展示完成项目后,学生需要进行项目的评估和展示。
评估通常包括对项目功能、性能和设计的综合评价。
展示则是将项目的成果向老师和同学们进行展示,分享项目的思路和实现过程。
通过评估和展示,学生能够深入了解自己的项目,发现不足之处,并从中获得进一步提高的机会。
五、作业报告和总结在完成项目后,学生还需要撰写一份作业报告,详细介绍项目的背景、目标、设计思路、实现方法和测试结果等内容。
报告需要清晰、准确地描述项目的整个过程,并附上必要的代码和截图作为证明。
此外,学生还需要对项目的不足之处进行总结,并提出改进的意见和建议。
六、作业的意义和影响清华计算机大作业是学生全面发展的重要机会。
通过完成大作业,学生不仅能够提高自己的编程和解决问题的能力,还能锻炼团队合作和沟通能力。
此外,大作业的完成也为学生今后的科研和工作打下了坚实的基础,为他们的职业发展奠定了良好的基础。
研究报告题目支持向量机学习报告学号学生支持向量机学习报告支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。
支持向量机SVM(Support Vector Machine)是A T&TBell实验室的V.Vapnik提出的针对分类和回归问题的统计学习理论。
由于SVM方法具有许多优点和有前途的实验性能,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等。
1原理及方法SVM根据问题的复杂性可以分为线性可分SVM和非线性可分SVM,其基本原理如下:在进行文本分类的时候,每一个样本由一个向量(就是那些文本特征所组成的向量)和一个标记(标示出这个样本属于哪个类别)组成。
如下:Di=(xi,yi) xi就是文本向量(维数很高),yi就是分类标记。
在二元的线性分类中,这个表示分类的标记只有两个值,1和-1(用来表示属于还是不属于这个类)。
有了这种表示法,可以定义一个样本点到某个超平面的间隔:yi(wxi+b)如果某个样本属于该类别的话,那么wxi+b>0(因为我们所选的g(x)=wx+b就通过大于0还是小于0来判断分类),而yi也大于0;若不属于该类别的话,那么wxi+b<0,而yi也小于0,这意味着yi(wxi+b)总是大于0的,而且它的值就等于|wxi+b|(也就是|g(xi)|)现在把w和b进行一下归一化,用w/||w||和b/||w||分别代替原来的w和b,间隔就可以写成当用归一化的w和b代替原值之后的间隔叫做几何间隔,几何间隔所表示的正是点到超平面的欧氏距离,简称几何间隔为“距离”。
同样一个点的集合(就是一组样本)到某个超平面的距离为此集合中离超平面最近的点的距离。
下面这张图展示出了几何间隔的现实含义:H是分类面,而H1和H2是平行于H,且过离H最近的两类样本的直线,H1与H,H2与H之间的距离就是几何间隔。
人工智能大作业人工智能(Artificial Intelligence,AI)是计算机科学的一个重要分支领域,旨在使计算机能够模拟和执行人类智能任务。
随着人工智能技术的发展和应用范围的不断拓展,越来越多的领域开始借助人工智能来解决问题,提高效率。
作为人工智能大作业的一部分,我们将探讨人工智能在医疗领域的应用和前景。
1. 人工智能在医疗领域的应用1.1 医学影像诊断人工智能能够通过分析医学图像(如CT扫描、MRI等)提供准确的诊断结果和判断,辅助医生进行疾病诊断和治疗方案选择。
通过对海量医学影像数据的学习和分析,人工智能可以帮助医生更快速、精确地识别和定位疾病。
1.2 个性化治疗通过分析患者个体化的生理数据和基因信息,人工智能可以为每位患者设计出最佳的治疗方案。
人工智能可以根据患者的基因型、病史以及其他相关数据,进行风险评估和治疗效果预测,为患者提供更精确的治疗建议。
1.3 机器人辅助手术借助人工智能技术,机器人可以在手术过程中提供精确的操作和辅助。
机器人可以通过高精度的定位和手术规划,提高手术的准确性和安全性。
此外,机器人还可以在手术过程中收集和分析数据,帮助医生做出更准确的决策。
1.4 医疗健康管理通过人工智能技术的支持,可以开发出智能化的医疗健康管理系统。
这些系统可以实时监测患者的生理数据,并根据患者的状况提供个性化的健康指导和建议。
患者可以通过智能设备和手机应用来管理和监控自己的健康状况。
2. 人工智能在医疗领域的前景随着人工智能技术的不断发展和完善,它在医疗领域的应用前景非常广阔。
2.1 提高医疗效率和精准度人工智能可以通过分析和处理大量的医学数据,帮助医生快速准确地做出诊断和治疗决策。
这将大大提高医疗效率,缩短患者等待时间,并降低医疗错误率,提高精确度。
2.2 实现个性化医疗人工智能可以根据患者的个体差异,提供个性化的诊断和治疗方案。
通过分析患者的基因、生理数据和病史等信息,人工智能可以为每位患者定制适合其的医疗方案,提高治疗效果。
人工智能大作业(二)引言概述:本文旨在深入探讨人工智能大作业的相关内容。
人工智能作为一门快速发展的学科,对于学习者而言,进行相关的大作业是加深理解和应用该领域知识的重要方式之一。
本文将分析人工智能大作业的五个主要方面,包括数据集选择、算法设计、模型训练、结果分析以及展示与报告。
正文:1. 数据集选择:- 研究不同领域的数据集,并从中选择最适合研究课题的数据集。
- 评估数据集的规模、特征、质量等因素,并确保其能够支持后续的算法设计和模型训练过程。
- 如果需要,进行数据预处理操作,如去除噪声、处理缺失值等,以提高数据集的质量和可用性。
- 确保数据集的隐私和安全性,遵循相关法规和伦理原则。
2. 算法设计:- 了解和研究相关领域的常用算法,并选择适合问题的算法。
- 分析算法的优势和局限性,并根据研究课题的需要进行适当的修改和改进。
- 设计算法的流程和步骤,明确数据的输入和输出,以及各个阶段的处理过程。
- 考虑算法的效率和可扩展性,确保能够处理大规模的数据集和复杂的任务。
3. 模型训练:- 根据选定的算法,准备训练数据集和验证数据集,并进行数据集划分。
- 初始化模型参数,并进行模型训练和优化,以使模型能够更好地拟合训练数据。
- 考虑使用交叉验证和调参等技术,来选择最优的模型参数和超参数。
- 监控训练过程,分析模型在训练集和验证集上的性能表现,并根据需要进行调整和改进。
4. 结果分析:- 对训练得到的模型进行性能评估,并使用不同的评测指标来衡量模型的好坏。
- 分析模型在不同类型数据上的表现差异,并探讨其原因和解决办法。
- 进行模型的可解释性分析,了解模型对于预测结果的依赖和影响因素。
- 与其他相关工作进行比较,评估自己的研究成果在同领域中的创新性和贡献度。
5. 展示与报告:- 将实现的算法和训练得到的模型进行演示和展示,以直观地呈现出其性能和效果。
- 准备详细的报告文档,清晰地描述整个研究过程,包括问题定义、方法设计、实验结果和分析等内容。
人工智能大作业(一)引言:人工智能(Artificial Intelligence,简称AI)是近年来备受关注的热门领域。
随着计算能力的提高和算法的进步,人工智能正在日益渗透到各个行业和领域中。
本文将探讨人工智能大作业的相关内容,着重分析了其中的五个重要方面。
正文:一、机器学习(Machine Learning)1.1 监督学习(Supervised Learning)的基本概念及示例1.2 无监督学习(Unsupervised Learning)的基本概念及应用领域1.3 强化学习(Reinforcement Learning)的基本原理和算法1.4 深度学习(Deep Learning)的基本结构和典型应用1.5 机器学习在人工智能大作业中的实践与挑战二、自然语言处理(Natural Language Processing)2.1 词法分析和语法分析的基本原理和任务2.2 语义分析和语义关系的理论基础和实践应用2.3 文本分类和情感分析的相关技术和方法2.4 机器翻译和语音识别的高级应用和发展趋势2.5 自然语言处理在人工智能大作业中的应用与挑战三、计算机视觉(Computer Vision)3.1 图像处理和特征提取的基本原理和方法3.2 目标检测和图像识别的常用算法和技术3.3 图像分割和场景理解的相关研究和实践3.4 视频分析和行为识别的进展和应用领域3.5 计算机视觉在人工智能大作业中的应用案例和前景展望四、数据挖掘(Data Mining)4.1 数据预处理和数据清洗的基础知识和常用技术4.2 数据集成和数据转换的数据挖掘流程和方法4.3 关联规则和聚类分析的基本概念和算法4.4 分类和预测分析的实践案例和评价指标4.5 数据挖掘在人工智能大作业中的应用与发展趋势五、智能决策系统(Intelligent Decision System)5.1 知识表示和推理的基本方法和知识表示语言5.2 不确定性建模和决策制定的技术和策略5.3 专家系统和推荐系统的典型特征和实现方法5.4 异常检测和智能优化的相关研究和应用5.5 智能决策系统在人工智能大作业中的实践案例和展望总结:人工智能大作业(一)涵盖了机器学习、自然语言处理、计算机视觉、数据挖掘和智能决策系统等五个重要方面。
西电人工智能大作业八数码难题一.实验目的八数码难题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。
例如:(a) 初始状态 (b) 目标状态图1 八数码问题示意图请任选一种盲目搜索算法(深度优先搜索或宽度优先搜索)或任选一种启发式搜索方法(A 算法或 A* 算法)编程求解八数码问题(初始状态任选),并对实验结果进行分析,得出合理的结论。
本实验选择宽度优先搜索:选择一个起点,以接近起始点的程度依次扩展节点,逐层搜索,再对下一层节点搜索之前,必先搜索完本层节点。
二.实验设备及软件环境Microsoft Visual C++,(简称Visual C++、MSVC、VC++或VC)微软公司的C++开发工具,具有集成开发环境,可提供编辑C语言,C++以及C++/CLI 等编程语言。
三.实验方法算法描述:(1)将起始点放到OPEN表;(2)若OPEN空,无解,失败;否则继续;(3)把第一个点从OPEN移出,放到CLOSE表;(4)拓展节点,若无后继结点,转(2);(5)把n的所有后继结点放到OPEN末端,提供从后继结点回到n的指针;(6)若n任意后继结点是目标节点,成功,输出;否则转(2)。
流程图:代码:#include <stdlib.h>#include <stdio.h>typedef struct Node {int num[9]; //棋盘状态int deepth; //派生的深度 g(n)int diffnum; //不在位的数目 h(n)int value; //耗散值 f(n)=g(n)+h(n)struct Node * pre;struct Node * next;struct Node * parent;}numNode; /* ---------- end of struct numNode ---------- */int origin[9]; //棋盘初始状态int target[9]; //棋盘目标状态int numNode_num,total_step;numNode *open,*close; //Open表和Close表numNode *create_numNode(){return (numNode *)malloc(sizeof(numNode));}numNode *open_getfirst(numNode *head); //返回第一项,并从Open表中删除void open_insert(numNode *head,numNode *item); //向Open表中按序插入新节点void close_append(numNode *head,numNode *item); //向Close表中插入新节点int expand(numNode *item); //扩展节点int print_result(numNode *item); //打印结果numNode *copy_numNode(numNode *orgin);char isNewNode(numNode *open,numNode *close,int num[9]);//是否在Open表或Close表中void print_num(int num[9]); //打印棋盘状态int diff(int num[9]); //求不在位棋子的个数void init(); //初始化,获得棋盘初始状态和目标状态void swap(int *a,int *b);int operate(int num[],int op);void free_list(numNode *head);/** Name: 主函數* Description: 程序入口*/Int main ( int argc, char *argv[] ){//初始化Open表和Close表open=create_numNode();close=create_numNode();open->pre=open->next=close->pre=close->next=NULL; init(); //由用户输入初始和目标状态//初始化初始节点numNode *p1;p1=create_numNode();p1->parent=NULL;p1->deepth=0;int i=0;for ( i=0; i<9; i++){p1->num[i]=origin[i];}open_insert(open,p1);numNode_num=1;p1=open_getfirst(open);while (p1!=NULL){close_append(close,p1);if(expand(p1))return EXIT_SUCCESS;p1=open_getfirst(open);}printf("No solution!\n");return EXIT_SUCCESS;} /* ---------- end of function main ---------- */voidinit ( ){while(1){printf("Please input opriginal status:\nFor example:123456780 stands for\n""1 2 3\n""4 5 6\n""7 8 0\n");char temp[10];scanf("%s",&temp);int i=0;for ( i=0;i<9 && temp[i]-'0'>=0 && temp[i]-'0'<=8; i++){origin[i]=temp[i]-'0';}printf("Please input target status:\n");scanf("%s",&temp);int j=0;for ( j=0; j<9 && temp[j]-'0'>=0 && temp[j]-'0'<=8; j++){target[j]=temp[j]-'0';}system("cls");if ( i==9&&j==9){break;}}} /* ----- end of function init ----- */voidopen_insert (numNode *head,numNode *item){numNode *p,*q;p=head->next;q=head;while ( p!=NULL && item->value > p->value ){q=p;p=p->next;}q->next=item;item->pre=q;item->next=p;if(p!=NULL){p->pre=item;}} /* ----- end of function open_insert ----- */numNode *open_getfirst (numNode *head){numNode *p;if ( head->next == NULL ){return NULL;}p=head->next;head->next=p->next;if ( p->next != NULL ){p->next->pre=head;}p->pre=NULL;p->next=NULL;return p;} /* ----- end of function open_getfirst ----- */voidclose_append (numNode *head,numNode *item){item->next=head->next;item->pre=head;head->next=item;if ( item->next!=NULL ){item->next->pre=item;}} /* ----- end of function close_append ----- */intexpand (numNode *p1){numNode * p2;int op=1;for ( op=1; op<=4; op++){p2=copy_numNode(p1);operate(p2->num,op);if(isNewNode(open,close,p2->num)=='N'){p2->parent=p1;p2->deepth=p1->deepth+1;p2->diffnum=diff(p2->num);p2->value=p2->deepth+p2->diffnum;if(p2->diffnum==0){total_step=print_result(p2);printf("Total step: %d\n",total_step); free_list(open);free_list(close);return 1;}else{numNode_num++;open_insert(open,p2);}}elsefree(p2);}return 0;} /* ----- end of function expand ----- */intoperate(int m[], int op){int blank;blank=0;while (m[blank]!=0 && blank<9 )++blank;if (blank==9)return 1;switch (op) {case 1: /* up */if (blank>2)swap(m+blank,m+blank-3);break;case 2: /* down */if (blank<6)swap(m+blank,m+blank+3);break;case 3: /* left */if (blank!=0 && blank!=3 && blank!=6) swap(m+blank,m+blank-1);break;case 4: /* right */if (blank!=2 && blank!=5 && blank!=8) swap(m+blank,m+blank+1);break;default : return 1;}return 0;}voidswap(int *a, int *b){int c;c=*a;*a=*b;*b=c;}numNode *copy_numNode (numNode *origin){numNode *p;p=create_numNode();p->deepth=origin->deepth;p->diffnum=origin->diffnum;p->value=origin->value;int i;for ( i=0; i<9; i++){(p->num)[i]=(origin->num)[i];}return p;} /* ----- end of function copy_numNode ----- */intdiff (int num[9]){int i,diffnum=0;for(i=0;i<9;i++)if(num[i]!=target[i])diffnum++;return diffnum;} /* ----- end of function diff ----- */charisNewNode (numNode *open,numNode *close,int num[9]) {numNode *p;int i=0;p=open->next;while ( p!=NULL ){for ( i=0; i<9; i++){if(p->num[i]!=num[i])break;}if(i==9)return 'O'; //Openp=p->next;}p=close->next;while ( p!=NULL ){for ( i=0; i<9; i++){if(p->num[i]!=num[i])break;}if(i==9)return 'C'; //Closep=p->next;}return 'N';} /* ----- end of function isNewNode ----- */voidfree_list (numNode *head){numNode *p,*q;p=head->next;while ( p!=NULL ){q=p->next;free(p);p=q;}free(head);} /* ----- end of function free_list ----- */voidprint_num (int num[9]){int i;for ( i=0; i<9; i++){printf("%d\t",num[i]);if((i%3)==2)printf("\n");}} /* ----- end of function print_num ----- */intprint_result ( numNode *item){numNode *p;int step;p=item;if(p!=NULL){step=print_result(p->parent);printf("\nStep %d:\n",step+1);print_num(p->num);return step+1;}else{return -1;}}四.结果:下图实验结果中,一步代表一层的搜索结果中的最优解;八数码难题的宽度优先搜索树:五.实验分析宽度优先搜索属于一种盲目搜索算法,可以系统的展开所有节点,理论上一定能达到搜寻目的。
人工智能与应用大作业报告2000字摘要:一、引言1.人工智能的概述2.人工智能的应用领域3.报告的目的与意义二、人工智能的发展历程1.人工智能的起源2.人工智能的发展阶段3.我国在人工智能领域的发展三、人工智能的核心技术1.机器学习2.深度学习3.自然语言处理4.计算机视觉四、人工智能在各领域的应用1.教育领域2.医疗领域3.交通领域4.金融领域5.制造业6.农业7.其他领域五、人工智能的挑战与展望1.人工智能带来的挑战a.就业问题b.隐私安全c.伦理问题2.应对挑战的措施3.人工智能的未来发展趋势六、结论1.人工智能的重要性和价值2.我国在人工智能领域的发展优势3.人工智能的发展前景正文:一、引言随着科技的飞速发展,人工智能(Artificial Intelligence,简称AI)已成为当今世界关注的焦点。
人工智能是一种通过模拟、延伸和扩展人类智能的技术。
近年来,人工智能在各个领域得到了广泛的应用,取得了显著的成果。
本文将对人工智能的发展历程、核心技术、应用领域、挑战与展望进行分析,以期为大家提供一个全面了解人工智能的视角。
二、人工智能的发展历程人工智能的发展可以追溯到20世纪50年代,那时的计算机科学家们开始尝试模拟人类智能。
从那时起,人工智能经历了几次高潮与低谷,不断发展壮大。
目前,人工智能已经进入了以大数据、云计算、物联网等技术为支撑的新的发展阶段。
在我国,政府高度重视人工智能的发展,制定了一系列政策扶持措施,推动我国在人工智能领域走在世界前列。
三、人工智能的核心技术人工智能的核心技术包括机器学习、深度学习、自然语言处理、计算机视觉等。
其中,机器学习是一种通过训练数据对计算机进行自动学习和改善的方法;深度学习是机器学习的一个分支,主要采用多层神经网络进行学习;自然语言处理是研究如何让计算机理解和生成人类语言的学科;计算机视觉则是研究如何让计算机从图像或视频中获取有价值的信息。
四、人工智能在各领域的应用1.教育领域:人工智能在教育领域的应用主要包括智能教学系统、个性化推荐学习资源等,旨在提高教育质量,实现个性化教育。
题目:人工智能1.谈谈你对本课程学习过程中的心得体会与建议?人工智能是研究如何利用计算机来模拟人脑所从事的感知、推理、学习、思考、规划等人类智能活动,来解决需要用人类智能才能解决的问题,以延伸人们智能的科学。
掌握人工智能的基本概念、基本原理、知识的表示、推理机制和求解技术,以及机器学习的技术方法,掌握人工智能的一个问题和三大技术,即通用问题求解和知识表示技术、搜索技术、推理技术。
人工智能的定义可以分为两部分,即“人工”和“智能”。
“人工”比较好理解,争议性也不大。
有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。
但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。
这涉及到其它诸如意识、自我、思维等等问题。
人唯一了解的智能是人本身的智能,这是普通人认可的观点。
但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。
2.《人工智能》课程设计,从以下5个题目中任选其一作答。
《人工智能》课程设计题目三:深度优先搜索算法要求:(1)撰写一份word文档,里面包括(算法思路、算法程序框图、主要函数代码)章节。
(2)算法思路:简单介绍该算法的基本思想,至少100字。
(3)算法程序框图:绘制流程图或原理图,从算法的开始到结束的程序框图。
(4)主要函数代码:列出算法的具体代码。
(5)简单描述在人工智能的哪些领域需要使用深度优先搜索算法。
答:深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。
一般用堆数据结构来辅助实现DFS算法。
1.深度优先遍历图算法步骤:(1)访问顶点v;(2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;(3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。
题目:回归算法1.谈谈你对本课程学习过程中的心得体会与建议?《人工智能》是计算机专业的专业课之一。
本课程主要介绍如何用计算机来模拟人类智能,如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的智能,使得计算机更好的为人类服务。
该课程是计算机科学理论基础研究的重要组成部分,是计算机科学技术专业的专业拓展课,适合计算机专业人员使用。
该课程是计算机科学理论基础研究的重要组成部分,是计算机科学技术专业的专业拓展课,适合计算机专业人员使用。
这门课程需要学生掌握人工智能的基本概念、基本方法,会用知识表示方法、推理方法和机器学习等方法求解简单问题。
2.《人工智能》课程设计,从以下5个题目中任选其一作答。
《人工智能》课程设计题目二:回归算法要求:(1)撰写一份word文档,里面包括(常见的回归算法、基于实例的算法具体细节)章节。
(2)常见的回归算法包括:最小二乘法(Ordinary LeastSquare),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(Multivariate Adaptive Regression Splines)以及本地散点平滑估计(Locally Estimated ScatterplotSmoothing),请选择一个算法描述下算法核心思想(3)随意选用一个实例实现你所选择的回归算法。
答:回归是数学建模、分类和预测中最古老但功能非常强大的工具之一。
回归在工程、物理学、生物学、金融、社会科学等各个领域都有应用,是数据科学家常用的基本工具。
回归通常是机器学习中使用的第一个算法。
通过学习因变量和自变量之间的关系实现对数据的预测。
例如,对房价估计时,需要确定房屋面积(自变量)与其价格(因变量)之间的关系,可以利用这一关系来预测给定面积的房屋的价格。
可以有多个影响因变量的自变量。
1.用有界深度优先搜索方法求解图1所示八数码难题。
S o S g图1 八数码难题2.设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。
该船的负载能力为两人。
在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。
他们怎样才能用这条船安全地把所有人都渡过河去?3.某单位派遣出国人员,有赵、钱、孙三位候选人,经讨论后决定:(1)三人中至少派遣一人。
(2)如果赵去而钱不去,则一定派孙去。
(3)如果钱去,则一定派孙去。
求证:一定会派孙出国。
设用P(x)表示派x出国,zhao、qian、sun分别表示三人,将已知条件与目标用谓词公式正确的表示出来,并用消解反演进行证明。
4.简述进化编程的机理和基本过程,并以四状态机为例说明进化编程的表示。
5.用基于规则的推理系统证明下述推理的正确性:已知狗都会吠叫和咬人任何动物吠叫时总是吵人的猎犬是狗结论猎犬是吵人的6.如何利用遗传算法求解问题,试举例说明求解过程。
7.考虑图所示的寻找路径问题。
(1) 对所示物体和障碍物(阴影部分)建立一个结构空间。
其中,物体的初始位置有两种情况,一种如图所示,另一种情况是把物体旋转90°。
(2) 应用结构空间,描述一个寻求上述无碰撞路径的过程(程序)把问题限于无旋转的二维问题。
机械手(a)初始布局(b)目标布局图2 机械手堆积木规划问题8.用你学过语言编写计算机程序,用于执行BP学习算法。
9.选择一个你熟悉的领域,编写程序来描述艾真体与环境的作用。
说明环境是否是可访问的、确定性的、情节性的、静态的和连续的。
对于该领域,采用何种艾真体结构为好?10.设计一个智能吸尘器,适应的环境由自己设计,要求:1). 给出相应的知识表示;2). 设计相应的搜索算法,并实现之;3). 对智能吸尘器进行仿真;4). 给出能够适应多楼层的解决方案;5). 给出适应远程控制的解决方案。
可以按照自己的实际情况完成不同层次内容。
11.您认为《人工智能》课程的哪一部分内容对您的项目设计或者您以后的工作特别有用?并叙述其基本原理。
1.BP 神经网络基本原理
1.1人工神经元模式
图1神经元的一般描述
系统。
神经元是人工神经网络的基本处理单元,它是一个多输入-单输出的非线性器件,其结构如图1所示。
图中,x i 为输入信号,w ij 表示从第i 个神经元到第j 个神经元的连接权值,θj 为第j 个神经元的阈值。
设s j 为外部输入信号,y j 为输出信号,在上述模型中第j 个神经元的变换可描述为
)(∑+-=i
j j i ij j s x w f y θ
这里采用的非线性函数f(x)可以是阶跃函数、分段函数及Sigmoid 型函数。
1.2连接权值
人工神经网络的处理单元间相互连接,所有的连接构成一有向图。
每一连接对应于一个实数,称为连接权值,或称为权重。
权值的集合可看作是长期记忆。
我们可以用权矩阵W 来表示网络中的连接模式,W 中的元素是w ij 。
连接权值的类型一般分为激发和抑制形式,正的权值表示激发连接,相反,负的权值表示抑制连接。
连接权值的连接方式是人工神经网络的特征描述。
1.3神经网络状态
在时刻t ,每一个神经元都有一个实数值,称之为神经元状态,也叫做神经元的激励值,用x i 表示神经元u j 的状态,用X(t)表示神经网络的状态空间。
在各种不同的神经网络类型中,状态空间可以作各种不同的假设。
状态空间可能是续的,也可能是离散的;可能是有界的,也可能是无界的;可能在一个实数区间
上取值,也可能取有限值;最常见的情形是取二值,即0和1两种状态,或-1
和1两种状态,亦或是取连续实数值。
1.4神经网络的输出
对于每一个神经元,都有一个输出,并通过连接权值将输出传送给其相连的处理单元,输出信号直接依赖于处理单元的状态或激励值。
这种依赖性通过输出变换
函数f j对于处理单元u j的作用来表示。
假如我们用z j(t)来定义t时刻神经元的u i输出那么
z j (t)=f
j
(x
j
(t))
或写成向量的形式
Z(t)=f(X(t)) 这里,Z(t)是神经网络的输出向量,f定义为状态向量与每一个分量的对应函数。
一般是在区间(0,1)上的有界函数。
人工神经网络模型,按它的网络性能分类,可以分成确定性的、随机性的、连续型的和离散型的网络。
Hopfield网络模型就存在离散和连续两类。
确定性是相对于随机性而言,当网络状态按概率分布变化就呈现了随机性。
Boltzmann 机就是这种类型的人工神经网络模型,该神经元取0和1两种状态,每个神经元状态的转换是一随机函数。
2.BP神经网络模型
BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。
(1)节点输出模型
隐节点输出模型:O j=f(∑W ij×X i-θj) (1)
输出节点输出模型:Y k=f(∑T jk×O j-θk) (2)
f-非线形作用函数;θ -神经单元阈值。
图
典型BP网络结构模型
(2)作用函数模型
作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函数:f(x)=1/(1+e-x) (3)
(3)误差计算模型
误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数:
E p=1/2×∑(t pi-O pi)2(4)
t pi- i节点的期望输出值;O pi-i节点计算输出值。
(4)自学习模型
神经网络的学习过程,即连接下层节点和上层节点之间的权重拒阵W ij的设定和误差修正过程。
BP网络有师学习方式-需要设定期望值和无师学习方式-只需输入模式之分。
自学习模型为
△W ij(n+1)= η×Фi×O j+a×△W ij(n) (5)
η -学习因子;Фi-输出节点i的计算误差;O j-输出节点j的计算输出;a-动量因子。
3. 优化BP神经网络在系统安全评价中的应用
系统安全评价包括系统固有危险性评价、系统安全管理现状评价和系统现实危险性评价三方面内容。
其中固有危险性评价指标有物质火灾爆炸危险性、工艺危险性、设备装置危险性、环境危险性以及人的不可靠性。
3.1基于优化BP神经网络的系统安全评价模型
图基于优化BP神经网络的系统安全评价模型
3.2 BP神经网络在系统安全评价中的应用实现
(1)确定网络的拓扑结构,包括中间隐层的层数,输入层、输出层和隐层的节点数。
(2)确定被评价系统的指标体系包括特征参数和状态参数
运用神经网络进行安全评价时,首先必须确定评价系统的内部构成和外部环境,确定能够正确反映被评价对象安全状态的主要特征参数(输入节点数,各节点实际含义及其表达形式等),以及这些参数下系统的状态(输出节点数,各节点实际含义及其表达方式等)。
(3)选择学习样本,供神经网络学习
选取多组对应系统不同状态参数值时的特征参数值作为学习样本,供网络系统学习。
这些样本应尽可能地反映各种安全状态。
其中对系统特征参数进行(-∞,∞)区间地预处理,对系统参数应进行(0,1)区间地预处理。
神经网络的学习过程即根据样本确定网络的联接权值和误差反复修正的过程。
(4)确定作用函数,通常选择非线形S型函数
(5) 建立系统安全评价知识库
通过网络学习确认的网络结构包括:输入、输出和隐节点数以及反映其间关联度的网络权值的组合;即为具有推理机制的被评价系统的安全评价知识库。
(6) 进行实际系统的安全评价
经过训练的神经网络将实际评价系统的特征值转换后输入到已具有推理功能的神经网络中,运用系统安全评价知识库处理后得到评价实际系统的安全状态的评价结果。
实际系统的评价结果又作为新的学习样本输入神经网络,使系统安全评价知识库进一步充实。
3.3 BP神经网络理论应用于系统安全评价中的优点
(1)利用神经网络并行结构和并行处理的特征,通过适当选择评价项目,能克服安全评价的片面性,可以全面评价系统的安全状况和多因数共同作用下的安全状态。
(2)运用神经网络知识存储和自适应特征,通过适应补充学习样本,可以实现历史经验与新知识完满结合,在发展过程中动态地评价系统的安全状态。
(3)利用神经网络理论的容错特征,通过选取适当的作用函数和数据结构,可以处理各种非数值性指标,实现对系统安全状态的模糊评价。