微波通信和卫星通信
- 格式:ppt
- 大小:1013.00 KB
- 文档页数:17
【精品】光纤通信、移动通信、微波通信、卫星通信现代通信技术摘要现代通信中光纤已经取代了电缆,成为长距离、大容量传输的主要手段。
微波在灵活性、抗灾性和移动性方面的优势是光纤传输不可缺少的补充和保护手段,移动通信是当今最热门的领域之一,具有大覆盖范围的卫星通信与之结合使得信息能够传到地球的每个角落。
本文重点介绍光纤通信、数字微波中继通信、卫星通信和移动通信的特点、异同及发展趋势。
关键字光纤通信移动通信微波通信卫星通信第一章光纤通信技术光纤通信的发展依赖于光纤通信技术的进步。
目前光纤通信技术已有了长足的发展新技术也不断涌现进而大幅度提高了通信能力并不断扩大了光纤通信的应用范围。
1.1 光纤通信技术发展现状1.1.1 波分复用技术波分复用 WDMWavelength Division Multiplexing技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。
根据每一信道光波的频率或波长不同将光纤的低损耗窗口划分成若干个信道把光波作为信号的载波在发送端采用波分复用器合波器将不同规定波长的信号光载波合并起来送入一根光纤进行传输。
在接收端再由一波分复用器分波器将这些不同波长承载不同信号的光载波分开。
由于不同波长的光载波信号可以看作互相独立不考虑光纤非线性时从而在一根光纤中可实现多路光信号的复用传输。
自从上个世纪末波分复用技术出现以来由于它能极大地提高光纤传输系统的传输容量迅速得到了广泛的应用。
1995 年以来为了解决超大容量、超高速率和超长中继距离传输问题密集波分复用 DWDMDens Wavelength DivisionMulti-plexing技术成为国际上的主要研究对象。
DWDM 光纤通信系统极大地增加了每对光纤的传输容量经济有效地解决了通信网的瓶颈问题。
据统计截止到2002 年商用的 DWDM 系统传输容量以 DWDM已达 400Gbit/s。
10Gbit/s 为基础的 DWDM 系统已逐渐成为核心网的主流。
微波通信技术在现代通信中的应用近年来,随着科技的不断发展,人们生活中的各个方面都得到了巨大的变化和发展,其中通信技术也是如此,微波通信技术是一种应用于现代通信领域的高科技技术,它已经被广泛应用于今天的通信世界中。
本文将向大家介绍微波通信技术在现代通信中的应用。
一、什么是微波通信技术微波通信技术是指利用微波作为传输介质,通过无线电波信号将信息传输的一种通信技术。
它具有高速率、高质量、低干扰等优点,可以长距离传输大量的数据,广泛应用于现代通信领域。
二、微波通信技术的应用1、卫星通信微波通信技术在卫星通信中的应用非常广泛,通过卫星间的微波通信,可以实现全球范围内的通信。
卫星通信可以大大加快信息的传输速度,实现信息的全球无缝覆盖,为各行各业的用户提供高效便捷的通信服务,例如军事通信、气象云图、GPS导航等等。
2、无线通信微波通信技术在无线通信中的应用也非常广泛,例如手机、无线网络等等。
通过微波通信技术,无线通信可以实现点对点的数据传输,同时可以大大增强通信的可靠性和稳定性。
还可以实现高质量音频、视频通话、远程监控和控制等功能,为各行各业用户带来便捷的服务。
3、雷达系统雷达系统是一种非常重要的微波通信系统,它可以利用微波信号来探测目标的位置和运动,为军事、民用等领域的用户提供重要的信息。
雷达系统通过微波通信技术可以实现大量的探测能力,实现长距离探测和快速目标识别,为各领域的用户提供高质量的服务。
4、微波通信传输系统微波通信传输系统是一种用于长距离传输的系统,尤其在山区、城市等信号不容易穿透的地方,微波通信传输系统非常重要。
通过微波信号在大区域范围内传输,可以实现大量信息、高清视频等等的传输。
同时,它还可以实现各种语音、图像传输,为各行各业的用户提供良好的服务。
三、微波通信技术的优势微波通信技术优势非常明显,主要表现在以下几个方面:1、高速率微波通信技术传输速度非常快,是一种高速率的通信方式,可以实现大量数据、图像等的快速传输。
第一章微波与卫星通信概述主要讲述地内容:①微波与卫星通信地基本概念与特点;②微波通信系统地组成,移动通信系统地组成,卫星通信系统地组成;1.1微波与卫星通信地基本概念与特点1.2长途微波通信系统地组成1.3移动通信系统地组成1.4卫星通信系统地组成1.1 微波与卫星通信地基本概念与特点1.1.1 微波与卫星通信1.微波与卫星通信共同点:微波与卫星通信地工作频率都是属于微波频率,微波是指频率为300MHz至300GHz 地电磁波。
不同点:微波通信,是指用微波频率作载波携带信息,通过无线电波空间进行中继(接力)通信地方式。
常见地典型地面微波通信系统包含长途微波通信系统与移动通信系统。
卫星通信,是指利用人造地球卫星作为中继站,转发或反射无线电波,在两个或多个地球站之间进行地通信。
实际上,卫星通信可以看作是利用微波频率,把通信卫星作为中继站而进行地一种特殊地微波中继通信。
2.长途微波通信地特点①微波:②多路③接力数字通信地缺点:数字微波要求传输信道带宽较宽,因而产生了频率选择性衰落。
3,移动无线通信地特点移动通信是指通信双方或至少一方在运动状态中进行信息传递地通信方式。
(1) 电波传播环境极恶劣由于移动台处于运动状态之中,无线电地多径传输会造成接收信号瑞利衰落,使所接收场强地幅度与相位呈现快速变化地现象。
另外移动台地通信质量还会受到地理环境地影响。
(2)移动台受到多种干扰影响与噪声影响(3)应采用动态范围大地移动接收设备(4)频谱资源非常珍贵(5)组网技术复杂4,卫星通信地特点(1) 静止卫星通信地优点①通信距离远,且费用与通信距离无关②覆盖面积大,可进行多址通信③通信频带宽,传输容量大④信号传输质量高,通信线路稳定可靠⑤建立通信电路灵活,机动性好(2) 静止卫星通信地缺点①静止卫星地发射与控制技术比较复杂②地球地两极地区为通信盲区,而且地球地高纬度地区通信效果不好③存在星蚀与日凌中断现象:注意各自地特点④有较大地信号传输时延与回波干扰假定地球站与卫星间地通信距离为40000km,发端地球站信号经卫星转发到收端地球站(信号一上,一下),单程传输时间约为0.27s,当进行双方通信(一问一答)时,就是0.54s。
现代通信技术辅导7第七章微波通信和卫星通信一、知识点∙微波通信。
∙卫星通信。
二、重点难点内容微波通信是在20 世纪40 年代至50 年代开始使用的无线电通信技术,经过多年的发展己经获得广泛的应用。
微波通信分为模拟微波通信和数字微波通信两类。
模拟微波通信早已发展成熟,并逐渐被数字微波通信所取代,数字微波通信已成为一种重要的传输手段,并与卫星通信,光纤通信一起作为当今三大传输手段。
卫星通信可看作微波通信的一个具体应用,所以把微波通信和卫星通信放在同一章中。
学习中注意比较卫星通信和地面微波通信的异同点。
(一)微波通信本节主要讲述微波通信的概念和特点,微波通信系统的基本组成,微波站的设备组成及微波的传输特性和抗衰落技术。
1. 微波通信的概念和特点(1)微波的频段划分无线电波波段的划分如表1 所示。
表(一)无线电波波段的划分整个电磁频谱,包含从电波到宇宙射线的各种波、光和射线的集合。
不同频率段落分别γ射线和宇宙命名为无线电波(3kHz~3000GHz)、红外线、可见光、紫外线、x 射线、射线。
微波是超高频率的无线电波。
由于这种电磁波的频率非常高,故微波又称为超高频电磁波。
电磁波的传播速度υ与其频率f 、波长又有下列固定关系:若微波是在真空中传播,则速度为微波频段的波长范围为lm~lmm,频率范围为300MHz~300GHz,可细分为特高频(UHF) 频段/分米波频段、超高频(SHF)频段/厘米波频段、极高频(EHF)频段/毫米波频段和至高频频段/亚毫米波频段。
实际工程中常用拉丁字母代表微波小段的名称,例如S , C , X 分别代表10厘米波段、5 厘米波段和3厘米波段;Ka,U,F分别代表8毫米波段和3毫米波段等等,详见表2。
表(二)微波频段的划分(2)微波中继通信的概念微波中继通信是利用微波作为载波并采用中继(接力)方式在地面上进行的无线电通信。
A ,B 两地间的远距离地面微波中继通信系统的中继示意如图1 所示。
《微波通信与卫星通信》课程作业注意事项:要求该课程作业全部手写在浙江理工大学标准作业本上;每一章的作业题目要另起一页从新开始;本文档中所列出的题目必须把原题抄写在作业本上,随后再写答案;所有题目都是必选的,请全部做完并且独立完成;要求字迹清晰工整。
请于2015年1月7日上课时随课程论文一起上交。
第1章微波与卫星通信概述1-1 微波通信有哪些特点?卫星通信有哪些特点?微波通信具有良好的抗灾性能,对水灾、风灾以及地震等自然灾害,微波通信一般都不受影响。
但微波经空中传送,易受干扰,在同一微波电路上不能使用相同频率于同一方向,因此微波电路必须在无线电管理部门的严格管理之下进行建设。
此外由于微波直线传播的特性,在电波波束方向上,不能有高楼阻挡,因此城市规划部门要考虑城市空间微波通道的规划,使之不受高楼的阻隔而影响通信卫星通信①通信距离远,且费用与通信距离无关。
②广播方式工作,可以进行多址通信。
③通信容量大,适用多种业务传输。
④可以自发自收进行监测。
⑤无缝覆盖能力。
⑥广域复杂网络拓扑构成能力。
⑦安全可靠性。
1-2 请阐述智能天线的概念。
智能天线又称自适应天线阵列、可变天线阵列、多天线。
智能天线指的是带有可以判定信号的空间信息(比如传播方向)和跟踪、定位信号源的智能算法,并且可以根据此信息,进行空域滤波的天线阵列。
智能天线是一种安装在基站现场的双向天线,通过一组带有可编程电子相位关系的固定天线单元获取方向性,并可以同时获取基站和移动台之间各个链路的方向特性。
[1]智能天线采用空分复用(SDMA)方式,利用信号在传播路径方向上的差别,将时延扩散、瑞利衰落、多径、信道干扰的影响降低,将同频率、同时隙信号区别开来,和其他复用技术相结合,最大限度地有效利用频谱资源。
早期应用集中于雷达和声呐信号处理领域,20世纪70年代后被引入军事通信中。
随着移动通信技术的发展,阵列处理技术被引入到移动通信领域,很快就形成了智能天线的研究领域。
微波通信技术在卫星通信中的应用卫星通信是一种通过人造卫星传送信息的通信方式,它在现代通信领域起着至关重要的作用。
而微波通信技术则是卫星通信中最常用的通信技术之一。
本文将探讨微波通信技术在卫星通信中的应用。
首先,我们需要了解什么是微波通信技术。
微波通信是一种以微波频段(1-300 GHz)进行通信的技术,其具有宽带、高速、可靠等优点。
在卫星通信中,微波通信技术通过卫星接收地面发射的信号,再利用卫星将信号传送给目标地点,从而实现远距离的通信。
在卫星通信中,微波通信技术的应用非常广泛。
首先,微波通信技术可以用于广播电视的传送。
通过利用卫星的广覆盖范围和高传送速率,广播电视节目可以通过卫星传送到全球各地,实现全球广播电视的覆盖,提供更加多样化和高质量的节目内容。
其次,微波通信技术在军事通信中扮演着重要的角色。
军事通信需要高速、安全、可靠的传输,而微波通信技术正好满足这些需求。
通过卫星的传输,军事机关和部队可以及时地传递战略指令、情报信息等敏感数据,以支持作战决策和行动。
此外,微波通信技术还广泛应用于远程监控和遥感领域。
通过卫星传输的微波信号,可以实现对远程地区的视频监控、环境监测和资源调查等任务。
这种应用不仅可以提高监控的范围和效率,还可以节省人力和物力资源。
除了以上应用,微波通信技术在卫星通信中还有许多其他的应用。
例如,微波通信技术可以用于移动通信,通过卫星传送信号,实现全球范围内的移动电话通信。
另外,微波通信技术还可以用于天文学的观测和研究,通过卫星接收微波信号,我们可以了解更多有关宇宙的信息。
尽管微波通信技术在卫星通信中有许多应用,但也存在一些挑战和限制。
首先,微波信号在大气层中容易受到干扰和衰减,这可能导致信号质量下降。
其次,微波通信技术的设备和维护成本相对较高,这对于一些资源有限的地区来说可能是一个问题。
为了应对这些挑战,研究人员一直在不断地改进微波通信技术。
他们致力于开发更加高效和可靠的微波设备,以提高信号的传输效率和质量。
无线通信(Wireless Communication)是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式,近些年信息通信领域中,发展最快、应用最广的就是无线通信技术。
在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。
从最初的电报开始经过150多年的现代电信的发展是来自各界的成千上万科学家、工程师和研究人员的辛勤劳动的结果。
他们当中只有少数独立负责发明的人成了名,而大多数达到顶点的发明是许多个人的成果。
这里汇集了部分对于无线电通信发展中起到重要作用的历史人物。
无线通信主要包括微波通信和卫星通信。
微波是一种无线电波,它传送的距离一般只有几十千米。
但微波的频带很宽,通信容量很大。
微波通信每隔几十千米要建一个微波中继站。
卫星通信是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。
无线技术给人们带来的影响是无可争议的。
如今每一天大约有15万人成为新的无线用户,全球范围内的无线用户数量目前已经超过2亿。
这些人包括大学教授、仓库管理员、护士、商店负责人、办公室经理和卡车司机。
他们使用无线技术的方式和他们自身的工作一样都在不断地更新。
从七十年代,人们就开始了无线网的研究。
在整个八十年代,伴随着以太局域网的迅猛发展,以具有不用架线、灵活性强等优点的无线网以己之长补"有线"所短,也赢得了特定市场的认可,但也正是因为当时的无线网是作为有线以太网的一种补充,遵循了IEEE802.3标准,使直接架构于802.3上的无线网产品存在着易受其他微波噪声干扰,性能不稳定,传输速率低且不易升级等弱点,不同厂商的产品相互也不兼容,这一切都限制了无线网的进一步应用。
这样,制定一个有利于无线网自身发展的标准就提上了议事日程。
到1997年6月,IEEE终于通过了802.11标准。
802.11标准是IEEE制定的无线局域网标准,主要是对网络的物理层(PH)和媒质访问控制层(MAC)进行了规定,其中对MAC层的规定是重点。