正弦定理(第一课时)
- 格式:ppt
- 大小:2.01 MB
- 文档页数:22
《正弦定理》§2.1《正弦定理》——第一课时(教学设计)一、教学目标1、知识与技能:通过对任意三角形边长和角度关系的探究,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2、过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
使学生进一步体会数形结合的思想;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
3、情感、态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
二、教学重点和难点重点:正弦定理的探究和证明及其基本应用难点:正弦定理的实际应用三、教学方法:问题牵引、启发引导、合作探究四、教学手段:多媒体辅助教学五、教学过程本节的教学过程由以下几个环节构成:六、教学设计1.正弦定理的建构(1)创设情境—感知定理①视频情境播放今年第12号台风海葵给我国吴山带来的伤害,让学生再一次感受大自然力量的强大,引导学生如何利用科学知识预防自然灾难,引出本节课的内容——正弦定理。
设计意图: 由实际生活入手,让学生感受数学来源于生活,同时又服务于生活。
(2)观察证明—形成定理① 通过特殊三角形的研究,观察它的角和边之间的关系,猜想它们之间的联系。
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又=sin 1C , A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)方法一、利用三角形的高证明正弦定理Ⅰ、当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。
第一课时 正弦定理一、教材预知:1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即Aa sin =Bb sin =Cc sin =2R (R 为△ABC 外接圆半径)证明方法:1).直角三角形中:sinA=c a ,sinB=cb , sinC=1即 c=A a sin , c=Bb sin , c=Cc sin .∴Aa sin =Bb sin =Cc sin2).斜三角形中证明一:(等高法)sin sin A D c B b C ==sin sin b c BC=,同理可得sin sin a bAB=证明二:(等积法)在任意斜△ABC 当中111sin sin sin 222A B C S ab C ac B bc A ∆===两边同除以abc21即得:Aa sin =Bbsin =Ccsin证明三:(外接圆法) 如图所示,∠A=∠D ∴R CD Da Aa 2sin sin ===,同理Bb sin =2R ,Cc sin =2R证明四:(向量法)过A 作单位向量j垂直于A C 由 A C +C B =AB两边同乘以单位向量j 得 j •(A C +C B )=j •AB则j •AC +j •CB =j •AB∴|j |•|A C |cos90︒+|j |•|C B |cos(90︒-C)=| j|•|AB |cos(90︒-A)∴Ac C a sin sin= ∴sin a A=Cc sin ,同理,若过C 作j垂直于C B 得:Cc sin =Bb sin ∴Aa sin =Bb sin =Cc sina bcOB CADABCD2.正弦定理的常见变形变形:灵活运用1)2sin a R A =,2sin b R B =,2sin c R C =;2)sin sin a B b A =,sin sin c C c B =,sin sin a C c A =; 3)::sin :sin :sin a b c A B C =. 3.解三角形1)把三角形的三边和它的对角叫做三角形的元素.2)已知三角形的几个元素(通常是3个)求其他元素的过程叫做解三角形. 4.正弦定理解斜三角形的类型 1)已知两角与一边(AAS ),有一解或无解 2)已知两边和其一边对角(ASS ),存在多解情形:两解、一解或无解 若A 为锐角时:babab a baa 已知边a,b 和∠A仅有一个解有两个解仅有一个解无解a ≥b CH=bsinA<a<b a=CH=bsinA a<CH=bsinAAC B ACB1ABACB2CHHH若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a二、典型例题:例1 已知在B b a C A c ABC 和求中,,,30,45,100===∆. 解:030,45,10===C A c ∴0105)(180=+-=C A B由C c A a sin sin =得 21030sin 45sin 10sin sin 0=⨯==CA c a由Cc Bb sin sin =得25654262075sin 2030sin 105sin 10sin sin 0+=+⨯==⨯==CB c b例2 在C A a c B b ABC ,,1,60,30和求中,===∆解:∵21360sin 1sin sin ,sin sin 0=⨯==∴=bB cC Cc Bb0090,30,,60,==∴<∴=>B C C B C B c b 为锐角,∴222=+=cb a例3 C B b a A c ABC ,,2,45,60和求中,===∆解:23245sin 6sin sin ,sin sin 0=⨯==∴=aA c C Cc Aa12060,sin 或=∴<<C c a A c1360sin 75sin 6sin sin ,756000+=====∴C B c b B C 时,当,1360sin 15sin 6sin sin ,1512000-=====∴CB c b BC 时,当或0060,75,13==+=∴C B b 00120,15,13==-=C B b例4 在A B C ∆中,根据下列条件指出解的个数. (1)2a =,2b =,30A =︒;(2)2a =,2b =,45A =︒;(3)5a =,2b =,120B =︒. 解:2;1;0例5 A B C ∆中,如果lg lg lg sin lg2a c B -==-,并且B 为锐角,试判断三角形形状.解:由2lg lg lg sin lg 2lg 2a c B -==-=,得2sin 2B =.因为B 为锐角,所以45B =︒,135A C +=︒.2sin 2sin a A c C==,将135A C =︒-代入得()2sin 2sin 135C C =︒-,化简得cos 0C =0180,90C C ︒<<︒∴=︒ ,所以A B C ∆为等腰直角三角形.三、及时突破:1.已知在045,30,10ABC A B c b ∆===中,已知求.2.在A B C ∆中,根据下列条件指出解的个数. (1)4a =,5b =,30A =︒; (2)5a =,4b =,60A =︒; (3)3a =,2b =,120B =︒;(4)3a =,6b =,60A =︒.3.在A B C ∆中,若222sin 2sin cos ,sin sin sin A B C A B C ==+,试判断三角形的形状. 4.在A B C ∆中,若::1:2:5a b c =,求代数式在2sin sin sin A BC -的值.5.在A B C ∆中,求证:2222112cos 2cos babB aA -=-.四、课后作业:1.在A B C ∆中,若sin sin A B ab=,则B ∠的值为 ( )A.30︒B.45︒C.60︒D.90︒2.在A B C ∆中,若32sin a b A =,则B 的值为 ( )A.3π B.6π C.3π或23π D.6π或56π3.在A B C ∆中,若::4:1:1A B C =,则::a b c 的值为 ( ) A.3:1:1 B.2:1:1C.2:1:1D.3:1:14.以下关于正弦定理的叙述或变形中错误的是 ( ) A.在A B C ∆中,::sin :sin :sin a b c A B C = B.在A B C ∆中,sin 2sin 2a b A B =⇔=C.在A B C ∆中,sin sin sin a b c AB C+=+D.在A B C ∆中,正弦值较大的角所对的边也较大5.三角形的两边长为3cm 、5cm ,其夹角的余弦值是方程25760x x --=的根,则此三角形的面积是( )A.26 cm B.215 cm 2C.28 cmD.210 cm6.在A B C ∆中,a 、b 、c 分别是角A 、B 、C 的对边,则()()sin sin sin sin a C B b A C -+-()s i n s i n c B A +-=.7.在A B C ∆中,()()lg sin sin 2lg sin lg sin sin A C B C A +=--,则三角形的形状是 . 8.在A B C ∆中,45A ∠=︒,2a =,6c =,解此三角形.9.在A B C ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且满足cos cos 2B b Ca c=-+,求B ∠的值.10.在A B C ∆中,已知内角3A π=,边23BC =.设内角B x =,周长为y .(1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.。