(完整版)低噪声放大器设计仿真及优化毕业设计
- 格式:doc
- 大小:220.00 KB
- 文档页数:23
基于ads仿真的低噪声放大器设计论文论文题目:基于ADS仿真的低噪声放大器设计摘要:低噪声放大器在无线通信系统中具有至关重要的作用,能够提高信号传输的质量和可靠性。
本论文基于ADS仿真平台对低噪声放大器的设计进行研究和优化,采用一种新颖的设计方法,以降低放大器的噪声系数,提高系统的性能。
首先,通过对低噪声放大器的原理和特性进行深入分析,确定了设计的目标和要求。
然后,利用ADS仿真工具进行电路设计和参数优化,并进行了相应的性能评估。
最后,通过实验验证了设计的有效性和可行性。
关键词:低噪声放大器、ADS仿真、噪声系数、性能评估、实验验证1.引言低噪声放大器在无线通信系统中起着关键作用,能够提高信号传输的质量和可靠性。
在设计低噪声放大器时,关注的主要指标是放大器的噪声系数。
低噪声放大器的设计需要考虑到多种因素,包括频率响应、幅度稳定性、增益平坦度等。
本论文旨在通过ADS仿真工具来实现低噪声放大器的设计和评估,优化其性能。
2.低噪声放大器设计原理3.ADS仿真工具的应用ADS是Agilent技术公司开发的一种射频和微波电路设计与仿真软件,具有强大的仿真和优化功能。
在本论文中,将使用ADS仿真工具来实现低噪声放大器的设计和优化。
通过合理选择元器件和调整电路参数,我们可以得到一个满足设计要求的低噪声放大器。
4.低噪声放大器设计和优化首先,在ADS中建立低噪声放大器的电路模型,包括源极、基极和负载等部分。
然后,通过电路参数的优化,使得在给定的频带内,低噪声放大器的噪声系数降至最低,并达到最佳的增益。
5.性能评估通过仿真数据对设计的低噪声放大器进行性能评估。
主要评估指标包括增益、噪声系数、频率响应以及其他性能参数。
比较设计方案的优缺点,选择和调整最佳的方案。
6.结果分析与讨论对仿真结果进行分析和讨论,评估设计的低噪声放大器方案的可行性和有效性。
对于不符合要求的设计方案,可以对电路参数进行进一步优化,以获得更好的性能。
毕业设计(论文)题目基于ADS的微波低噪声放大器的仿真设计所属院(系) 物电学院专业班级电子1201姓名学号:指导老师完成地点物电学院实验室2016年6月5日毕业论文﹙设计﹚任务书院(系) 物电学院专业班级电子信息工程学生姓名一、毕业论文﹙设计﹚题目基于ADS的微波低噪声放大器的仿真设计二、毕业论文﹙设计﹚工作自 2016 年 2 月 20 日起至 2016 年 6 月 20 日止三、毕业论文﹙设计﹚进行地点: 物电学院实验室四、毕业论文﹙设计﹚的内容要求:(LNA)广泛应用于微波接收系统中,是重要器件之一,主要用来放大低电平信号,由于是自天线下来第一个进行信号处理的器件,LNA决定了整个系统的噪声性能和电压驻波比VSWR,,往往需要对驻波比和噪声性能参数指标进行处理。
那么如何对这两个性能参数进行处理就成为低噪声放大器设计中的一个难点。
这个难点的最好解决方法就是放在放大器输入输出匹配网络的设计中来解决。
本设计是利用微波射频仿真软件ADS对微波低噪声放大器进行仿真设计,掌握微波射频电路的工程设计理论和设计方法,提高专业素质和工程实践能力。
其具体要求如下:1、分析微波低噪声放大器的各项参数;2、查找相关资料并翻译相关的英文资料;3、设计一微波低噪声放大器,根据所选器件,设计相应偏置电路;4、设计输入输出匹配电路,并利用仿真软件ADS对设计进行仿真验证。
进度安排:2月20日─3月1日:查阅资料、完成英文资料翻译并准备开题报告3月2日─4月1日:熟悉软件的使用并提交开题报告4月2日─5月1日:完善开题报告、研究微波低噪声放大器的理论设计方法、并建立偏置电路和匹配电路,进行期中检查。
5月2日─5月30日:利用软件建立微波低噪声放大器模型并进行仿真验证,准备验收。
6月1日─6月10日:撰写毕业设计论文并提交论文6月11日─6月15日:毕业设计答辩。
毕业设计应收集资料及参考文献:[1]低噪声放大器(LNA)[J].通信技术,2016(01)[2][D]电子科技大学,2009.[3][D]广东工业大学,2013.[4]. 2006.[5].[6] 射频功率放大器的研制[D].指导教师系 (教研室)系(教研室)主任签名批准日期接受论文 (设计)任务开始执行日期学生签名基于ADS的微波低噪声放大器的仿真设计学生:(陕西理工学院物理与电信工程学院电子信息工程专业电子1201班级,陕西汉中 723000)指导老师:[摘要]低噪声放大器用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路,低噪声放大器也主要面向移动通信基础设施基站应用。
宽带低噪声放大器ADS仿真与设计[导读]介绍一种X波段宽带低噪声放大器(LNA)的设计。
该放大器选用NEC公司的低噪声放大管NE3210S01(HJFET),采用微带阻抗变换型匹配结构和两级级联的方式,利用ADS软件进行设计、优化和仿真。
最后设计的放大器在10~13 GHz范围内增益为25.4 dB+0.3 dB,噪声系数小于1.8 dB,输入驻波比小于2,输出驻波比小于1.6。
该放大器达到了预定的技术指标,性能良好。
O 引言低噪声放大器(low noise amplifier,LNA)是射频接收机前端的重要组成部分。
它的主要作用是放大接收到的微弱信号,足够高的增益克服后续各级(如混频器)的噪声,并尽可能少地降低附加噪声的干扰。
LNA一般通过传输线直接和天线或天线滤波器相连,由于处于接收机的最前端,其抑制噪声的能力直接关系到整个接收系统的性能。
因此LNA的指标越来越严格,不仅要求有足够小的低噪声系数,还要求足够高的功率增益,较宽的带宽,在接收带宽内功率增益平坦度好。
该设计利用微波设计领域的ADS软件,结合低噪声放大器设计理论,利用S参数设计出结构简单紧凑,性能指标好的低噪声放大器。
1 设计指标下面提出所设计的宽带低噪声放大器需要考虑的指标:(1)工作频带:10~13 GHz。
工作频带仅是指功率增益满足平坦度要求的频带范围,而且还要在全频带内使噪声系数满足要求。
(2)噪声系数:FN<1.8 dB。
FN表示输入信噪比与输出信噪比的比值,在理想情况下放大器不引入噪声,输入/输出信噪比相等,FN=O dB。
较低的FN可以通过输入匹配到最佳噪声匹配点和调整晶体管的静态工作点获得。
由于是宽带放大器,难以获得较低的噪声系数,这就决定了系统的噪声系数会比较高。
(3)增益为25.4 dB。
LNA应该有足够高的增益,这样可以抑制后面各级对系统噪声系数的影响,但其增益不宜太大;避免后面的混频器产生非线性失真。
(4)增益平坦度为O.3 dB。
浙江大学信息与电子工程学系
硕士学位论文
CMOS低噪声放大器的设计与优化
姓名:黄晓华
申请学位级别:硕士
专业:物理电子学
指导教师:周金芳;陈抗生
20100125
浙江大学硕士学位论文绪论低噪放的匹配可以用纯电阻或者纯电抗网络,也可以使用电阻和电抗的组合。
使用纯电阻网络进行匹配的优点是占用芯片面积小,缺点是要消耗功率,并且会引入额外的噪声,通常应用在需要进行宽带放大的系统中。
使用纯电抗网络的优点是不需要消耗功率,也不会引入额外的噪声,它的缺点是电感电容需要占用很大的芯片面积,并且只能在特定的频点上实现匹配,通常应用在窄带系统中。
其电路结构大致上可以分成图1.1所示的四种形式【11。
(a)I
I
图1.1、窄带LNA电路结构第一种是使用电阻并联来实现阻抗匹配的共源放大结构,如图1.1(a)所示。
这种结构主要是利用共源放大器大输入阻抗的特点,用一个并联电阻来实现阻抗匹配。
因为共源放大器的输入阻抗通常很大,只要这个并联电阻的阻抗和滤波器的阻抗一样(一般是50Q),便可以实现阻抗匹配,缺点是这个50Q的电阻将给
系统带来较大的额外噪声。
第二种是共栅结构,如图1.1(b)所示.这种结构的放大器输入阻抗为1/gm,优点是可以通过调节偏置很容易实现和源阻抗匹配,缺点是没有电流增益,且噪声性能受这种结构固有的限制,很难进行优化【13】。
一^l,一~l
-]可主,鸩可@一
M.
h√.上。
摘要近年来,以电池作为电源的电子产品得到广泛使用,迫切要求采用低电压的模拟电路来降低功耗,所以低电压、低功耗模拟电路设计技术正成为研究的热点。
本文主要讨论电感负反馈cascode-CMOS-LNA(共源共栅低噪声放大器)的噪声优化技术,同时也分析了噪声和输入同时匹配的SNIM技术。
以噪声参数方程为基础,列出了简单易懂的设计原理。
为了实现低电压、低噪声、高线性度的设计指标,在本文中使用了三种设计技术。
第一,本文以大量的篇幅推导出了一个理想化的噪声结论,并使用Matlab分析了基于功耗限制的噪声系数,取得最优化的晶体管尺寸。
第二,为了实现低电压设计,引用了一个折叠式的共源共栅结构低噪声放大器。
第三,通过线性度的理论分析并结合实验仿真的方法,得出了设计一个高线性度的最后方案。
另外,为了改善射频集成电路的器件参数选择的灵活性,在第四章中使用了一种差分结构。
所设计的电路用CHARTER公司0.25μm CMOS 工艺技术实现,并使用Cadence的spectre RF 工具进行仿真分析。
本文使用的差分电路结构只进行了电路级的仿真,而折叠式的共源共栅电路进行了电路级的仿真、版图设计、版图参数提取、电路版图一致性检查和后模拟,完成了整个低噪声放大器的设计流程。
折叠式低噪声放大器的仿真结果为:噪声系数NF为1.30dB,反射参数S11、S12、S22分别为-21.73dB、-30.62dB、-23.45dB,正向增益S21为14.27dB,1dB压缩点为-12.8dBm,三阶交调点IIP3 为0.58dBm。
整个电路工作在1V电源下,消耗的电流为8.19mA,总的功耗为8.19mW。
所有仿真的技术指标达到设计要求。
关键字:低噪声放大器;噪声系数;低电压、低功耗;共源共栅;噪声匹配ABSTRACTIn recent years, electronics with battery supply are widely used, which cries for adopting low voltage analog circuits to reduce power consumption, so low voltage, low power analog circuit design techniques are becoming research techniques for inductively degenerated cascode CMOS low-noise amplifiers (LNAs) with on-chip inductors. And it reviews and analyzes simultaneous noise and input matching techniques (SNIM). Based on the noise parameter equations, this paper provides clear understanding of the design principle. In order to achieve low-voltage, low noise, specifications, in this paper by three design technology. Firstly, using Matlab tool analyzes noise figure based on power-constrained, and obtain the optimum transistor size. Secondly, design a folded-cascode-type LNA to reduce the power supper. Third, through theoretical analysis of Linear and combine simulation methods, I obtain a final design of a the other side, in order to improve the radio frequency integrated circuit device parameters of flexibility, this paper presents a difference in the structure in the fourth chapter. The proposed circuit design is realized using csm25RF 0.25μm CMOS technology, simulated with Cadence specter RF.Based on csm25RF 0.25μm CMOS technology, the resulting differential LNA achieves 1.32dB noise figure, -20.65dB S11, -24dB S22, -30.27 S12, 14 dB S21. The LNA's 1-dB compression point is -13.3dBm, and IIP3 is -0.79dBm, with the core circuit consuming 8.1mA from a 1V power supply.Key words:low-noise amplifier (LNA);noise figure;low voltage low power;cascode;noise matching目录第一章绪论 (1)1.1课题背景 (1)1.2研究现状及存在的问题 (2)1.3本论文主要工作 (3)1.4论文内容安排 (3)第二章射频电路噪声理论和线性度分析 (4)2.1噪声理论 (4)2.1.1 噪声的表示方法 (4)2.1.2 本文研究的器件噪声类型 (5)2.1.2.1 热噪声 (5)2.1.2.2 MOS噪声模型 (6)2.1.3 两端口网络噪声理论 (7)2.1.4 多级及联网络噪声系数计算 (9)2.2MOSFET两端口网络噪声参数的理论分析 (10)2.3降低噪声系数的一般措施 (13)2.4MOS LNA线性度分析 (14)2.4.1 1dB压缩点 (14)2.4.2 三阶输入交调点IIP3 (16)2.4.3 多级及联网络线性度表示方法(起最重要作用的线性级) (17)2.5小结 (18)第三章 CMOS低噪声放大器的设计理论推导 (20)3.1LNA设计指标 (20)3.1.1 噪声系数 (20)3.1.2 增益 (20)3.1.3 线性度 (20)3.1.4 输入输出匹配 (21)3.1.5 输入输出隔离 (21)3.1.6 电路功耗 (21)3.1.7 稳定性 (21)3.2CMOS LNA拓扑结构分析 (21)3.2.1 基本结构及比较 (21)3.2.2 源极去耦与噪声、输入同时匹配(SNIM)的设计 (22)3.2.3 共源共栅电路结构(cascode) (27)3.2.4 功率限制的单端分析—获得最佳化的宽长比 (29)3.3其它改进型电路比较 (31)3.4偏置电路的设计 (33)3.5 CASCODE设计结论 (34)第四章 2.4GHZ LNA电路设计 (35)4.1工艺库的元器件 (35)4.2差分CASCODE电路 (35)4.2.1 差分电路的设计 (35)4.2.2 差分电路的电路极仿真 (37)4.3单端CASCODE电路 (39)4.3.1 单端电路的设计 (39)4.3.2 单端电路的电路级仿真 (42)4.3.3 单端电路的版图设计、提取及后模拟 (45)4.4电路级仿真和后模拟仿真总结 (48)4.5与其它电路的比较 (49)结束语 (50)致谢 (51)参考文献 (52)附录A 二端口网络的噪声理论补充 (53)附录B S参数与反射系数 (55)B.1双端口网络S参数 (55)B.2反射系数与S参数的关系 (56)B.3其它参数与S参数的关系 (57)附录C 电感源极负反馈共源电路噪声推导 (58)附录D MATLAB程序 (62)第一章绪论1.1 课题背景在最近的十多年来,迅猛发展的射频无线通信技术被广泛地应用于当今社会的各个领域中,如:高速语音来,第3代移动通信(3G)、高速无线互联网、Bluetooth以及利用MPEG标准实现无线视频图像传输的卫星电视服务等技术是日新月异,无线通讯技术得到了飞速发展,预计到2010年,无线通信用户将达到10亿人[1],并超过有线通信用户。
低噪声放大器设计仿真及优化摘要快速发展的无线通信对微波射频电路如低噪声放大器提出更高的性能。
低噪声放大器(LNA)广泛应用于微波接收系统中,是重要器件之一,它作为射频接收机前端的主要部分,其主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据。
它的噪声性能直接决定着整机的性能,进而决定接收机的灵敏度和动态工作范围。
而近年来由于无线通信的迅猛发展也对其提出了新的要求,主要为:低噪声、低功耗、低成本、高性能和高集成度。
所以本论文针对这一需求,完成了一个2.45GHz无线射频前端接收电路的低功耗低噪声放大器的设计。
本文从偏置电路、噪声优化、线性增益及输入阻抗匹配等角度分析了电路的设计方法,借助 ADS 仿真软件的强大功能对晶体管进行建模仿真,在这个基础上对晶体管的稳定性进行了分析,结合 Smith 圆图,对输入输出阻抗匹配电路进行了仿真优化设计,设计了一个中心频率为2.45GHz、带宽为100MHz、输入输出驻波比小于1.5、噪声系数小于2dB和增益大于15dB的低噪声放大器。
关键词:微波;低噪声放大器;噪声系数;匹配电路;ADS仿真ABSTRACTRapid growth of wireless data communications Microwave communication system receiver, as the main part of the RF front-end receiver, the function of the low noise amplifier is amplifying the faint signal which incepted from air by the antenna. It can reduce the noise jamming, so as to demodulate right information for the system. The noise performance of the LNA will affect the performance of the whole system directly, and then deciding the sensitivity and dynamic working scope of the receiver.From the aspect of bias circuit, noise optimization, linear gain, impedance match, and the design methodology for LNA is analyzed, This article carries on the modelling simulation with the aid of the ADS simulation software's powerful function to the transistor, the analysis in this foundation to transistor's stability, the simulation optimization design. a radio frequency power amplifier is designed, which 1.5, Noise coefficient less than 2dB and Wattandgain 15dB.Key Words:microwave;low-noise amplifier; noise figure; matching circuit; ADS simulation目录1引言 (1)1.1课题研究背景 (1)1.2低噪声放大器简介 (2)1.3低噪声放大器的发展现状 (2)1.4本课题的研究方法及主要工作 (4)2低噪声放大器理论综述 (5)2.1史密斯圆图 (5)2.2S参数 (6)2.3长线的阻抗匹配 (6)2.3.1微波源的共轭匹配 (7)2.3.2负载的匹配 (7)2.3.3匹配方法 (8)2.4微带线简介 (8)2.5偏置电路 (9)3低噪声放大器的基本指标 (10)3.1工作频带 (10)3.2带宽 (10)3.3噪声系数 (11)3.4增益 (11)3.5稳定性 (12)3.6端口驻波比和反射损耗 (13)4低噪声放大器设计仿真及优化 (14)4.1指标目标及设计流程 (14)4.2选取晶体管并仿真晶体管参数 (14)4.3晶体管S参数扫描 (16)4.4放大器的稳定性分析.......................................................... 错误!未定义书签。
4.5设计输入匹配网络 .............................................................. 错误!未定义书签。
4.5.1匹配原理.................................................................................... 错误!未定义书签。
4.5.2计算输入阻抗........................................................................... 错误!未定义书签。
4.5.3单支节匹配电路 ...................................................................... 错误!未定义书签。
4.6设计并优化输入输出匹配网络.......................................... 错误!未定义书签。
结论 ............................................................................................... 错误!未定义书签。
参考文献 ............................................................................................. 错误!未定义书签。
致谢 .. (19)1引言1.1课题研究背景微波和射频工程是一个令人振奋且充满生机的领域,主要由于一方面,现代电子器件取得了最新的发展;另一方面,目前对语音、数据、图像通信能力的需求急剧增长。
在这一通信变革之前,微波技术几乎是国防工业一统天下的领域,而近来对无线寻呼、移动电话、广播视频、有绳和无绳计算机网络等应用的通信系统需求的迅速扩大正在彻底改变工业的格局。
这些系统正在用于各种场合,包括机关团体、生产制造工厂、市政基层设施,以及个人家庭等。
应用和工作环境的多样性伴随着大批量生产,从而使微波和射频产品的低成本制造能力大为提高。
这又转而降低了大批新型的低成本无线、有线射频和微波业务的实现成本,其中包括廉价的手持GPS导航设备、汽车防撞雷达,以及到处有售的宽带数字服务入口等。
在这些纷繁的无线设备中,低噪声放大器(LNA)是必不可少的关键部件,它应用于移动通讯、光纤通讯、电子对抗等接收装置的前端,它的噪声、增益等特性对系统的整体性能影响较大,其性能的好坏对整个装置的使用都有相当大的影响,因此低噪声放大器的设计是通讯接收装置的关键。
随着微波、毫米波技术的迅速发展,微波通信、导航、制导、卫星通信以及军事电子对抗战和雷达等领域对射频放大模块的需求量也越来越大。
特别是由于无线电通信频率资源的日益紧张,分配到各类通信系统的频率间隔越来越密,这对接收系统前端的器件,尤其是低噪声放大器,提出了更高的要求,以减小不需要的干扰因素,放大接收到的有用信号。
另一方面,由于新材料、新工艺的不断出现,以及半导体技术的迅速发展,各种新的射频模块层出不穷,使得微波、毫米波有源电路的研制周期不断缩短,且电路集成度越来越高,体积越来越小。
因此,为了适应未来形势的发展需要,我们有必要缩短研制设计周期,研制高性能、低噪声、小体积的微波放大器件,这已是目前国内国际各个应用领域的关键环节之一。
在接收系统中,低噪声放大器总是处于前端的位置。
整个接收系统的噪声取决于低噪声放大器的噪声。
与普通放大器相比,低噪声放大器一方面可以减小系统的杂波干扰,提高系统的灵敏度;另一方面放大系统的信号,保证系统工作的正常运行。
低噪声放大器的性能不仅制约了整个接收系统的性能,而且,对于整个接收系统技术水平的提高,也起了决定性的作用。
因此,研制合适的宽频带、高性能、更低噪声的放大器,研究出一套高效率的、精准的放大器设计方法已经成为射频微波系统设计中的关键环节。
1.2低噪声放大器简介低噪声微波放大器(LNA)已广泛应用于微波通信、GPS 接收机、遥感遥控、雷达、电子对抗、射电天文、大地测绘、电视及各种高精度的微波测量系统中,是必不可少的重要电路。
低噪声放大器位于射频接收系统的前端,其主要功能是将来自天线的低电压信号进行小信号放大。
前级放大器的噪声系数对整个微波系统的噪声影响最大,它的增益将决定对后级电路的噪声抑制程度,它的线性度将对整个系统的线性度和共模噪声抑制比产生重要影响。
对低噪声放大器的基本要求是:噪声系数低、足够的功率增益、工作稳定性好、足够的带宽和大的动态范围。
Advanced Design System(ADS)软件是Agilent公司在HP EESOF EDA软件基础上发展完善的大型综合设计软件,它功能强大,能够提供各种射频微波电路的仿真和优化设计,广泛应用于通信、航天等领域,是射频工程师的得力助手。
本文着重介绍如何使用 ADS 进行低噪声放大器的仿真与优化设计。
1.3低噪声放大器的发展现状从上个世纪60年代中期开始,由于平面外延工艺的发展,双极晶体管的工作频率跨进微波频段,平面外延晶体管的工作频率达到1GHz以上,出现了微波双极晶体管及其相应的放大器,而同时伴随着场效应晶体管(FET)理论的提出,包括金属绝缘栅半导体FET (如MOSFET) 、结型场效应晶体管(JFET) 、金属半导体场效应管(MESFET) 和近代的异质结场效应管(Hetero-FET) ,如HEMT等随之出现。
近几年来,随着材料生长技术(比如分子束外延和分子化学蒸发沉积)和新型器件结构可靠性的提高,开始从更高的输出功率和效率方面改善器件的功能。
这种新的技术发展水平功率GaAs HFET器件拥有基于异质结化合物AlGaAs 、GaAs InGaP、 GaAs、InAlAs、InGaAs的结构。