高等岩石力学课程报告英文读书报告

  • 格式:docx
  • 大小:98.64 KB
  • 文档页数:3

下载文档原格式

  / 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Reading report

Paper title: A new hard rock TBM performance prediction model for project planning

Major: 隧道与地下工程

Name: 叶宇航

Number: 1530767

Several models have been introduced over the years for prediction of hard rockTBM performance.The TBM performanceprediction models are mostly based on an empirical or a semi-theoretical approach. Although they have advantages and area of applications, they also have disadvantages, such as CSM model don’t consider the main influencing parameter, NTNU model require special experiments originated from the drilling, QTBM are too complicated. The authors hope to better understand machine-rock interaction and to develop a more accurate model for performance estimate of hard rock TBMs.In order to achieve it, the authors investigate the field data of three main tunneling projects in Iran and Manapouri tunnel project in New Zealand.The data obtained from the projects as before mention includinggeological and performance parameters,have wide ranges of variations.Butthese wide ranges of geological and performance parameters helped in developing a more comprehensive TBM performance prediction model which has covered different geological conditions.

In general, to justify the use of TBM in any project and for planning purposes, a reasonably accurate estimation of rate of penetration (ROP), daily rate of advance (AR), and cutter cost/life estimate is necessary. But the authors chosen Field Penetration Index(FPI) which is a composite parameter as the machine parameter. In the text, both single and multi-variable regression analyzes were used to investigate relationship between engineering rock properties and TBM performance parameters and finally to develop empirical equation. The analysis of the data obtained from the projects proved that FPI is a suitable machine performance parameter for developing empirical relationships with geological parameters.And multi-variable regression analysis show good correlation between ln (FPI) as response parameter and UCSand RQD as predictors. In conclusionFPI is a good parameter for the evaluation ofhard rockTBM performance. Therefore, the authors developed a chart of FPI prediction.This chart can be used for quick estimationof range of values for FPI in grounds with different rockstrength and rock quality.

Excepts the FPI, the authors also concerned the boreability. Boreability is the term commonly used to express the ease or difficulty of rockmass excavation by a tunnel boring machine. Rock mass boreability depends on a number of influencing parameters including intact rock/rock mass properties, machine specifications and operational parameters. In tunneling projects, ground characteristics or boreability of the rockmass is an important parameter for selecting machine type and specifications. It is clear that proper evaluation of rock mass boreability can also play a major role in machine operation to achieve the best performance. FPI can be selected as an index for categorizing rock mass boreability. Based on the analysis of give projects, the authors defined six rock massboreability classes, from most difficult for boring or B-0 class(Tough) to easiest for boring or B-V class (Excellent). Considered the relationship between FPI and boreability, the authors give a table of TBM performance estimation in rock masses with different boreability classes.

All in all, the paper proposeda simplemodel to evaluate rock mass boreability and TBM performancerange. This model demonstrates that machine performance hasbeen related to two main rock properties (UCS and RQD) and twooperational parameters (average cutter head thrust and